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Nonlinear elastic metamaterial, a topic which has attracted extensive attention in recent years, can enable broadband
vibration reduction under relatively large amplitude. The combination of damping and strong nonlinearity in metamaterials
may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction. However,
there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this
concept. To tackle this problem, this paper numerically demonstrates that the nonlinear elastic metamaterials, consisting
of sandwich damping layers and collision resonators, can generate very robust hyper-damping effect, conducive to efficient
and broadband vibration suppression. The collision-enhanced hyper damping is persistently presented in a large parameter
space, ranging from small to large amplitudes, and for small and large damping coefficients. The achieved robust effects
greatly enlarge the application scope of nonlinear metamaterials. We report the design concept, properties and mechanisms
of the hyper-damping and its effect on vibration transmission. This paper reveals new properties offered by nonlinear elastic
metamaterials, and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.

Keywords: nonlinear elastic metamaterial, hyper-damping, vibration suppression
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1. Introduction

In the last decade, elastic metamaterials have shown great
promise for elastic wave manipulation,[1–4] which are mainly
limited to linear elastic metamaterials. In linear metamateri-
als, bandgaps arising from local resonances and Bragg scat-
tering are of great significance for vibration reduction.[5,6]

Limited by the mass and the size in practice, commonly
achieved low-frequency bandgaps usually exhibit narrow-
band feature. Attaching different resonators[7–10] or ampli-
fying the inertia[11–14] can broaden the bandgaps to a certain
extent. Another important effect for vibration reduction and
wave energy absorption in linear metamaterials is the hyper
damping induced by local resonances.[15–17] This means that
a material processes superior dissipation ability as compared
with other materials with the same damping composition and
equivalent static properties.[18] This is generally achieved by
composite/architected materials or metamaterials. The hyper-
damping effect in linear elastic metamaterials has been stud-
ied in a series of works by using different metamaterial con-
figurations. Damping leads to broader vibration suppression,
at the expenses of compromising the bandgaps. At present,
realizing low-frequency and broadband bandgaps and simul-
taneous hyper damping remains a challenge in linear elastic
metamaterials.[19,20]

Elastic metamaterials with strong nonlinearity, i.e., non-
linear elastic metamaterials, can give rise to extraordinary
physical phenomena, which can be exploited for elastic wave
manipulation and vibration suppression.[21–24] Therefore, non-

linear elastic metamaterial becomes a hot topic in recent years.
Due to the high-order harmonics, wave energy in nonlinear
elastic metamaterials can be transferred from low to higher
frequencies.[21,22] Except for the conventional band gaps sim-
ilar to linear metamaterials, a region near 1/2-subharmonic
in nonlinear elastic metamaterials can widen the frequency
range of vibration attenuation.[23,24] Nonlinear effects can pro-
duce tunable and adaptive band gaps.[25–30] The amplitudes
of nonlinear resonances in chaotic bands of nonlinear elastic
metamaterials can be significantly suppressed, which greatly
expands the bandwidth of suppressed waves.[31–37] However,
the desired nonlinear effect requires relatively large incident
amplitude, whilst achievable nonlinear coefficient in practical
structures is usually limited. Moreover, vibration transmission
in nonlinear metamaterials remains high when the incident
amplitude becomes very large.[37] Damping and even hyper-
damping effect may alleviate these challenges to improve the
performance of nonlinear metamaterials. However, ways to
achieve hyper damping in nonlinear elastic metamaterials are
lacking and, even if achievable, the mechanisms underpinning
the physical process remains unclear.

As well known, a viscous damper connecting two ele-
ments produces a damping force Fd, which is proportional
to the relative velocity v between the two objects, namely
Fd = cv, where v is the gradient of relative displacement. For
a given damping coefficient c, introducing an abrupt change
of displacement can increase v and Fd to produce large en-
ergy dissipation because the “abrupt change” leads to the infi-
nite gradient in mathematics. A dedicated way for producing
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such an abrupt change is through the collision between the
objects, which subsequently generates strong nonlinear damp-
ing forces. Capitalizing on this concept, we design a nonlin-
ear elastic metamaterial by combining the damping and col-
lision in a meta-cell, which can induce robust hyper damping
as required. This paper aims at investigating the feasibility of
such design, tackling a few important aspects relating to its
materialization and shedding lights on the underlying mecha-
nisms. More specifically, we numerically study the damping
efficiency and vibration transmission of different metamaterial
models. The influences of amplitude and damping coefficient
are analyzed to find a robust design scheme. This paper of-
fers a novel way for conceiving nonlinear elastic metamateri-
als which entail effective vibration suppression.

