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A B S T R A C T   

Acoustic Black Hole (ABH) phenomenon features unique wave retarding and energy focusing of 
flexural waves inside thin-walled structures whose thickness follows a power-law variation. 
Existing studies, mostly focusing on linear aspects, show the deficiency of the linear ABH struc-
tures in coping with low-frequency problems, typically below the so-called cut-on frequency. In 
this paper, electrical nonlinearities are intentionally imposed via PZT patches over an ABH beam 
to tactically influence its dynamics through electromechanical coupling. Using a fully coupled 
electromechanical beam model, typical electromechanical coupling phenomena between the 
beam and the external nonlinear circuits, as well as the resultant salient nonlinear features of the 
system, are numerically investigated. Results show the beneficial effects arising from the inten-
tional electrical nonlinearity in terms of generating energy transfer from low to high frequencies 
inside the beam, before being dissipated by the ABH covered by a small amount of damping 
materials. As such, the effective frequency range of the ABH is broadened, conducive to low- 
frequency vibration control problems. Meanwhile, different from existing mechanical means, 
the introduced intentional electrical nonlinearity allows for flexible tuning to accommodate 
specific frequency ranges arising from different applications.   

1. Introduction 

Acoustic Black Hole (ABH) in thin-walled structures undergoing bending vibration exhibits some unique features, exemplified by 
the phase velocity reduction of the flexural waves and energy focalization. Since its inception [1], ABH concept has been arousing 
intense interests in the vibration and acoustic community, which accentuates at an accelerating pace during the last decade as 
reviewed by recent papers [2,3]. The design of an ABH structure is based on the tailoring of its thickness profile according to a reducing 
power-law relationship, so that the local phase and the group velocity of the flexural waves gradually reduce to zero when approaching 
the ABH tip where the structural thickness is near zero. This neutralizes wave reflection and causes high energy concentration at the 
ABH tip in the ideal scenario [4,5]. Although the aforementioned ideal process might be affected by the inevitable residual thickness at 
the ABH tip due to the limitation in machining, the adverse effect of the truncated thickness can be alleviated by using a small amount 
of viscoelastic coating over the tip area [6–9]. ABH phenomena have been exploited for realizing various functionalities for wave 
manipulation and other engineering applications. In addition to vibration reduction of structures [10,11], ABH-induced slow wave 
phenomena are shown to impair the supersonic structural wave components in a flexural vibrating structure, thus warranting a 
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reduced sound radiation efficiency which is beneficial for noise control applications [12,13]. The ABH-induced high energy con-
centration has also been exploited to conceive efficient energy harvesting devices [14,15]. 

ABH research started from simple 1D and 2D structures. Existing analysis methods include the geometrical acoustic approach 
[16,17], the transfer matrix approach [18,19] and energy-based semi-analytical approaches [20,21], mostly for simple benchmark 
systems. Finite Element Method (FEM) [22,23] is predominantly used for more complex structures. Meanwhile, experimental works 
[24–26] have also been carried out on a variety of beam-like and plate-like structures. With these numerical and experimental at-
tempts, predominant ABH phenomena have been revealed, which greatly enriched our understanding on various aspects pertinent to 
ABH phenomena. 

However, most existing analyses on ABH mainly focus on linear aspects [27,28]. Though exhibiting broadband features, typical 
ABH effects in linear systems only persist above the so-called cut-on frequency, defined in relation to the ABH dimension and the 
wavelength of the incoming waves [22,29]. Further reducing the frequency limit would require the use of exorbitantly large structures 
which may not be acceptable in practice. Therefore, how to reduce the effective frequency range of the ABH effects in a reasonably 
sized structure is seen to be a bottle-necking problem. Past attempts to tackle this problem include the use of extended platform over 
the thin part of the ABH structure for prolonging the ABH effect [10] and the design of helical ABH for increasing its effective length 
[30] etc. Leaving the limited improvement aside, such practice challenges the current manufacturing capability and compromises the 
acceptance of the structures. 

The exploration of system nonlinearity, either inherently existing in a structure or intentionally added, might offer a useful solution 
to the problem. In fact, nonlinearity has been the focus of investigation for a variety of mechanical and physical applications including 
nonlinear vibration absorbers [31], shock isolation systems [32], energy harvesters [33] and nano- and micro-electromechanical 
systems [34], even metamaterials [35]. It is well-known that nonlinear systems generate harmonics [36], which are multiples of 
the excitation frequency. This dynamical mechanism has been exploited since several decades to transfer energy from low to high 
frequencies. For instance, Nayfeh et al. [37] utilized the saturation phenomenon to create nonlinearity which in turn transfers energy 
from a directly-excited and problematic vibration mode to a higher-frequency mode. As the forcing amplitude is increased, the 
response amplitude of the directly excited mode remains constant (i.e., the mode saturates) whereas the response of the indirectly- 
excited mode increases. Nonlinear absorbers that feature vibro-impacts were also developed to transfer energy between structural 
modes [38]. 

