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A B S T R A C T   

This paper studies the sound wave propagation and attenuation characteristics in a new type of 
acoustic device, which is constructed by periodically embedding sonic black holes (SBHs) into an 
air-filled waveguide. The SBH is realized by cascading a set of rigid rings with linearly or 
quadratically changing inner radii into each unit cell section. Acoustic impedance variation 
rendered by this specially tailored profile progressively slows down the incident sound velocity to 
generate the SBH effects including wavelength compression, energy focalization, and dissipation 
with inherent damping in the duct. Upon developing and validating a model based on the transfer 
matrix method (TMM), the sound transmission loss (STL) of a finite-length periodic duct with 
different geometrical parameters is investigated. Different from a single SBH unit which can 
trigger the complete SBH process only above the cut-on frequency, the proposed periodic 
arrangement offers strong attenuation bands in the low-frequency range of the STL curve well 
below the frequency barrier imposed by the cut-on frequency of a single SBH unit. Mechanism 
studies reveal that these attenuation bands result from the interplay between the Bragg scattering 
and the SBH-specific slow-sound effects. The latter is shown to equivalently increase the effective 
lattice constant of the periodic duct, thus lowering the frequency of the Bragg bandgap. It is also 
shown that in contrast to conventional locally-resonant metamaterials, the proposed device ex-
hibits far less dependence on the number of unit cells and the amount of rigid rings to activate a 
significant low-frequency stop-band. These appealing features could greatly simplify the design 
and application of SBH-based metamaterials, making it a promising solution for low-frequency 
wave manipulation and noise control.   

1. Introduction 

Acoustic black hole (ABH) arouses great research interest in recent years. It is typically achieved by continuously varying the 
acoustic impedance in the direction of wave propagation in a waveguide, such that the wave speed is progressively reduced and ideally 
a non-reflecting condition is realized [1–3]. To activate the ABH effect, the characteristic impedance of the ABH termination should 
equal to that of the waveguide at their interface. The phase velocity of incoming waves gradually slows down as it travels closer to the 
end. As the local admittance at the end goes to infinity in the theoretical limit, the wave velocity can be reduced completely to zero, 
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implying that the incoming propagating waves will never reach the end. Such a phenomenon can, in principle, be created for certain 
types of waves in either solids [1] or fluids [4,5]. Most existing ABH studies focus on flexural wave propagation in structures, such as 
beams, plates, solids, etc. For sound waves in air, the term “sonic black hole (SBH)” was coined by Mironov and Pislyakov [6] to 
differentiate from its structural counterpart – vibrational black hole (VBH). Both fall into the category of acoustic black hole (ABH). 

The ABH theory for structural wave propagation has been extensively studied by far [7–9]. The required variation of the local 
admittance in a structural ABH is commonly realized by tailoring the thickness of a thin-walled structure to follow a power-lawed 
profile [10]. This usually results in a taper [11,12], a wedge [13,14], or an indentation [15–17] onto a plate structure, in which 
elastic waves propagate with decaying phase velocity. ABH phenomenon can be exploited to achieve enhanced passive vibration 
isolation. For example, Tang et al. [18] investigated the low-frequency transmission attenuation bands in a composite beam embedded 
with double-leaf acoustic black hole indentations. Experimental results show that strong vibration attenuation could be generated 
using as few as three ABH elements. Zhou et al. [19] proposed a planar swirl-shaped design of the ABH-based vibration absorber, in 
which the bending-twisting coupling effect produces wave retardings in both transverse and torsional movements. An alternative 
design was proposed by Li et al. [20] which combines the ABH with nonlinear vibration absorbers to obtain broadband vibration 
mitigation. A major shortcoming of the structural ABH is that its theoretical implementation heavily relies on perfectly diminishing the 
power-law profile to zero. Even a small residual thickness at the end can incur unavoidable wave reflections and eventually jeopardize 
the expected ABH effects. In practical implementation, this shortcoming can be mitigated by adding damping treatment to the ABH, 
such as attaching a thin layer of viscoelastic material to the surface of the beam or the plate [21]. Particularly, owing to the wave 
amplitude increase and the vibrational energy concentration, deploying damping treatment over a small area near the tip would be 
able to provide the required dissipation [22]. A comprehensive summary of the state-of-the-art ABH technologies can be found in the 
recent review paper [23]. 

Comparatively, SBH effects for sound waves in air are less exploited. The first occurrence of the SBH was proposed by Mironov et al. 
[2], in which the reduction of sound velocity was discretely achieved by inserting a set of rigid rings into a retarding duct with decaying 
inner radii. The effects of main design parameters on the reflection coefficient were further studied in [24]. Guasch et al. [25] 
investigated the SBH phenomenon by modeling the SBH as a meta-fluid with a power-law varying density. The theoretical formulation 
of the SBH effect was also discussed by Hollkamp et al. in [26]. As an alternative, Mironov et al. [6] proposed a different SBH design, in 
which the rigid rings were replaced by rigid discs with increasing diameters fixed on four rods. In our recent publication [27], we 
explored the wave trapping mechanism from both sound transmission and absorption perspectives. It was found that an open-end ABH 
can simultaneously reduce sound reflection and transmission. The SBH could also be combined with classical devices to create hybrid 
acoustic absorbers, such as the recent work on SBH-backed micro-perforated plates [28]. 