2. Model and methods
2.1. Metamaterial models

We consider a finite one-dimensional metamaterial model
shown in Fig. 1. Each meta-cell consists of a primary mass m0,
which is coupled to a resonator. Three kinds of coupling ar-
rangement inside the meta-cell are considered, as shown in
Figs. 1(b)–1(d). The damping in the primary chain is ne-
glected. As a result, damping only comes from the motion
inside meta-cells.

Cell

resonators

(a)

(b) (c) (d)

m0

m0 m0

u0

u0

c c

k1
k0 u0 k0k1

c c

F1(x) F2(x)

m0

u0 k0 k2

c
c

c

F1(x) F2(x)

m1 m1 m2 m2

Fig. 1. Model of elastic metamaterial and its constituent meta-cell. (a) Elas-
tic metamaterial model; (b) linear meta-cell; (c) meta-cell with bilateral col-
lision; (d) sandwich-collision meta-cell.

The first coupling scenario depicted in Fig. 1(b) leads to
a linear metamaterial. The equation of motion in the nth cell
writes

m0ün = k0(un+1 +un−1−2un)

+2k1(yn−un)+2c0(ẏn− u̇n),

m1ÿn = 2k1(un− yn)+2c0(u̇n− ẏn), (1)

where un and yn are the displacement of the primary mass m0

and the local resonator m1 in the nth cell, respectively, k0 is
the stiffness of the spring between neighbor m0, and k1 is the
linear stiffness between m0 and m1. Here, a bilateral damping
is introduced between m0 and m1, and c0 denotes the damping
coefficient.

In the second model shown in Fig. 1(c), in addition to the
linear stiffness k1, the bilateral collision of m1 is introduced.
According to the Hertz contact theory, the collision force takes
the form of kNδ 3/2, where kN is the collision stiffness. There-
fore, expressions of forces F1 and F2 labeled in Fig. 1(c) write

F1(x) =

{
k1x, (x≥−d),
k1x− kN(−x−d)3/2, (x <−d),

(2)

F2(x) =

{
k1x+ kN(x−d)3/2, (x > d),
k1x, (x≤ d).

(3)

Here d > 0 denotes the clearance between m1 and m0. Thus,
the equations of motion of the nth cell of the second nonlinear
elastic metamaterial reads

m0ün = k0(un+1 +un−1−2un)+F1(yn−un)

+F2(yn−un)+2c0(ẏn− u̇n),

m1ÿn = F1(un− yn)+F2(un− yn)+2c0(u̇n− ẏn). (4)

The third model shown in Fig. 1(d) also considers the collision
nonlinearity, but the mass m1 is split into two identical res-
onators, m2 = m1/2. Besides the nonlinear coupling between
m2 and m0, the damping and linear coupling between the two
masses m2 are also considered. We will show later that this
tiny change leads to a significant improvement of the perfor-
mance. The resulting metamaterial is referred to as sandwich-
collision metamaterial because the damping between the two
m2 behaves like a sandwich cake. Similar to the second model,
the equations of motion in the nth cell of the third metamaterial
write

m0ün = k0(un+1 +un−1−2un)+F1(y2n−1−un)

+F2(y2n−un)+ c0(ẏ2n−1− u̇n)+ c0(ẏ2n−1− u̇n),

m2ÿ2n−1 = F1(un− y2n−1)+ k2(y2n− y2n−1)

+ c0(u̇n− ẏ2n−1)+ c1(ẏ2n− ẏ2n−1),

m2ÿ2n = F2(un− y2n)+ k2(y2n−1− y2n)

+ c0(u̇n− ẏ2n)+ c1(ẏ2n−1− ẏ2n), (5)

where y2n−1 and y2n are the displacements of the two res-
onators m2 in the nth cell, k2 is the linear stiffness of the spring
connecting the two resonators, and c1 is the damping coeffi-
cient of the damper between them.