However, a significant challenge is the practical realization of the sought nonlinearity. Mechanical nonlinearities such as cables 
[39] and springs [40] have some inherent limitations. As such, the practical relevance of these designs is questionable for real-life 
applications and the lack of tuning flexibility is also seen as a potential problem. This is why the electrical nonlinearity was pro-
posed recently for developing novel nonlinear vibration absorbers [41]. Piezoelectric shunt damping has become a popular technique 
to reduce unwanted vibrations in structural systems. The technique relies on the transducing capability of a piezoelectric material, i.e., 
its ability to convert part of its mechanical energy into electrical energy, which is then be dissipated by connecting properly tuned 
shunt circuits to the transducer. In addition to linear shunt whose performance strongly relies on a precise tuning of the electrical 
resonant frequency, Agnes and Inman [42] investigated the effect of nonlinear shunts. Investigations show that the bandwidth of the 
piezoelectric absorber could be increased; however, undesirable nonlinear phenomena such as quasiperiodic and chaotic motions are 
also generated. Along the same lines, Richard et al. utilized continuous switching of a piezoelectric shunt to realize a nonlinear 
absorber [43]. Moreover, inspired by the nonlinear piezoelectric shunt technique [44–46], nonlinear digital oscillators were used on 
the uniform metamaterial beam for broadband micro-vibration attenuation [47]. 

Despite these efforts, there has been clearly a lack of effort made on ABH structures in view of drawing benefit from intentional 
nonlinearities. There exist only a few published papers on the topic, among which Denis et al. investigated the effects of the geometrical 
nonlinearities using a model based on a Von Karman plate [48], which suggest that possible geometrical nonlinearities inside the 
structures, due to the amplified large vibration amplitude within the high energy concentration area, are definitely present and affect 
the expected ABH effects [49]. Indeed, high amplitude vibration typically produces the coupling between the out-of-plane (flexural) 
and in-plane (longitudinal) motion of the structure, which in principle can lead to energy transfer between different frequency ranges. 
But the ABH wedge has to be long enough to induce noticeable geometrical nonlinearities, which is also seen as a limitation. After-
wards, contact nonlinearity was considered on an ABH beam. In particular, a vibro-impactor was used as a mean to generate non-
linearities in an ABH beam to create effective energy transfer effects [50]. The expected outcome of the process is to realize energy 
transfer from low to high frequencies, thereby enhancing the passive damping effect of the ABH beam at low frequencies and achieving 
vibration attenuation [51,52]. However, mechanical nonlinearities through vibro-impact are not always easy to control. Alternatively, 
nonlinearities through nonlinear electrical shunts may potentially offer an alternative to overcome this limitation. The tuning flexi-
bility it offers would allow for tactic design of the shunts to cater for particular structural modes in specific frequency ranges. However, 
nothing has been reported in the context of ABH structures. It remains unclear whether the idea is feasible, and if so, what are the 
nonlinear features of the system and how they will impact the inherent physical process pertinent to ABH phenomena. 

Motivated by the above, this paper targets a two-fold objective: (a) Using an improved semi-analytical electro-mechanical coupling 
model which allows the consideration of nonlinear shunt circuits annexed to a PZT-coated ABH beam, to carry out systematic analyses 
on the associated nonlinear behaviors of the coupled ABH system in order to explore the nonlinear electromechanical coupling 
characteristics of ABH beam; (b) to understand the underlying mechanisms of energy transfer caused by nonlinear electro-mechanical 
ABH beam to realize enhanced and broadband ABH effects. Besides, analyses are also conducted to understand the effects of major 
system parameters form the system coupling and energy transfer perspectives, so as to provide useful design and optimization 
guidelines to maximize the low-frequency benefit of the ABH. 

The present work shows its novelty through the proposition of coupling an electrical nonlinearity with an ABH structure and the 
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findings of ABH-specific nonlinear phenomena associated with the underlying physical insights. The method proposed in this work 
constitutes the very first attempt to use nonlinear electromechanical coupling delivering controllable and tunable nonlinearities in an 
ABH structure. Through revealing dominant nonlinear phenomena specific to ABH structures, understanding their underlying 
mechanisms and finally achieving nonlinearity-induced energy transfer, the study shows the benefit of utilizing intentional nonlin-
earity to selectively break down the frequency barrier of linear ABH structures, which has long been considered as one of the bottle- 
necking problems in ABH research. 