Despite these efforts, two major problems remain to be tackled for practical applications of SBH-based technology. The first one is 
associated with the cut-on frequency [2], only above which the desired ABH effect, in terms of wave-speed-induced energy focusing 
and dissipation, becomes systematic when the incoming sound wavelength starts to match the physical SBH dimension. This means 
that moving the cut-on frequency downwards to lower frequencies would require a very bulky structure. The second problem is tied 
with the practical implementation of the SBH. Previous results show that for a single SBH termination, a large number of rigid rings are 
necessary to ensure a fast and smooth reduction of the reflection coefficient as frequency increases [24]. However, from the viewpoint 
of manufacturing, squeezing a large number of rigid rings into a narrow duct is challenging and problematic. 

To tackle the aforementioned problems, the present study employs SBH as building blocks to construct a periodic duct, instead of as 
a single retarding termination, to study the potential benefits arising from the design for acoustic wave manipulation and sound 
attenuation. A similar idea was exploited for structural ABH by Tang et al. [29] to achieve vibration reduction of a flexural beam. It was 
shown that the vibration of the beam was significantly suppressed with only a few embedded ABH cells. Following the same phi-
losophy, this paper is motivated with two hypotheses: first, as periodicity could trigger the Bragg scattering effect, the low-frequency 
bandgaps, typically existing in periodic structures, could possibly overcome the hurdle imposed by the cut-on frequency of a single SBH 
[30–32]. Second, with more unit cells, the strict requirement on the number of inner rings for each unit cell could possibly be reduced 
[33]. The proposed device is also expected to overcome the limitations of traditional acoustic metamaterials formed by periodic 
Helmholtz resonators [34–37], which typically exhibit narrow local-resonance bandgaps [38], or heavy reliance on the periodicity 
[39]. 

The physics associated with the way that SBH effect plays out in the proposed periodic configuration also need a deeper under-
standing. It is well-known that effective sound absorption in a single SBH unit relies on two mechanisms working simultaneously, i.e., 
energy concentration due to the slowing-down of the sound speed and adequate energy dissipation [27]. These two conditions can only 
be satisfied at relatively high frequencies, such that the low frequency performance of a single SBH is usually weak. The rationale 
behind the proposed periodic SBH construction is to boost the low-frequency sound attenuation by capitalizing on the Bragg scattering 
effect in the retarding structure rather than purely relying on dissipation. In fact, as the speed of sound that travels through each SBH 
unit is determined by its profile of changing inner radii, the slow-sound effect would still preserve at low frequencies, thus partially 
activating the SBH process despite the absence of energy dissipation. This alludes to the possibility of triggering the formation of 
bandgaps linked to Bragg reflections at lower frequencies than the ones usually determined by the lattice constant of the conventional 
periodic structure, as the sound speed is equivalently reduced. This motivates us to find out how such sound speed variation would 
benefit the formation of the Bragg bandgaps in views of noise mitigation. 

In the following, we will thoroughly examine these possibilities and the underlying mechanisms by means of numerical simulation 
and experiments. This study provides both the theoretical background and design guidelines for conceiving an acoustic device made of 
periodic SBHs. The study intends to show the potential offered by the SBH-based design for acoustic wave manipulation and low- 
frequency and broadband noise control. 
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2. Theoretical model and formulation 

2.1. Model description of the proposed device 

The proposed acoustic duct with embedded periodic SBHs is illustrated in Fig. 1. Each element in the periodic duct is called a unit 
cell, which comprises a segment with varying cross-sections sandwiched by two uniform parts. As shown in the inset of Fig. 1(a), the 
proposed SBH features a symmetric arrangement of shirking and expanding rings. The profile is symmetrical with respect to the 
midpoint. This differs from the classical SBH design, which usually acts as a termination to a regular duct and only has a shrinking inner 
cavity. The inner radius of rings in the two parts take either a linear variation (Fig. 1b) 

y =
R − r

b
|x| + r (1)  

or a quadratic variation (Fig. 1c) 

y =
R − r

b2 x2 + r (2)  

where R is the radius of the uniform cross-section; r is the radius at the thinnest cross-section, or the residual radius; b is the axial length 
of the shrinking half or the expanding half. Note that y(±b) = R and y(0) = r for both configurations. Each uniform part also has an 
axial length of b, so the total length of one unit cell, referred to as the lattice constant a, is 4b. In this paper, we only focus on these two 
types of SBHs with low power-law exponents, as evidence shows that power-lawed profiles with higher exponents would violate the 
smoothness criteria and thus impair the SBH effect [23]. 

The purpose of such a symmetrical SBH profile is to strike a balance between the sound-dissipating nature of each single SBH and 
the creation of Bragg bandgaps arising from the periodic arrangement. With symmetrical SBH profiles, the upstream unit cells permit a 
portion of the incident sound waves to propagate downwards and be reflected by those downstream unit cells. Interactions between the 
incident and reflected sound waves give rise to Bragg bandgaps, which would not occur if most sound waves have already been 
dissipated by the first unit cell with an otherwise more perfect SBH profile. The right half of the symmetrical SBH reverses the 
transformation process that the sound waves have undergone in the left half, enabling the expected downward propagation. Such a 
design cannot be achieved if the right half is missing, since an abrupt change of cross-section at the end of the left half will only result in 
more sound reflections. 

2.2. Formulation by the transfer matrix method 

For a perfect SBH termination with its inner radii of the rings decaying to zero, the governing equations of the in-duct acoustic 
propagation and their solutions have been detailed in [24]. However, due to the presence of the residual radius, it is rather difficult to 

Fig. 1. Schematic of the sonic black hole: (a) an acoustic duct with embedded SBHs and a cutaway view of its unit cell. Each unit cell consists of a 
symmetrically power-lawed section sandwiched by two identical uniform sections; (b) axial profile of one SBH unit cell with linearly changing radii; 
(c) axial profile of one SBH unit cell with quadratically changing radii. The formulas for the power-lawed profiles are given along the figures. 
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apply these prior equations to the current design. Next, we follow the method proposed by [24] and seek a solution based on the 
transfer matrix method (TMM). With the TMM, state vectors (sound pressure p and volume velocity u) at two arbitrary sections of the 
duct can be linked up by an analytical transfer matrix under the plane wave framework. In the proposed device, the rigid rings in each 
unit cell are assumed to have the same thickness and placed at equal intervals. The acoustic duct is filled by air, which is characterized 
by the sound speed c0 and mass density ρ0. 