We note that the above three models have the same length
of 12 cells. As shown in Fig. 1, in every model, the first
meta-cell is subject to an incident wave source u0, and the last
meta-cell is free. The incident displacement is expressed as
u0 = A0 sin(ωt) in which A0 denotes the incident amplitude
and ω = 2π f is the angle frequency. The frequency response
of the elastic metamaterials can be obtained by solving the
transmission of elastic metamaterial under different excitation
frequencies f .
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The parameters of elastic metamaterials with three differ-
ent structures are set as follows: m0 = 0.1 kg, m1 = 0.05 kg,
k0 = (2π · 100)2 ·m0 N/m, and k1 = (2π · 20)2 · 0.25 N/m.
The parameters for collision oscillator are kN = 1× 1010 and
d = 0.0003 m. In the third model, m2 = 0.025 kg and k2 =

(2π · 20)2 · 0.25 N/m. Other parameters are the same as col-
lision elastic metamaterials. Unless otherwise specified as
c0 = 1 kg/s.

2.2. Numerical methods

We adopt the numerical integration approach to solve the
time-domain response of these models. For mono-frequency
input, the simulation time is 50 s, and the signal segment dur-
ing 40 s–50 s is taken to calculate the transmission and damp-
ing properties. The simulation time is long enough for the
system to reach a steady state. The transmission is quantified
by T = Aend/A0, where Aend is the average amplitude of the
last m0 in the chain

Aend =

(
M

∑
i=1

Pi−
N

∑
j=1

Vj

)
/(M+N), (6)

where Pi and Vj are the peak and valley (negative) values of
the signal in 40 s–50 s, respectively. We note that collision
may lead to chaotic response and this method gives an average
amplitude.

2.3. Damping evaluation

To derive a rigorous metric to evaluate the damping in
these high-dimensional systems, we shall first clarify the en-
ergy dissipation and transmission in the systems. Here we start
with a single-degree-of-freedom linear system as illustrated in
Fig. 2. The damping force on the mass m is F = c · v and its
displacement is u = Asin(ωt). In a period 2π/ω , the work
done by the damping force reads

W =
∫ 2π/ω

0
c · u̇ · u̇dt

=
∫ 2π/ω

0
c ·ω2A2 cos2(ωt)dt

= πωA2c. (7)

The maximum kinetic energy is

Emax =
1
2
· v2

maxm =
1
2
·ω2A2m. (8)

The maximum potential energy is

Umax =
1
2
· kA2. (9)

The damping effect can be evaluated by the index

η =W/
√

Emax ·Umax = 2πc/
√

mk, (10)

where η is a dimensionless quantity that is independent of the
frequency ω and the amplitude A. In engineering, the damping
ratio is defined as ζ = c/(2

√
mk) and ς = 4πζ . Therefore, ς

is also a damping ratio.

m

c k

u/Asin↼ωt↽

Fig. 2. Schematic diagram of simple harmonic motion of single degree of
freedom system.

The metamaterials under investigation form a multiple-
degrees-of-freedom system. The index for damping ratio
should also reflect the wave transmission. Therefore, we adopt
a similar expression like Eq. (10) to define the corresponding
damping ratio as

η =Wm/
√

Eend
max ·Uend

max, Wm =
Ncell

∑
i=1

Wi/Ncell, (11)

where Eend
max and Uend

max denote the maximum kinetic energy and
potential energy of the last meta-cell, respectively. Moreover,
Wi is the work done by damping in the ith cell in a period of
2π/ω , and Ncell is the number of cells. For the finite meta-
material model, Ncell = 12; for the meta-cell model, Ncell = 1.
Therefore, Wm is the average work done by the damping in all
cells in a period of 2π/ω . For the first and the second meta-
material models,

Wi =
∫ Tsim

0
2c0 · (u̇i− ẏi)

2 dt/(Tsim · f ). (12)

For the third sandwich-collision elastic metamaterial,

Wi =
∫ Tsim

0
[c0 · (u̇i− ẏ2i−1)

2 + c0 · (u̇i− ẏ2i)
2

+c1 · (ẏ2i−1− ẏ2i)
2]dt/(Tsim · f ), (13)

where Tsim is the simulation time.