The rest of the paper is organized as follows. An improved nonlinear electro-mechanical ABH model based on a previous work is 
first presented. Analyses on the coupled ABH system are then conducted to understand the influence of PZT layout on the electro- 
mechanical coupling strength, alongside a brief discussion on the selection of linear circuit parameters. Next, numerical analyses 
are conducted to reveal the associated nonlinear behaviors, explore the broadband vibration reduction and understand the underlying 
physical mechanisms governing the energy transfer process. Moreover, the effects of different system parameters are also studied. 
Results show that the electromechanical coupling, albeit relatively weak, can still entail rich nonlinear phenomena in the ABH beam, 
including modal hardening and the generation of high-order harmonics. Analyses show two dominant energy transfer paths from low 
to high frequencies within the ABH beam as well as between the mechanical and electrical components, like a nonlinear energy sink. 
These two energy transfer paths collectively enhance the passive damping effects of the ABH beam at low frequencies along with an 
enhanced vibration attenuation. Influences of various system parameters on the expected nonlinear process pertinent to the enhanced 
ABH effects are discussed to guide the design of the nonlinear shunts. 

2. Theoretical model 

As shown in Fig. 1, the system under investigation consists of a beam undergoing flexural vibration when subject to a point force 
excitation fext(t) at xf. The beam, with a constant width b, is composed of an uniform portion with a constant thickness 2hu and an ABH 
portion with variable power-law profiled thickness (2hb) from xu to l, i.e. hb(x) = β(L-x)m, followed by an extended platform with 
uniform thickness h0 till L, with L denoting the total length of the beam. The extended platform enables prolonged ABH effects as 
demonstrated previously [10]. Besides, piezoelectric patches and viscoelastic damping layers, of constant thickness hp and hd, 
respectively, are symmetrically installed over the top and bottom surfaces of the beam. The whole system is therefore symmetrical with 
respect to the mid-line of the beam. Both ends of the beam are elastically supported by a rotational spring and a translational spring, 
the stiffness of which can be adjusted to mimic various boundary conditions. As a special case to be studied here, a cantilever beam can 
be simulated by assigning sufficient large values to k10 and k20 for the uniform end, and setting k1L and k2L to 0 at the free end of the 
ABH beam as detailed in [21,53]. 

In our previous paper [54], we have proposed a fully coupled electromechanical model based on Timoshenko ABH beam with PZT 
patches and a linear shunt circuit via Rayleigh-Ritz approach. Upon decomposing the out-of-plane displacement, w(x, t), and the 
rotation angle, θ(x, t), of the beam into a set of assumed admissible shape functions (modified trigonometric functions with supple-
mentary boundary smoothing terms as detailed in [54]), the corresponding temporal coordinates (packed into two unknown vectors a 
(t) and b(t)), the kinetic energy, potential energy and the work done by the external force f(t) and electrical loading can all be 
mathematically expressed to form the Lagrangian of the system. Using Lagrange’s equations, we can get the fully coupled electro-
mechanical equations, cast into the following form: 

(Ma1 + Ma2) ⋅ ä(t) + Mb1 ⋅ b̈(t)+(Ka1 + Ka2 + Ka3) ⋅ a(t) + (Kb1 + Kb2) ⋅ b(t) − Θ1 ⋅ v(t) = f ext(t) (1)  

Mb1 ⋅ ä(t)+Mb2 ⋅ b̈(t)+ (Kb1 + Kb2) ⋅ a(t) + (Kb3 + Kb4 + Kb5) ⋅ b(t) − Θ2 ⋅ v(t) = 0 (2)  

ΘT
1 ⋅ a(t)+ΘT

2 ⋅ b(t)+Ceq ⋅ v(t) = q(t) (3)  

Fig. 1. A beam containing an ABH portion with symmetrical and power-law thickness profile with a uniform platform at its tip end (right end).  
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where M and K with subscripts stand for different components which form the global mass matrix and stiffness matrix. Similarly, Θ is 
the electromechanical coupling matrix and Ceq the capacitance of the PZT equivalent circuit, the electromechanical coupling in the 
system is ensured via the electrical voltage v(t). T denotes the transpose of a matrix. Details of these matrix components are provided in 
our previous paper [54]. 

As a further simplification for nonlinear solution, the above formulation based on Timoshenko theory is simplified to a Euler- 
Bernoulli model by neglecting the cross-sectional rotational inertia and shear deformation of the beam, whose effects on linear vi-
bration behaviors have been thoroughly investigated [54]. That is, the coupled Eqs. (1)–(3) can be simplified to: 

M ⋅ ä(t)+K ⋅ a(t) − Θ1 ⋅ v(t) = f ext(t) (4)  