A segment of the SBH portion is depicted in Fig. 2(a), which consists of two successive rigid rings and the duct wall in between. For 
ease of modeling, the acoustic cavity enclosed by this ring-wall-ring segment is divided into four parts: a pair of cylindrical cavities 
inside the two rings, a conical cavity bridging the two cylindrical cavities, and a branch cavity appended to the conical cavity. The four 
cavities are illustrated in Fig. 2(b), and four coordinates, xi+2, xi+1, xi, and xi− 1, are labelled on the x-axis to indicate their locations. The 
inner radii of the left and right rings are represented by ri+1 and ri, respectively. 

First, the state vector at xi+2, ( pi+2 ui+2 )
T, is related to the state vector at xi+1, ( pi+1 ui+1 )

T as 
{

pi+2
ui+2

}

= Ti
1

{
pi+1
ui+1

}

(3)  

2.3. The transfer matrix Ti
1 in eq. (3) is expressed as 

Ti
1 =

⎡

⎢
⎢
⎢
⎣

cos(k0hr) j
Z0

Si+1
sin(k0hr)

j
Si+1

Z0
sin(k0hr) cos(k0hr)

⎤

⎥
⎥
⎥
⎦

(4)  

where j is the imaginary unit; k0 = ω/c0 is acoustic wavenumber and ω is the angular frequency; Z0 = ρ0c0 denotes the characteristic 
impedance; hr = xi+1 − xi+2 is the ring thickness and Si+1 = πr2

i+1 is the cross-sectional area of the duct at xi+1. 
Then, the state vector at xi+1, ( pi+1 ui+1 )

T is forwarded to the state vector at xi, ( pi ui )
T as 

{
pi+1
ui+1

}

= Ti
2Ti

3

{
pi
ui

}

(5)  

where Ti
2 is obtained by simply replacing hr in Eq. (4) with hi and hi = xi − xi+1 stands for the width of the conical cavity. Since volume 

velocities are used in the state vectors instead of particle velocities, the difference in the cross-sectional areas at the entrance and exit of 
the conical cavity is automatically incorporated. Ti

3 is the transfer matrix that characterizes the branch cavity, which is written as 

Ti
3 =

[
1 0
Y3 1

]

(6)  

2.4. The Y3 in eq. (6) is the admittance of the branch cavity 

Y3 = j
k0

Z0
V3 (7)  

in which V3 is the volume of the branch cavity 

V3 = πhi

[

R2 −
r2

i + r2
i+1 + riri+1

3

]

(8)  

Fig. 2. Schematic of the transfer matrix method: (a) a ring-wall-ring segment in the SBH portion of the acoustic duct; (b) the acoustic cavities 
enclosed by the ring-wall-ring segment. 
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2.5. Substituting eq. (5) into eq. (3) yields the transfer matrix relation for the ring-wall-ring segment 

{
pi+2
ui+2

}

= Ti
1Ti

2Ti
3

{
pi
ui

}

= Ti
{

pi
ui

}

(9)  

2.6. Solutions for infinite and finite configurations 

Repeating the deviation of Eq. (9) for the remaining ring-wall-ring segments, the transfer matrix of the entire SBH portion in one 
unit cell is obtained as a successive product of all segmental transfer matrices 

TSBH =
∏N

i=1
Ti (10)  

where N is the total number of ring-wall-ring segments in the SBH portion. 

2.7. The transfer matrix of one unit cell is thus written as 

TUC = T0TSBHT0 (11)  

where T0 is the transfer matrix of the uniform portion, which is again obtained by replacing hr and Si+1 in Eq. (4) by b and S0 = πR2, 
respectively. 

Based on Eq. (11), various metrics characterizing the wave propagation properties and sound attenuation performance inside the 
duct can be steadily obtained. For an infinite configuration (Fig. 3a), the two sets of state vectors at the beginning and the end of the n- 
th unit cell can be related based on the Bloch’s theorem [7]: 

{
pn+1
un+1

}

= e− jqa
{

pn
un

}

(12)  

in which q is the wavenumber of the Bloch wave in the x direction; a = 4b is the lattice constant. 

2.8. Substituting eq. (11) into eq. (12) yields a standard eigenvalue problem 

(
TUC − e− jqaI

)
{

pn
un

}

= 0 (13)  

which provides the dispersive relation of the acoustic waves in the periodic duct through |TUC − e− jqaI| = 0. 
The solution of Eq. (13) leads to the dispersive relation of acoustic waves propagating along the periodic duct. This relation is also 

known as band diagram when the Bloch wavenumber q or the normalized wavenumber qa is plotted as a function of frequency. The 
band diagram consists of a real part and an imaginary part, representing wave propagation and attenuation in the periodic medium, 
respectively. 