2.4. Vibration and damping of a meta-cell model

Before systematically studying the properties of the meta-
materials, we first investigate the general dynamics of a single
meta-cell in this section.

The meta-cell is driven by a displacement u0 =

A0 sin(ωt). The frequency responses of the meta-cell, in terms
of T = A/A0 under variable excitation amplitudes A0, are
shown in Fig. 3, where A is the average amplitude of the res-
onator m0. The frequency response of the first linear meta-cell
is of course independent of A0. Its resonant frequencies are
20 Hz and 100 Hz. The first resonant peak is not obvious in
this figure because of damping (see Fig. A1(a) in Appendix A).

For the second meta-cell (see Fig. 3(b)), no collision oc-
curs when the vibration amplitude is smaller than the clear-
ance d, on which occasion, its response is identical with the
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linear cell. With increasing A0, collision takes place and its
resonant peak T = A/A0 gradually decreases. Near the critical
A0 (= 5× 10−5 m in this case), the peak value of T = A/A0

reaches minimal, i.e., the best parameter for vibration reduc-
tion in this system. Further increasing A0 induces strong col-
lision interaction between m0 and m1. The resonant frequency
is shifted to (

√
k0/(m0 +m1))/2π , suggesting that the two

resonators behave like a merged resonator with a total mass
m0 +m1. However, this does not continuously reduce the res-
onant peaks. Instead, it increases significantly, indicating that
the vibration deteriorates under extremely strong nonlinearity
(when A0 becomes excessively large).

In order to compare the damping in the third type of meta-
cell, we consider two cases with weak damping. Case 1: c0 =

0 kg/s, c1 = 1 kg/s, and case 2: c0 = 1 kg/s, c1 = 1 kg/s. The
corresponding frequency responses are shown in Figs. 3(c) and
3(d), respectively. In case 1, small A0 produces similar phe-
nomena as linear system. When increasing A0, though shifted,
the resonant frequency does not reach (

√
k0/(m0 +m1))/2π

as the second model does. Its frequency response peak will
also gradually decrease. When further increasing A0, more
branches and peaks are generated in the vicinity of the main
resonant peak. Fortunately, the value of the main peak will
not rise significantly. In this case, m0 and m2 move in phase
but not synchronized, the displacement of the two m2 in their
non-collision direction is greater than that of the m0 (see

Fig. B1(d)). For case 2, the variation trend of the frequency
response with A0 is similar to that of case 1, with however, a
much reduced peak value for A0 > 1×10−4 m.

Furthermore, we use the damping ratio ς to evaluate the
energy dissipation ability in the meta-cell model, as shown in
Fig. 4. For the first linear meta-cell, the ratio ς depends on
frequency and is independent of A0. The peak value is always
located at the resonant frequency at 20 Hz.

For the collision meta-cell, ς depends on both frequency
and A0. When A0 is very small, the ratio ς of the cell becomes
large at the two resonance frequencies, and ς at the resonance
20 Hz is much higher than at the other frequency 100 Hz. For
A0 < 1× 10−4 m, ς near 100 Hz increases lightly while in-
creasing A0. For A0 > 1× 10−4 m, as m0 and m1 move syn-
chronously (see Fig. B1(b)), ς at both resonances gradually
decreases.

For case 1 in the sandwich-collision meta-cell, ς at the
resonance frequency 100 Hz is large for small A0. While in-
creasing A0, ς at both 20 Hz and 100 Hz increases gradually,
and a very broad band covering 20 Hz–250 Hz for the large
damping ratio is generated, which indicates that the damping
effect induced by sandwich-collision is very broadband. The
variation trends in case 2 are similar with that in case 1, ex-
cept that the damping ratio is much larger even for small input
amplitude.
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Fig. 3. Frequency response of meta-cells under different excitation amplitudes. (a) Linear meta-cell; (b) meta-cell with bilateral collision; (c) case 1 in
sandwich collision meta-cell; (d) case 2 in sandwich collision meta-cell.
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Moreover, we calculate the average damping ratio ςm