ΘT
1 ⋅ a(t)+Ceq ⋅ v(t) = q(t) (5)  

where M = Ma1 + Ma2 and K = Ka1 + Ka2 + Ka3. 
In the above formulation, any external circuit can be connected to the PZT patches as part of the whole electro-mechanical system, 

including both linear and nonlinear shunts. In the present case, a nonlinear oscillating circuit, including a cubic nonlinear capacitance, 
is used as shown in Fig. 2, governed by: 

v(t) = Le ⋅ q̈(t)+R ⋅ q̇(t) +
1

Ceq
⋅ q(t)+

1
Cnl

⋅ q3(t) (6)  

where Le is the inductance, R is the resistance and Cnl is the nonlinear capacitance of the external circuit. 
Substituting Eq. (6) into Eqs. (4) and (5), the fully coupled electromechanical ABH model with external nonlinear circuit can then 

be written in the following matrix form: 

[
M

Le

][
ä(t)
q̈(t)

]

+

[
image(K)/ω

R

][
ȧ(t)
q̇(t)

]

+

⎡

⎣
real(K) + C− 1

eq Θ1ΘT
1 − C− 1

eq Θ1

− C− 1
eq Θ1 C− 1

eq

⎤

⎦

[
a(t)
q(t)

]

+

[
0

C− 1
nl

][
0

q3(t)

]

=

[
f ext(t)

0

]

(7) 

In Eqs. (1) to (3) and (4) to (5), the structural damping of the beam and that of the damping layer are considered through 
introducing complex Young’s modulus. This leads to complex K matrix shown in the above equations. Conversion is made to find the 
equivalent viscous damping for computational purposes. 

In the subsequent numerical analyses, frequency domain solution is obtained using Harmonic Balance Continuation method [55], 
coupled with a continuation strategy, proven to be effective for solving multi-degree-of-freedom nonlinear problems. The periodic 
signals x(t) = [a(t) q(t)] and f(x, t) = [fl(t)-fnl(x)] (where fl(t) = [fext(t) 0]) in Eq. (7) are approximated by Fourier series truncated to the 
NH

th harmonic: 

x(t) = cx
0 +

∑NH

i=1

(
sx

i siniωt + cx
i cosiωt

)
(8)  

f(t) = cf
0 +

∑NH

i=1

(
sf

i siniωt + cf
i cosiωt

)
(9)  

where si and ci represent the vectors of the Fourier coefficients related to the sine and cosine terms of ith harmonic, respectively. These 
coefficients are gathered into the vectors to obtain the equations of the harmonic coefficient: 

z =
[
(
cx

0

)T (
sx

1

)T (
cx

1

)T …
(

sx
NH

)T (
cx

NH

)T
] T

(10)  

d =
[(

cf
0
)T (

sf
1
)T (

cf
1
)T

…
(
sf

NH

)T (
cf

NH

)T
] T

(11) 

Fig. 2. Schematic diagram of external nonlinear circuit.  
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The displacements and forces are recast into a more compact form: 

x(t) = (Q(t) ⊗ IIn) ⋅ z (12)  

f(t) = (Q(t) ⊗ IIn) ⋅ d (13)  

where ⊗ and IIn respectively present the Kronecker tensor product and the identity matrix of size n, and Q(t) is a vector containing the 
sine and cosine series as [1 sinωt cosωt … sinNHωt cosNHωt]. Accordingly, velocities and accelerations can also be defined using the 
Fourier series. 

Substituting the new form of displacement, velocity, acceleration and force in the equations of motion (7), and considering the 
mixed-product property of the Kronecker tensor product, then Galerkin procedure is used to remove the time dependency and obtain 
an expression relating the different Fourier coefficients, the equations of motion expressed in the frequency domain are eventually 
obtained, written in a more compact form: 

A(ω)z − d(z) = 0 (14)  

where A is the matrix describing the linear dynamics. Eq. (14) is nonlinear and has to be solved iteratively (e.g., with a Newton- 
Raphson procedure). At each iteration, an evaluation of d has to be provided, which can be computed by the alternating 
frequency/time-domain (AFT) technique: 

z →FFT - 1

x(t) → f(x, t)→FFTd(z) (15) 

Besides, in the present work, the time domain solution is obtained by Newmark method, which is widely used in solving the 
nonlinear problems. Details on these numerical treatment are described in [56]. 

3. Numerical analyses 

An electro-mechanical cantilever ABH beam is numerically investigated, with its material and geometrical parameters tabulated in 
Table 1. The ABH beam is subject to a harmonic point force excitation of 1 N in amplitude at the point xf = 0.1 m on the uniform 
portion. Different observation positions on the beam (either on the uniform portion or the ABH portion) are used for structural 
response assessment. Calculations conducted using 16 decomposition terms plus auxiliary terms are shown to be enough to ensure 
converged results within the entire frequency range of interest investigated in this paper. 