Fig. 3. Configurations of the acoustic duct for solutions of various noise reduction indicators: (a) one unit cell out of an infinite duct for bandgap 
calculation; (b) a finite-length duct comprising several unit-cells with an anechoic/ rigid outlet to calculate the STL. 
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2.9. The transfer matrix for a finite-length duct is written as a successive product of the transfer matrices contributed by all unit cells 

{
pin
uin

}

=
(
TUC)n

{
pout
uout

}

= T
{

pout
uout

}

(14)  

where n is the total number of unit cells. 
For different applications, a finite-length duct may have an open or closed outlet. The Sound Transmission Loss (STL) is commonly 

employed to quantify the noise insulation performance of an open-end duct, which is calculated from the elements of the transfer 
matrix T [34]: 

STL = 20log10

⃒
⃒
⃒
⃒
1
2

(

T(1, 1)+T(1, 2)
S0

Z0
+T(2, 1)

Z0

S0
+T(2, 2)

)⃒
⃒
⃒
⃒ (15)  

3. Numerical results and discussions 

In this section, the physical mechanisms of the periodic SBHs and the influences of several key geometrical parameters will be 
studied. These parameters include the number of rings in the SBH portion of one unit cell N, the number of unit cells in a finite-length 
acoustic duct n, the thickness of each rigid ring hr, and the residual radius r. We will investigate the physical mechanisms underpinning 
the acoustic wave propagation and attenuation in the duct, in particular when N or n is smaller than what is typically demanded in 
traditional SBH and acoustic meta-material settings. With insights gained, numerical studies will be carried out to demonstrate the 
advantages of the proposed device. 

The inner radius and axial length of the uniform portion are fixed at R = 0.03m and b = 0.05m, which are selected to be compatible 
with the dimensions of the impedance tube used for the subsequent experimental STL measurement. The cut-off frequency of the 
acoustic duct with R = 0.03m is fc = 1.84c0/(2πR) = 3300Hz. In the numerical simulation, the maximum frequency range is capped at 
1500 Hz to ensure the validity of the plane wave assumption used in the TMM calculation. 

3.1. Mechanism studies 

3.1.1. Baseline model results and validation 
To get a basic understanding of the acoustic duct, we first calculate the STLs of two baseline models equipped with periodic linear 

and quadratic SBHs, respectively. The baseline models are finite-length ducts with the same geometrical parameters: N = 20, n = 3, 
hr : hi = 1 : 3, and r = R/10. The air domain is first assumed as lossless. The STL curves are shown in Fig. 4, where the FEM results 
obtained from COMSOL Multiphysics simulations are also added for comparison. The FEM models are meshed using tetrahedral el-
ements with an average size of 2 mm, which is adequate to serve as sufficiently accurate references. To calculate the STL using 
COMSOL, a background plane wave is applied at the entrance of the duct and the radiated sound power is evaluated at the downstream 
with a non-reflecting boundary definition. Then, the STL is calculated using Eq. (15). From Fig. 4, an excellent agreement between the 

Fig. 4. STLs of the acoustic duct with its SBH portion following a (a) linear; (b) quadratic inner radius variations. Other geometrical parameters are: 
N = 20, n = 3, hr : hi = 1 : 3, and r = R/10. In each figure, the FEM results obtained from COMSOL multiphysics simulations are also added for 
validating the TMM results. 
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two sets of results is observed for both the linear and the quadratic cases, so the accuracy of the TMM for the periodic SBH analyses is 
verified. Differences between the TMM and the FEM results are barely seen over the entire frequency range, despite some tiny 
discrepancy in Fig. 4(b) as the curves approach the maximum frequency. 

Fig. 4 shows that the STL of the periodic acoustic duct increases over two frequency bands. For the linear case, the two frequency 
bands with high STLs are 230~920 Hz and 1000~1400 Hz. For the quadratic case, the two bands move downwards to 145~700 Hz 
and 765~1035 Hz, respectively. In Fig. 4, the first and second frequency bands are respectively highlighted by blue and yellow shades, 
which are referred to as the attenuation bands. For both cases, the first attenuation band exhibits a higher STL and a larger bandwidth 
compared with the second attenuation band, conducive to efficient low-frequency noise reduction. The detailed mechanisms that 
generate the two attenuation bands will be further explored in the later sections. It is obvious that the SBH profile has an overall impact 
on the STL curve. Changing the power-law profile from linear to quadratic will squeeze the attenuation bands toward the lower 
frequency side, amplify the STL peaks, and slightly compress the bandwidths. 

3.1.2. Dispersive relation and bandgaps 
To investigate the contributions from the periodicity, the band diagrams of the periodic duct embedded with either linear or 

quadratic SHBs are calculated and shown in Fig. 5. To start with, the real parts of the band diagrams are compared between the two 
configurations. Fig. 5(a) shows that two Bragg bandgaps are created over the same frequency ranges as the corresponding attenuation 
bands in Fig. 4(a). For the quadratic case, the agreement between the STL and bandgap variations is also observed, thus explaining the 
generation of the attenuation bands. The strength of sound attenuation provided by the proposed device can be understood from the 
imaginary part of the band diagram, which represents the intensity of attenuation that the incident sounds would undergo. As shown in 
Fig. 5(c) and (d), amplitudes of the imaginary parts become larger when switching from the linear profile to the quadratic profile, 
evidencing intensified attenuation. 