and the average transmission Tm from 1 Hz–200 Hz to eval-
uate low-frequency properties. Interestingly, ςm and Tm are
highly correlated and vary oppositely. For the specific param-
eters, ςm = 0.1 and Tm = 2.72 are used for the linear meta-
cell model. As shown in Fig. 4(f), when A0 < 10−4 m, Tm of
all nonlinear models are smaller than that of the linear model.
However, further increasing A0 when A0 > 6× 10−5 m (the
red circle in Fig. 4(f)), ςm of the second model with collision
reduces to a tiny value, and Tm rapidly increases and becomes
larger than that of the linear model. This suggests that a proper
strength of nonlinearity can reduce the vibration of the system
but an excessively strong nonlinearity will jeopardize the vi-
bration reduction in the system.

As shown in Figs. 4(e) and 4(f), Tm of the third sandwich-
collision model remains at the valley for both cases 1 and 2

and ςm increases to 0.36 and 0.7 in cases 1 and 2 respectively,
much higher than the linear model. This means that the desired
hyper damping appears owing to the damping between the
two resonators m2 in the sandwich-collision nonlinear model.
Moreover, as c0 = 0 kg/s in case 1 and c0 = 1 kg/s in case
2, the damping between m0 and m2 doubles the whole hy-
per damping ratio ςm from 0.36 to 0.7, alongside a simultane-
ous reduction in the average transmission Tm from 2.0 to 1.55.
This also signifies that the location of the damping layer would
greatly influence the system property and the hyper damping
is achieved.

The aforementioned analyses based on a meta-cell model
show that tactic designing the strongly nonlinear model with
sandwich-collision can produce hyper damping for efficient
vibration reduction even under very large amplitude.
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Fig. 4. Damping ratio ς (a)–(d), average ratio ςm (e) and average transmission Tm (f) of meta-cells under different excitation amplitudes. (a) Linear meta-cell;
(b) collision meta-cell; (c) sandwich-collision meta-cell 1; (d) sandwich-collision meta-cell 2; (e) average ratio ςm in four meta-cells; (f) average transmission
Tm in four meta-cells.
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3. Vibration and damping of metamaterials
In this section, we analyze the vibration and damping in

the three types of elastic metamaterials with weak damping,
c0 = 0 or 1 kg/s and c1 = 1 kg/s. Cases involving stronger
damping are studied in the next section. The elastic metama-
terials have very different properties from the meta-cell model.
They have bandgaps and dense resonances in the passbands.

3.1. Bandgaps

Firstly, the dispersion curves in linearized metamaterials
are calculated by using the periodic boundary conditions de-
termined by Bloch theorem. Here only linear case is consid-
ered. For the diatomic model shown in Figs. 1(b) and 1(c), the
dispersion equation writes

cos(κa) = 1+
m0m1ω4− (m0 +m1)2k1ω2

2k0(2k1−m1ω2)
, (14)

where κ ∈ [π/a] is the wave vector, and a is the lattice con-

stant.

The dispersion relationship of the model in Fig. 1(d) is

cos(κa)

= 1+
m0m2ω4− (k1m0 + k2m0 +2k1m2)ω

2 +2k1k2

2k0(k1−m1ω2)
. (15)

As shown in Fig. 5(a), the diatomic linear metamaterial has a

locally resonant bandgap in 14.07 Hz–24.49 Hz, and a Bragg

bandgap above 200 Hz. For the sandwich metamaterial in

Fig. 5(b), there are also a narrower locally resonant bandgap

in 19.94 Hz–24.49 Hz, and a Bragg bandgap above 200 Hz.

Moreover, there is a straight line in Fig. 5(b), corresponding to

ω =
√
(k1 +2k2)/m2 because the second term in Eq. (15) is

zero and cos(κa)≡ 1 at this frequency.
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Fig. 5. Dispersion curves in linearized metamaterials. (a) Dispersion curves corresponding to Figs. 1(a) and 1(b) without collision. (b) Dispersion curves
corresponding to Fig. 1(c) without collision.