3.1. Coupling characteristics of the ABH beam with linear/nonlinear shunts 

Numerical examples are given in the following sections to systematically illustrate the electromechanical coupling characteristics 
of the ABH beam with the shunted PZT and damping layers in different cases: without electrical shunts; with linear RL (resistance and 
inductance) oscillating circuit and with nonlinear circuit that includes a nonlinear capacitance on top of the linear circuit. 

A commonly used metric to measure the effective range of the ABH effects is the cut-on frequency or the characteristic frequency of 
an ABH structure, denoted by fc and defined as [54]: 

fc =
2πhu

l2
ABH

̅̅̅̅̅̅̅̅̅̅
Eb

12ρb

√

(16) 

Table 1 
Material and geometrical parameters of the beam, PZT and electrical shunt.  

Material parameters Geometrical parameters 

Beam 
Density: ρb = 7800 kg/m3 

Damping loss factor: ηb = 0.005 
Elasticity modulus: Eb = 210GPa 
Damping 
Density: ρd = 950 kg/m3 

Damping loss factor: ηd = 0.5(case-specific) 
Elasticity modulus: Ed = 5GPa 
PZT 
Density: ρp = 7600 kg/m3 

Damping loss factor: ηp = 0 
Elasticity modulus: Ep = 132GPa 
Piezoelectric stress constant: e = –3C/m3 

Dielectric constant: εs = 2.8 × 10-9F/m 
Electrical shunt 
Inductance: Le = 1.895H (case-specific) 
Resistance: R = 50 Ω 

Beam 
β = 0.1 
m = 2 
b = 0.05 m 
xu = 0.25 m 
l = 0.45 m 
L = 0.5 m 
hu = 6.25 mm 
h0 = 0.5 mm 
Damping 
xd1 = 0.48 m 
xd2 = 0.5 m 
hd = 0.5 mm 
PZT 
xp1 = 0.42 m 
xp2 = 0.48 m 
hp = 0.5 mm  
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where lABH denotes the length of the ABH portion, which includes the portion with variable power-law profiled thickness and the 
extended platform with a uniform thickness. In the present case, the cut-on frequency of the ABH beam is 940 Hz. The ABH beam with 
piezoelectric patches and damping layers with open circuit contains seven modes below 2000 Hz. The natural frequencies as well as the 
corresponding modal shapes of these modes are shown in Fig. 3. Note the white backgrounds represent the uniform portion of the ABH 
beam, and the shadowed ones represent the ABH portion. 

Fig. 3 shows that the ABH portion undergoes strong oscillations with the corresponding amplitudes greatly exceeding that of the 
uniform portion, especially for higher-order modes. This shows strong energy concentration around the ABH tip, which is a typical 
ABH feature and conducive to energy dissipation. Note the fifth mode at 993.8 Hz slightly exceeds the cut-on frequency (940 Hz), 
starting from which systematic ABH effects can be expected. Therefore, we choose the fourth mode before the cut-on frequency as the 
design and analysis target in the subsequent analyses. The fourth mode shape diagram shows that the beam deforms significantly 
within the area 420–480 mm where piezoelectric patches are placed. This arrangement is expected to generate strong electro- 
mechanical coupling between the PZT and the host beam.  

(1) Effect of ABH beam with a linear circuit 

The electro-mechanical coupling strength, measured in terms of how a specific structural mode is affected, can be quantified using 
an electromechanical coupling factor k, defined as [41]: 

k2 =
ω2

oc − ω2
sc

ω2
sc

(17)  

where ωoc and ωsc are the angular natural frequencies of a given mode of the structure when the piezoelectric transducer is open- 
circuited and short-circuited, respectively. 

Fig. 4 shows the variation of k for the first seven modes. Indeed, the current arrangement leads to a maximum k for the fourth mode, 
which justifies the installation location of the PZTs in the present area to effectively alter the fourth structural mode. Targeting the 
frequency of this structural mode, the corresponding linear resistance and inductance (RL) resonant shunt yields the optimal induc-
tance value of around 1.895H, determined by: 

Le =
1

Ceqω2
oc

(18) 

Using a sine sweeping excitation with an amplitude of 1 N, Fig. 5 shows the displacement response of the ABH beam with and 
without optimal linear RL circuit. The beam displacement is calculated at xm = 0.45 m at the ABH portion, expressed in dB, namely 
20log10(Displacement). While informing on the general dynamics of the system, the comparison curves in Fig. 5 also show typical 
dynamic absorber phenomenon. As expected, the local attenuation of the resonant peak requires a precise tuning of the electrical shunt 
parameters, namely the electrical resonance has to be tuned to the open-circuit natural frequency ωoc. No noticeable changes can be 
observed on other untargeted and lower-order resonances. This alludes to the need of adding a nonlinear cubic capacitance on top of 

Fig. 3. Modal shapes of the first seven modes below 2000 Hz.  
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Fig. 4. Electromechanical coupling factors of the first seven modes below 2000 Hz.  