Interestingly, the Bragg stopband frequency of the periodic duct embedded with either linear or quadratic SBHs is lower than that 
embedded with conventional insertions (sonic crystals) with the same lattice constant. Herein, we quantify the first bandgap by its 
starting frequency fs, ending frequency fe, center frequency fc = (fs + fe)/2, and bandwidth Δf = fe − fs. Considering the lattice 

Fig. 5. Band diagrams of the acoustic duct with embedded periodic SBHs: (a) and (b) real parts; (c) and (d) imaginary parts for the linear and 
quadratic cases, respectively. Geometric parameters are: N = 20 and r = R/10. Bandgaps are identified by the blue and yellow shades in the real- 
part diagrams. 
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constant is a = 4b=0.2 m, the normalized starting frequency fsa/c as observed in Fig. 5(a) is 0.152, the normalized end frequency fea /c 
is 0.486, and the normalized center frequency fca/c is 0.32. The relative bandwidth Δf/fc is 1.04. In Fig. 5(c), the normalized starting, 
ending and center frequencies for the first bandgap are 0.098, 0.359 and 0.23, respectively, and the relative bandwidth is 1.14. As 
Bragg stopband in conventional periodic structures typically occurs at fBragg = c/2a (normalized frequency is 0.5), it is obvious that the 
proposed periodic SBH outperforms traditional sonic crystals in terms of low-frequency performance [33,34]. The reason why the 
Bragg stopband occurs at such low frequencies can be answered by the slow-sound effect of the SBHs. Since a sound speed reduction 
means that the propagating waves will take a longer time to pass through each unit cell, the unit cell length or the lattice constant 
becomes seemingly longer with respect to the wave slow-down. This effective slowing-down of sound speed c, or, in other words, 
equivalent elongation of the lattice constant a, drives down the operating frequency of the Bragg bandgap. Therefore, Bragg bandgaps 
of the periodic SBHs can start from a frequency that is lower than that determined by its periodic constant, which is also far lower than 
the cut-on frequency of the individual SBH unit. 

To make a quantitative evaluation, we carried out a transient analysis on the acoustic wave propagation in the duct. The travelling 
wave is excited at the duct inlet by a sine pulse centered at 400 Hz, which coincides with the center frequency of the first attenuation 
band. The time-domain pressure signals, received at the four locations along the duct as depicted in Fig. 6(a) and (b), are calculated to 
understand the sound propagation process across each unit cell. As a comparison, the time histories in a regular duct without SBHs are 
shown in Fig. 6(a) and (c), and those of the periodic duct with SBHs are shown in Fig. 6(b) and (d). In both cases, a straight line is drawn 
to roughly show the time difference required for the pulse signal to pass through each unit cell. As the unit cell distances are kept 
identical, the slope of the straight line indicates the average speed at which the wave propagates. We can see that the line in Fig. 6(d) is 
more inclined compared with the line in Fig. 6(b), suggesting the wave is indeed slowed down by the periodic inclusions of SBHs, even 
at this relatively low frequency. Also the pressure signals for the regular duct without SBHs keep exactly the same waveforms, while for 
the duct with SBHs, the pressure signals are strongly attenuated as wave travels downwards. For the regular duct, the time required for 
the sound wave to travel through a periodic lattice is Δt = 0.59ms, which yields the sound speed in air as a/(Δt) = 340m /s. For the 
periodic duct with SBHs, the travel time is increased to Δt = 1.2ms, roughly doubles as compared to the regular duct. This means that 
the sound speed in the periodic SBHs is equivalently halved. Thus, the occurrence of Bragg stopband, as determined by fBragg = c /2a, 
appears two times earlier than regular Bragg reflections. This marks a significant advantage of using SBHs instead of conventional 
insertions to construct periodic structures for low-frequency noise control. 

Fig. 6. Time histories of the sound wave travelling along a: (a) regular duct without SBHs; (b) periodic duct with embedded quadratic SBHs; (c) and 
(d) sound pressure signals received at the four defined locations. Geometric parameters of the periodic duct are: N = 20, n = 3, hr : hi = 1 : 3, and r 
= R/10. The regular duct has the same length and radius as the periodic duct. The incoming sound wave is tonal with frequency of 400 Hz, which 
coincides with the center frequency of the first bandgap. 
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3.2. Reflection and absorption coefficients 

To investigate the physical mechanisms behind the formation of those attenuation bands, the reflection and absorption coefficients 
of the periodic duct are calculated. The formulae for the calculation of different coefficients based on the TMM can be found in [27]. 
The results are shown in Fig. 7(a) for the linear case and Fig. 7(b) for the quadratic case. In both cases, the damping loss is first omitted 
to align with the previous discussions of FEM validation and bandgap calculation. Then a damping loss factor is introduced into the 
TMM formulation by complexifying the sound speed, i.e., ̃c0 = c0(1+jη) where η is the assumed isotropic loss factor of air. η = 0.05 is 
first considered to show the effects with and without damping. Other structural parameters are the same as those used in Fig. 4. 

First, for the case without damping, Figs. 6(a) and (b) show that the reflection coefficient exhibits peak values close to one over two 
frequency ranges, in good agreement with those of the attenuation bands seen in Fig. 4, as well as the bandgap structures in Fig. 5. This 
correlation suggests that Bragg reflections, enhanced successively by the ensemble of unit cells, dominate the creation of the atten-
uation bands. As no damping is present in the duct, the absorption coefficient is constantly zero. After damping is introduced, it can be 
seen from Figs. 6(c) and (d) that the two coefficients have opposite overall tendencies as frequency increases. Although the first 
reflection peak attributed to Bragg reflections at low frequency is less affected, the second bandgap shows drastically different behavior 
responding to damping. At higher frequencies, the reflection coefficient diminishes, while the absorption coefficient rises. The contrast 
indicates that sound absorption, which is greatly improved due to the SBH effect, has become the dominant factor in the sound 
attenuation in the duct. To render a clear observation, the frequency ranges dominated by sound reflection are shaded in Fig. 7(a) and 
(b), while the arrows in Fig. 7(c) and (d) denote that the device enters into the frequency region which is more dominant by the SBH 
effect. 