3.2. Vibration transmission and damping

For the linear metamaterial, as shown in Fig. 6(a), the
transmission within the band gap is of course much lower than
that in the pass band, and its frequency response is indepen-
dent of A0. As shown in Fig. 6(b), the peak value of ς is
always located at the band gaps, because the bandgaps pro-
hibit wave propagation, which can be regarded as the equiva-
lent large damping effect.

For the second collision metamaterial, as shown in
Fig. 7(a), its transmission in the whole passbands becomes
minimal near A0 = 1×10−4 m, like the property observed for
the meta-cell. Moreover, the damping ratio of the whole band
also become larger near A0 = 1×10−4 m. However, the wave
transmission (the damping ratio) is large (small) for both small
and large amplitude, i.e., nonideal performance for vibration
suppression.
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Properties for the sandwich-collision metamaterial are
shown in Fig. 8. As c = 0 in case 1, energy dissipation is only
due to the relative motion between the two m2. However, as
the two resonators are identical, their motions are synchronous
in the ideal linear case, which means the defined damping ratio
is zero. Therefore, the damping ratio in Fig. 8(b) is tiny under
small amplitude, on which occasion, collision does not hap-
pen. Fortunately, when increasing the incident amplitude for
A0 > 3×10−5 m, collision between m0 and m2 takes place, the
synchronous motion is then broken and the damping is active.
The damping ratio increases with A0 in this case within a very
broadband. This evidences the collision-enhanced damping,
directly responsible for the reduction in the vibration trans-
mission in 20 Hz–200 Hz for case 2, and Figs. 8(c) and 8(d)
shows similar properties with the linear metamaterial when A0

is very small. When A0 > 1×10−4 m, ς significantly increases
with A0 due to the collision enhanced damping alongside a si-
multaneous reduction in the vibration.

Furthermore, we evaluate the average damping ratio ςm

and the average transmission Tm in 1 Hz–200 Hz of these
metamaterial models, as shown in Fig. 9. Their trends about
the average damping ratio ςm and average transmission Tm

changing with A0 are similar to their meta-cell’s. And we can
see that in nonlinear metamaterials the damping ratio for rel-
atively high amplitude (with collision nonlinearity) is much
higher than that for small amplitude, which exhibits the broad-
band hyper damping property responsible for vibration reduc-
tion. It is obvious that such hyper damping is enhanced by the
collision.

4. Influences of damping on the nonlinear
sandwich-collision elastic metamaterial
In this section, we clarify the effects of damping c0 and c1

on the vibration transmission of nonlinear metamaterials. We
numerically calculate the average transmission Tm in 20 Hz–
200 Hz by changing both A0 and the damping coefficients.

As there are multiple variables, the simulation with mono-
frequency input, u0 = A0 sin(ωt), is quite time-consuming to
obtain the overall trends. Instead, we input the sweep-sine sig-
nal from 20 Hz–200 Hz within 200 s. The low sweeping speed
used is to ensure that the responses obtained is very close to
steady. The transmission spectrum T ( f ) is obtained with fast
Fourier transform.

For the second nonlinear metamaterial model with bilat-
eral collision (see Fig. 10(a)), the average transmission Tm is
always large for c0 < 4 kg/s and increasing c0 can open a pa-
rameter space (c0, A0) for Tm < 1 (i.e., 0 dB). There is an op-
timal range for c0 to generate a minimal Tm. However, Tm

always becomes large under larger incident amplitude A0.
For the third sandwich-collision model, we first study the

influences of A0 and c0 under weak damping between the two
local resonators c1 = 1 kg/s (see Fig. 10(b)), and then study
the influences A0 and c1 for weak damping between m0 and
m2, c0 = 1 kg/s (see Fig. 10(c)). It is interesting that this meta-
material model has much larger parameter space (c0, c1, and
A0) for Tm < 1 than the first model, which greatly improves
the robustness in practice. Moreover, there is an optimal value
of c0 (= 11 kg/s here) for the minimal Tm in the first case with
c1 = 1 kg/s. Unusually, Tm becomes large again for strong
damping c0 in the first case. This trend also happens in the for-
mer nonlinear model shown in Fig. 10(a). This means that one
still has to optimize the damping layer between m0 and the in-
ner resonators in practice. Fortunately, the trends in Fig. 10(c)
show that the metamaterial with sandwich-collision is insensi-
tive to c1, highlighting a robust feature.