Fig. 5. Comparison of beam displacements placed PZT and damping layers without electrical shunt and with linear shunt.  

Fig. 6. Comparison of electrical charge amplitudes with linear shunt and different nonlinear shunt, in which the multiple solution region of curve 
Cnl = 1e-22 is marked by red dash lines. 
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the linear RL circuit to better promote ABH effects.  

(2) Effect of ABH beam with nonlinear circuit 

Having demonstrated the limitation of the linear RL oscillating circuit, we now add a nonlinear capacitance to the linear electrical 
shunt, with the capacitance value Cnl decreasing from 1 × 10-20C3V− 1 to 1 × 10-22C3V− 1. The evolution of the frequency–response 
diagram with different nonlinear capacitance would offer a good understanding on the nonlinear features of the coupled system, which 
facilitates the subsequent analyses in view of helping achieve enhanced ABH effects in a broader frequency range. 

Fig. 6 shows the effect of the intentional electrical nonlinearity on the amplitude of the electrical charge q collected from the PZT 
patch. Several typical nonlinear phenomena are noteworthy. The first one is the hardening phenomenon due to the cubic nonlinear 
capacitance, reflected by an increase in the resonance frequency of the electrical resonance peak in the circuit, which bends to higher 
frequency to form a branch. As the nonlinearity increases (nonlinear capacitance decreases), the bending degree of the branch becomes 
larger until the merging with the neighboring higher-order resonance peak, which leads to a significant increase of the fifth resonance 
peak. Meanwhile, the use of nonlinear capacitance in the shunt also affects the dynamic absorber effect over the fourth peak (from 
mechanical system) due to the detuning effects from the nonlinear stiffness. As a result, the amplitude between the fourth and the fifth 
resonance peaks increases compared with the case with the linear shunt. Even when Cnl = 1e-22, the merging of the electrical reso-
nance branch with the fifth resonance peak causes a high-energy frequency range between the fourth and fifth resonance peaks within 
which partial energy transfer might be expected (to be confirmed later). The second salient feature, also typical and common to 
nonlinear systems, is the existence of multiple solutions at some frequencies (take Cnl = 1e-22 as an example, the frequency range is 
marked between the red dash lines), the frequency range of the multiple solution region is consistent with the frequency range of the 
bending branch, which first increases with the increase of nonlinearity, until the bending branch merges with the next resonance peak, 
the range decreases. Note some solutions in these multiple solutions are unstable. Stability changes occur through bifurcations (in this 
case, fold bifurcations), which indicate a qualitative change in the dynamics of the system as system parameters are varied (in this case, 
the forcing frequency) [57]. Whether the system is on the high- or low-amplitude branch depends on its initial state. Finally, the 
amplitudes of the first four peaks undergo obvious reduction, suggesting a possibly reduced energy return from the mechanical system 
and an amplified low-frequency damping effect in the nonlinear shunt. Therefore, through the use of nonlinear capacitance, the 
electrical shunt exhibits hardening phenomenon near its resonant frequency, and the fact that the nonlinearity leads to more 
broadband energy transfer (expected effect of nonlinearity) is clearly visible in Fig. 6, which presents as energy reduction at lower- 
order mechanical resonant frequencies alongside a possible energy transfer from low to high frequencies. This will be further 
confirmed by subsequent analyses. By observing the evolution of the frequency–response diagram with different nonlinear capacitance 
values, one can notice that there is a critical capacitance value (Cnl = 1e-21) for which the electrical resonance branch starts to merge 
with the next resonance peak. A loop is formed at the fifth resonance peak, but isolated from the fifth resonance peak, which can be 
regarded to some extent as a detached resonance curve (DRC) which joins the main frequency response curve (FRC) [58,59]. Obvi-
ously, DRC appears as an isolated loop of solutions in FRCs, whose detailed analysis is beyond the scope of the current study. For 
weaker nonlinearity than this critical value, the range of branch increases with the increase of nonlinearity. When the nonlinearity 
exceeds this critical value (Cnl = 1e-22), however, while the branch and the next resonance peak being merged, the range decreases. 
The trend of the multi-solution region is the same. 

We now examine the corresponding changes in the mechanical system, by analyzing the displacement response of the beam and the 
generation of higher-order harmonics respectively. 