Fig. 7. Reflection and absorption coefficients of the acoustic duct with its SBHs following (a) linear profile, η=0; (b) quadratic profile, η=0; (c) 
linear profile, η=0.05; (d) quadratic profile, η=0.05. Other parameters are: N = 20, n = 3, hr : hi = 1 : 3, and r = R/10. The arrows in (c) and (d) 
denote that the device enters the frequency region which is more dominant by the SBH effect. 
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3.3. Results of parametric studies 

3.3.1. Geometric parameters of the SBH 
It has been shown in the above mechanism studies that inserting periodic SBHs into the acoustic duct brings benefits to sound 

attenuation, manifested by the low-frequency, high-STL attenuation bands. However, one question remains: whether these useful 
properties depend as much on the number of rigid rings as a classical SBH does. Previous work suggests that a sufficiently large number 
of rings need to be inserted into a SBH termination [24] in order to achieve appreciable SBH effects, which is challenging for real-world 
applications. To answer that question, the STLs of the acoustic duct with a varying number of rigid rings in each unit cell are calculated. 
Other geometrical parameters are kept as n = 3, hr : hi = 1 : 3 and r = R/10. The results of the linear and quadratic cases are plotted in 
Figs. 8(a) and (b), respectively, which clearly show that the attenuation bands are not sensitive to the number of rigid rings N. As N 
decreases from 40 to 10, no apparent deterioration of amplitude is seen in both plots and only a tiny shift at high frequency end is 
observed in the quadratic case. Fig. 8(a) demonstrates that a linear periodic duct with as few as 10 rings in each SBH can already entail 
a satisfactory performance. This relieves the harsh requirement on the number of rings suggested from previous single SBH study, 
which can be possibly attributed to the effect of periodicity. This also suggests that the formation of the attenuation bands must not 
only depend on the SBH effect, but also the periodicity. In Fig. 8(b), changes of the three STL curves are almost invisible over the first 
attenuation band and only become identifiable when the second attenuation band cuts on. 

Fig. 8(c) and (d) show, for the linear and quadratic cases respectively, the STLs of the periodic duct with increasingly larger ratios 
between the ring thickness hr and the cavity width hi in every ring-wall-ring segment. As rings thicken and cavities diminish, the 
lumped admittance of each SBH unit will gradually deviate from the theoretical admittance that is required to realize the ideal SBH 
effects. In fact, the continuous admittance formula in [24] is derived by neglecting the thicknesses of the inner rings. Therefore, an 

Fig. 8. STLs of the acoustic duct with growing (a)/ (b) number; (c)/ (d) thickness of rings in the SBH portion of each unit cell. For (a)/ (b), hr : hi 

= 1 : 3 and for (c)/ (d), N = 20. Other structural parameters are: n = 3 and r = R/10. (a)/ (c) are embedded with linear SBHs and (b)/ (d) are 
embedded with quadratic SBHs. 
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attenuation band of the periodic duct is expected to fade away if it is a result of the SBH effect. Surprisingly, this only happens to the 
second attenuation band in the quadratic case. For the two linear bands and the first quadratic band, the STL of the periodic duct 
becomes even stronger in terms of both amplitude and width. This contrast points to an underlying transition that the duct experiences 
as the frequency goes from low to high, which comes clearly earlier for the quadratic case. Over the vast frequency range that lies 
before that transition, substantial enhancements in the noise insulation of the duct can be obtained by simply tuning the thicknesses of 
the rings. 

3.3.2. Periodicity 
Let us examine the effect of periodicity on the sound attenuation. As shown in Fig. 9, the STL curve of the duct experiences a clear 

transformation as n increases from one to two, both for the linear and quadratic cases. The transformation is not limited to a positive 
alteration in the amplitude of the STL. Instead, we observe a more radical shift in the spectral composition of the results, signaling the 
emergence of the attenuation bands. Further adding unit cells onto the duct does not alter the overall trend of the STL curve, but the 
amplitudes in the attenuation bands continue to rise. We notice that this useful cumulative effect does not rely heavily on the number 
of unit cells – with only four SBH units, the calculated STL can reach as high as over 60 dB at 500 Hz for the linear duct and over 75 dB 
at 450 Hz for the quadratic duct. This is in drastic contrast to conventional acoustic metamaterials, which usually require a large group 
of unit cells to realize the desired function [36,38]. 

Differences between the attenuation intensities of the two bandgaps can be visualized further, by examining the distributions of 
sound pressure along the axis of the periodic duct. The sound pressure distributions shown in Fig. 10 are calculated based on the 
quadratic case with structural parameters: N = 20, hr : hi = 1 : 3 and r = R/10. Frequencies of Figs. 10(a) and (b) are selected 
respectively as 400 Hz and 1200 Hz, corresponding to the center frequencies of the bandgaps at which the duct acquires maximum 
intensities of attenuation. In both studies, the number of unit cells are gradually increased, so the competition between the SBH effect 
of each unit cell and the periodicity effect of the complete structure can be observed. 

The amplification of sound pressure, a typical SBH characteristic, is observed in both figures over the middle part of the leading unit 
cell. This feature is better preserved by the second bandgap than by the first, with fluctuation of sound pressure in Fig. 9(b) being 
stronger than that in Fig. 10(a) over every subsequent unit cell. As a cost, the overall reduction of sound pressure is much slower for the 
second bandgap than for the first. In Fig. 10(a), the amplitude of sound pressure is significantly reduced after passing through the first 
unit cell and becomes barely noticeable in the third unit cell. Apparently, the same conclusion cannot be drawn from Fig. 10(b). This 
distinction between the two sets of results also hints at a simple explanation to the opposite behaviors of the second bandgap in Figs. 8 
(c) and (d) – as the rings become thicker, that bandgap expands and amplifies in the linear case, while it shrinks and vanishes in the 
quadratic case – the maximum frequency is just not large enough for a linear SBH to take effect, so the whole spectrum of interest is still 
governed by the rule of periodicity. Moreover, because a quadratic SBH effect cuts on much earlier than its linear counterpart [24], it 
plays a dominating role in the formation of the second quadratic bandgap. 