It is well known, the phase diagram of the steady-state re-
sponse of a linear damping system under single frequency ex-
citation is a standard ring, as shown in Fig. 10(i). Figure 10(h)
stands for a quasi-periodic state which consists of several su-
perimposed rings. While the phase diagrams of Figs. 10(d)–
10(g) can not form one or several rings as Figs. 10(h) and 10(i),
which show the chaotic property.
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(d)–(i) Phase diagram obtained by single frequency excitation corresponding to the points marked in (a) and (b), the frequency of excitation is 100 Hz.

064303-8



Chin. Phys. B 31, 064303 (2022)

In short, the nonlinear metamaterial with sandwich col-
lision can efficiently suppress low-frequency and broadband
vibration, and meanwhile features strong robustness for vary-
ing or uncertain amplitude and damping.

5. Conclusion
This paper proposes the design of a hyper-damping non-

linear elastic metamaterial for efficient, robust, low-frequency
and broadband vibration reduction, along with a systematic
analysis of underlying mechanism and the effects of major
system parameters. To this end, we study the properties of the
nonlinear elastic metamaterial consisting of sandwich damp-
ing layers and collision resonators. The vibration transmis-
sion and damping ratio of three kinds of metamaterials, and
the dynamics of a unit cell are numerically studied. We find
that the hyper damping can be induced and enhanced by the
collision in meta-cells, consisting of resonators coupled as a
sandwich structure. The sandwich collision elastic metama-
terial possesses a large parameter space (amplitude, damping,
frequency), whose effective tuning can warrant efficient low-
frequency and broadband vibration reduction through wave
manipulation.

In conclusion, this paper, through tactic structural design,
reveals new properties and possibilities that can be offered by
nonlinear elastic metamaterials. Hopefully, it can offer new
impetus to the grooming area of nonlinear metamaterial de-
sign and offers a novel and robust method for achieving effi-
cient low-frequency and broadband vibration suppression.
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Appendix A: Frequency responses of meta-cells
As shown in Fig. A1(a), by comparing frequency re-

sponses of linear meta-cell with damping (c0 = 1) and without
damping (c0 = 0), we can see that the low-frequency peak is
not obvious when there is relatively large damping. As shown
in Figs. A1(b)–A1(d), for nonlinear meta-cell, frequency re-
sponses change with excitation amplitudes, and there is an op-
timal excitation amplitude range for vibration suppression.
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Fig. A1. Frequency response of linear meta-cell with and without damping, and nonlinear meta-cells under different excitation amplitudes. (a)
Linear meta-cell; (b) collision meta-cell; (c) sandwich collision meta-cell 1; (d) sandwich collision meta-cell 2.

Appendix B: Time-domain diagrams of the
meta-cells

As shown in Figs. B1(a) and B1(c), when the amplitude
of excitation is small, m0 and m1 or m2 move in opposite phase
for collision and sandwich collision meta-cell. With amplitude

of excitation increasing, m0 and m1 move synchronously for
collision meta-cell, as shown in Fig. B1(b). While for sand-
wich collision meta-cell 1, m0 and m2 move in the same phase
but not synchronized, the displacement of the two m2 in their
non-collision direction is greater than that of the m0.
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Fig. B1. Time domain responses of meta-cells, the frequency of excitation is 100 Hz. (a) Collision meta-cell when A0 = 10−5 m. (b) Collision
meta-cell when A0 = 10−3 m. (c) Sandwich collision matecell 1 when A0 = 10−5 m. (d) Sandwich collision matecell 1 when A0 = 10−3 m.

Appendix C: Frequency responses of metamaterial models
As shown in Fig. C1, we can conclude that the frequency response of linear metamaterial model is independent of excitation

amplitude and there is also an optimal excitation amplitude range for vibration suppression.
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Fig. C1. Frequency response of metamaterial under different excitation amplitudes. (a) Linea metamaterial. (b) Collision metamaterial. (c) Sandwich
collision metamaterial 1. (d) Sandwich collision metamaterial 2.
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