Similar to the charge signals, due to the nonlinear capacitance, the linear resonant shunt-induced dynamic absorber effect (re-
flected by the split of the fourth resonance peak) disappears. In addition, some nonlinear phenomena also appear on the beam, the most 

Fig. 7. Comparison of beam displacements with linear shunt and different nonlinear shunt.  
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obvious of which is that the bended and branch observed in Fig. 6 also appear in Fig. 7 as an isolated loop in the frequency response 
curves (FRCs). The branches manifest as a result of multi-valueless in the FRC, suggesting multiple solutions of the beam response 
under a harmonic excitation. A closer examination shows that the loop region coincides exactly with the unstable multi-solution region 
of the branch observed on q in Fig. 6, with similar variation trend. Meanwhile, we also observe in Fig. 7 that in the frequency range 
where loops appear, the nonlinear response of beam displacement is higher than the linear response. This phenomenon is also 
consistent with the charge curves in Fig. 6. It is relevant to note, however, the phenomena observed in the beam are not as obvious as 
the ones on electrical charge due to the weak electromechanical coupling. In addition, we can see in the enlarged views (Fig. 8) that, 
compared with the linear case, the first three resonance peaks of the beam displacement response under nonlinear case also move, 
albeit slight, to higher frequencies. The amplitudes of the first three resonance peaks are also lower than the case without shunt. 
Though at a reduced level as compared with the electrical response, the use of nonlinear capacitance in the shunt seems to lead to an 
impaired low-frequency vibration response of the ABH beam, which results in slight resonance peak reduction in low frequencies. 

Fig. 9 shows the effect of the electrical nonlinearity on the third harmonic in the mechanical system. In the figure, obvious 
nonlinear phenomena also appear. Firstly, compared with its linear counterpart, all of the first four resonance peaks produce obvious 
third harmonics, which should be accompanied by an energy increase in the high-frequency range. Secondly, similar to the electrical 
charge signals, near the fourth peak, other nonlinear features such as modal hardening and branch can also been observed. Increasing 
the strength of the nonlinearity (reduced nonlinear capacitance value) amplifies the hardening phenomenon and increases the 
amplitude of the third harmonic response. The outcome is the formation of a rather flattened and wide-band high-energy region 
between the fourth and the fifth resonances, in accordance with the merging of the branch formed by the bending of the fourth 
resonance peak towards higher frequency with the fifth resonance peak, already shown and discussed in Fig. 6. This means that not 
only obvious third-order harmonics of the resonant peaks are produced, but also obvious harmonics between the two, which is 
conducive to the enhanced energy transfer. 

In the framework of this study, our attention is focused on the third harmonic because all other harmonics were found to be 
negligible, as exemplified in Fig. 10 (Cnl = 1e-21). 

For more quantitative analysis, two indicators are defined to measure the strength of nonlinear phenomena. As shown in Fig. 11, 
taking the third-order harmonic curve with the nonlinear capacitance Cnl = 1 × 10-22C3V− 1 as an example, the first indicator quantifies 
the hardening degree in the nonlinear system, described by the frequency shift Δf = fq(nonlinear)-fq(linear), where fq(linear) and 
fq(nonlinear) are the electrical resonance frequencies with linear shunt and nonlinear shunt respectively. The second one is a measure 

Fig. 8. Enlarged view of beam displacement without shunt, with linear shunt and with nonlinear shunt (Cnl = 1e-22) for the first four modes.  
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of the overall level of the third harmonics carried by the higher-order harmonics, which is defined as the integral area between the 
third harmonic curves of the nonlinear system and its linear counterpart, which can be understood as an indicator of energy transferred 
from the fundamental waves to the third harmonics, as marked by the shadowed region W in Fig. 11. The variation of Δf and W with 
different nonlinear capacitance value is respectively shown in Fig. 12(a) and (b). 

It can be seen from Fig. 12 that both parameters, Δf and W, follow very similar variation trends, i.e., increasing with nonlinearity 
strength (decreasing capacitance value). The greater the nonlinearity, the greater the degree of resonant peak bending, and the 
stronger the energy transfer from the fundamental waves to the third harmonics, as expected. The observation also points at the 
possibility of manipulating the energy transfer through a proper tuning of the nonlinear capacitance, which is easier to achieve than 
mechanical nonlinearity. It is also expected that the degree of the nonlinearity also increases with the excitation level so that similar 
changes in Δf and W could also be induced. 

The above analyses suggest two possible mechanisms to realize low-to-high frequency energy transfer: through the formation of a 
branch/bridging of resonance modes as a result of hardening and through the generation of higher harmonics. The latter seems more 
significant than the former, which in principle might take place in nearly entire frequency band to different extent. This expected 
energy transfer process and its impact on ABH effects will be discussed in detail hereafter. 

3.2. Energy transfer and enhanced ABH effects 

Numerical examples are analyzed to confirm the aforementioned energy transfer phenomena caused by nonlinear shunt and the 
benefit they bring about in achieving enhanced ABH effects in different frequency bands. Beam response is calculated at xm = 0.45 m, 

Fig. 9. Comparison of the third harmonics of beam with linear shunt and different nonlinear shunt, the lower abscissa represents the excitation 
frequencies, and the upper abscissa represents the third harmonic frequencies, the natural frequencies marked by red dash lines. 