3.3.3. Influences of damping 
It has been shown in Fig. 7 that damping significantly affects the reflection and absorption relationship of the periodic duct, 

especially at higher frequencies after the second bandgap. This indicates that a proper damping treatment could improve the STL 
performance. In this section, we further compare the STLs of the periodic duct with no, slight, and heavy damping treatments, where 

Fig. 9. STLs of the acoustic duct with a growing number of unit-cells, in which (a) linear; (b) quadratic SBHs are embedded. Other structural 
parameters are: N = 20, hr : hi = 1 : 3, and r = R/10. 
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the damping loss factors η are taken as 0, 0.01, 0.05. Results of the linear and quadratic cases are respectively shown in Figs. 11(a) and 
(b), with structural parameters kept as N = 20, n = 3, hr : hi = 1 : 3 and r = R/10. 

Compared with Fig. 4, Fig. 11 shows an obvious enhancement of the second attenuation band with increasing damping, and the 
enhancement is stronger in the quadratic case. Even with low damping, the quadratic case exhibits a systematic improvement in the 
STL over the second half of the spectrum. Raising η to 0.05 further elevates the STL curve, and almost eradicates the original STL valley 
between two attenuation bands. Note that similar improvements of STL, albeit smaller, also happen to the second attenuation band in 
the linear case. This suggests that, although the two attenuation bands are mainly governed by periodicity, the wave trapping effect of 
SBH still plays an indirect role in their formation, which is more visible when the SBH effect is amplified by the damping. The same 
statement can also be made to the first quadratic attenuation bands, where the damping-induced improvements, though marginal, are 
still recognizable. In summary, the formation of attenuation bands in the periodic duct is a product of the interplay between the Bragg 
scattering effect and the sonic black hole effect. When the frequency is low, that interplay is led by the Bragg scattering effect, which 
gives rise to the Bragg bandgaps as shown in Fig. 5; as the frequency increases, the SBH effect comes into play, which, with proper 
damping, leads to the enhanced noise insulation as shown in Fig. 11. The outcome of this useful interplay is a satisfactory overall sound 
insulation ability over a large portion of the considered frequency range. 

Fig. 10. Sound pressure distribution along the axis of the acoustic duct comprising one, two, and three unit-cells, with the frequency falling into the 
(a) first bandgap (400 Hz); (b) second bandgap (1200 Hz). Other structural parameters are: N = 20, hr : hi = 1 : 3 and r = R /10. The profile of 
radius in the SBH portion takes a quadratic form. 

Fig. 11. STLs of the undamped (η = 0), slightly damped (η = 0.01), and heavily damped (η = 0.05) acoustic ducts, in which the SBH portion takes 
a (a) linear; (b) quadratic profile of radius. Damping is taken into consideration by assuming a complex sound speed c̃0 = c0(1 + jη). Other 
structural parameters are: N = 20, n = 3, hr : hi = 1 : 3 and r = R/10. 
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3.3.4. Trade-off on SBH residual radius 
Through the above discussions, the physical mechanisms for the improved sound insulation ability of the periodic duct have been 

revealed. However, one important and practically relevant question still remains, which concerns a trade-off on the residual radius of 
the SBH. While a small opening may facilitate sound insulation, it is not practical for engineering applications if the duct also needs to 
accommodate air passage with acceptable obstruction. To seek an answer, a parametric study is performed in which the residual radius 
r expands gradually from R/10 to R/2 while other structural parameters are kept as N = 20, n = 3, and hr : hi = 1 : 3. Fig. 12(a) shows 
the evolution of the imaginary part of the band diagram with the expansion of the residual. The STLs calculated at three parametric 
steps of r = R/2, R/6, and R/10 can be seen in Fig. 12(b) when η = 0 and in Fig. 12(c) when η = 0.05. 

As expected, the results confirm that in the absence of damping, a small residual radius is a necessary requirement to achieve good 
sound insulation in the duct. As shown in Fig. 12(a), as the opening of each SBH unit becomes larger, the two bandgaps move upwards 
to higher frequencies with their attenuation intensities progressively being lowered. The second bandgap might even vanish when the 
residual opening is sufficiently large. This is also reflected in Fig. 12(b), in which the STL peak falls rapidly with the increase of r. 
Although the contradiction seems intractable, those results have actually shed a light on a desired trade-off between flow resistivity 
and sound insulation. The strategy lies in the fact that deteriorations of the bandgaps in Fig. 12(a) are not uniform throughout the 
parametric steps. The first few steps only see a minor drop of the attenuation intensity, and the drop only accelerates after r = R /6. 
Fig. 12(b) also indicates the reduction of STL from r = R/10 to R/6 is far more drastic than that from r = R/6 to R /2. From a practical 
point of view, the first attenuation band when r = R/10 is largely preserved when r is enlarged to R/6. The main disadvantage of r = R 
/6 is that sound insulation of the duct in the remaining frequency range is inadequate, but it can be conveniently ameliorated by 
further damping adjustment, which may requires the use of additional sound absorption materials inside the branch cavities. As shown 
in Fig. 12(c), with a loss factor of 0.05, the duct of r = R/6 exhibits a comparable performance with that of r = R/10 over the entire 
frequency range, but the former has an opening in the SBH that is nearly three times larger than that in the latter. In summary, a 
periodic duct with r = R/6 constitutes a good compromise between the competing requirements on flow and noise permeabilities. 

Fig. 12. Influences of the residual radius r on the noise reduction performance of the acoustic duct: (a) evolution of the imaginary-part band di-
agram when r narrows from R/2 to R/10; (b)/ (c) STLs of different residual radii when the duct is undamped (η = 0) or heavily damped (η = 0.05). 
Other structural parameters are: N = 20, n = 3, and hr : hi = 1 : 3. 
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4. Experimental validation 

4.1. Experimental set-up 

To validate the results and the mechanisms discussed above, we fabricated a specimen through 3D printing (Original i3 MK3S+, UV 
curable resin) and measured its STL using the two-load method (ASTM E2611–09). The test-rig is shown in Fig. 13(a), which consists of 
an impedance tube (BSWA SW477), a power amplifier (BK 2706), and a data acquisition system (BBM PAK–MKII). The experiment was 
set up according to Fig. 13(c), with two microphones before the specimen and other two after. The STL is deteremined using the 
acoustic signals measured by the four microphones based on the four-microphone two-load method. The specimen comprises either 
one or three unit cells, each containing a quadratic SBH. The remaining geometric parameters are set as N = 20, hr : hi = 1 : 3 and r =
R/10. Note that R = 0.03m equals the inner radius of the impedance tube. Although no sound absorbing material is inserted into the 
duct, the viscous and thermal loss caused by those narrow air cavities and apertures (hi = 1.5mm) constitute a natural source of 
dissipation. An acoustic plane wave was generated by the loudspeaker installed at one end of the impedance tube. To produce two load 
cases, the other end of the impedance tube was set as either anechoic or rigid. The sound pressures were measured by four microphones 
(one pair mounted on the upstream tube and the other pair on the downstream tube) when the duct contains only one unit cell or a 
complete set of three unit cells. The sampling frequency is 8000 Hz. The STL can be obtained by processing the signals captured by the 
four microphones, the final result of which is taken as an average of five independent measurements. 

4.2. Measurement results 

The measured STL of the periodic duct is shown in Fig. 14(a), in which the simulated STL calculated by the TMM is also added for 
comparison. A good agreement between the two sets of results is observed in terms of the general trend, which validates the numerical 
simulation. The two attenuation bands can be easily identified from the experimental results, which proves the effectiveness of the 
proposed device. The discrepancies are mainly found in the amplitude of the second attenuation band, which can be attributed to the 
simplified estimation of damping. The actual damping in the system is too complicated to be simplified by an isotropic loss factor 
assigned to the complex sound speed, which might overestimate or underestimate the STL at certain frequencies. The discrepancies 
observed in Fig. 14 could also be attributed to the exclusion of the visco-themal effect in the model, which might be significant due to 
narrow gaps between SBH partitions. 

In Fig. 14(b), the measured and simulated STL results with only one unit cell retained in the acoustic duct are presented. It can be 
seen that the two distinctive attenuation bands in the low-frequency disappear, which emphasizes the contribution from periodicity in 
the cascaded SBH unit cells. At higher frequencies above 1.5k Hz, the SBH effect also develops in a single unit cell, such that the STL 

Fig. 13. STL measurement of the proposed acoustic device using an impedance tube: (a) photo of the measurement system; (b) close-up view of the 
3D printed specimen; (c) schematic of the experimental set-up. 
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curve continuously rises and the device can work fairly well for sound attenuation. In fact, most of the incident waves with frequencies 
higher than 1.5 kHz can be blocked by the very first unit cell, leaving the other two unit cells barely functional. As the improvement at 
relatively higher frequencies is not a result of periodicity, the omission of discussions on this topic in preceding sections is justified. 

5. Conclusions 

In this paper, the sound propagation and insulation in an acoustic duct with embedded periodic sonic black holes (SBH) are 
investigated. The SBH portion in each unit cell of the periodic duct is designed to have a symmetrical profile with either linear or 
quadratic variation of inner radii. A transfer matrix (TMM) model is built for the theoretical analyses, which is validated against finite 
element simulations. Based on the TMM model, the low-frequency sound propagation and insulation performance of the periodic duct 
has been thoroughly studied, via examining both band diagrams and sound transmission loss (STL) of a finite-length structure. The 
main conclusions are summarized as follows:  

(1) The embodiment of periodic SBHs provides a feasible way for acoustic wave manipulation inside a duct device, and in particular 
an enhancement of its low-frequency sound insulation ability. Broad and strong attenuation bands are found in the STL of the 
periodic duct, which are steadily obtained by using as few as three unit cells. Compared with the conventional SBH with a closed 
termination, the proposed design relies less on the number of the rings but becomes more dependent on a small residual opening 
to effectively stop the incident waves. Thanks to the SBH-enabled energy focalization, a slight damping treatment could help 
achieve a trade-off between low flow resistivity and high sound insulation in the duct.  

(2) The low-frequency and high-STL attenuation bands are enabled by a twofold physical mechanism: the Bragg scattering effect 
and the SBH effect. When the frequency is low where the damping-induced dissipation is weak, sound insulation in the periodic 
duct is mainly dominated by the Bragg scattering effect, manifested by the Bragg bandgaps emerging in the band diagram. The 
observed low frequency performance is attributed to an increase in the effective lattice constant as a result of SBH-induced 
sound speed reduction in the SBH cell. As the frequency increases, the SBH effect comes into play in a more pronounced 
manner, enabling the STL to rise again with the help of the inherent damping in the system. This transition happens earlier in the 
periodic duct with higher-order (quadratic) periodic SBHs compared with that with lower-order (linear) periodic SBHs. 
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