Fig. 10. Comparison of the different harmonics of beam with nonlinear shunt.  
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although other points (either on the uniform portion or the ABH portion closer to the tip) have also been verified to provide the same 
phenomena (not shown here).  

(1) Energy transfer from low-to-high frequencies. 

The considered excitation signal is based on a resonant decay. Harmonic forcing at a specific resonance frequency is applied first. 
After the response has reached steady state, the forcing amplitude is set to 0, and free vibration of the system ensues. Fast Fourier 
transform is then performed on the entire response signal to obtain the corresponding frequency-domain response, which can directly 
inform on the high-order harmonics (not only the third harmonics). The rationale behind is to produce a free vibration response which 
is initially dominated by one targeted mode and examine how the one-mode dominated energy could possibly be transferred to other 
frequencies in a free vibration regime. Note that while keeping the inherent material damping of the beam, the damping loss factor 
ηd of the damping layers is set to zero in order to show the phenomenon of energy transfer more clearly before it is dissipated later when 
the damping of the damping layer is added. Following the above procedure, the corresponding frequency spectra of the system are 
obtained. 

In the present case, the ABH beam is successively excited at each of the first four natural frequencies (determined for the linear 
system) with a limited duration. Note they are all below the cut-on frequency of the ABH (Eq. (16)). The free response spectra cor-
responding to the four cases are shown in Fig. 13, in comparison with their respective linear counterparts. Note the junction between 
the white and the shadow regions indicates the ABH cut-on frequency, which is considered as a frequency barrier for producing 

Fig. 11. A schematic diagram of two indicators defined to measure the strength of nonlinear phenomena. The bending degree of the circuit fre-
quency Δf is marked by the red dash lines; W is the integral area between the third harmonic curves of the nonlinear system and its linear 
counterpart, marked by the shadowed region. 

Fig. 12. Comparison of (a) Δf and (b) W with different nonlinear capacitances.  
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systematic ABH effects. It can be seen that, irrespective of the excitation frequency, high-order harmonics alongside other rather 
broadband energy intervals appear when the nonlinear capacitance is added in the circuit. Focusing more on Fig. 13(a) and (b), due to 
the higher vibration level dominated by the low frequency modes, a series of high-order harmonics appear more obviously. This causes 
an increase in the vibration level at higher frequencies alongside an amplitude reduction of the low-frequency peaks by different levels. 
In Fig. 13(c) and (d), due to the higher excitation frequency, there are fewer high-order harmonics within 2000 Hz. Nevertheless, it still 
leads to an increase of high-frequency energy and a decrease at low frequencies. It is relevant to note that, although Fig. 13(a-c) show 
peak reductions at and before the excitation frequency, their higher-order harmonics are still below the cut-on frequency of the ABH 
and thus cannot realize the sought cross ABH barrier energy transfer. Only the last case (Fig. 13(d)) allows meaningful and cross ABH 
barrier energy transfer with the generation of higher-order harmonics exceeding the cut-on frequency. Therefore, a meaningful cross 
ABH barrier energy transfer refers to the transfer of energy through higher-order harmonics from the region before the cut-on fre-
quency of the ABH beam (white area) to the region after the cut-on frequency (shaded area). 

The above analyses show that, the introduction of the electrical nonlinearity successfully generates broadband energy transfer from 
low to high frequencies, which is manifested by a decrease in low-frequency vibration and an increase in high-frequency energy. This 
completes and enriches the first step of the ABH process in terms of energy transport, namely a frequency domain energy transfer in 
addition to the spatial energy transport ensured by the ABH thickness variation. As the second ABH process, the increase of the high- 
frequency vibration energy in the system is expected to be dissipated by the damping of the coating layers, which is not considered in 
the above discussion. To verify this, the damping module is activated by considering its damping loss factor ηd. Fig. 14 shows the 
spectra corresponding to Fig. 13(d) with and without damping of the coating layer over the ABH tip. It can be seen that with damping 
ηd, the amplitudes of main resonance peaks are further reduced. More interestingly, in the high frequency region above the cut-on 
frequency and close to the third harmonic region, energy reduction is more obvious and significant. Note this is exactly the same 
frequency area into which energy was transferred owing to the electrical nonlinear shunt (Fig. 13(d)). The drastic energy reduction due 
to the damping layer is due to the ABH effects which are indeed enhanced and fully played out as a result of the intentionally added 
nonlinear electrical shunt. The entire process confirms that low-frequency energy (before the ABH barrier) is indeed transferred to 
higher frequencies (after the ABH barrier) before being more effectively dissipated through enhanced ABH effects. It is also worth 
noting that the low-frequency sub-harmonic peaks generated by the nonlinear electrical shunt also decrease significantly with the 
increase of ηd, such as the one-third sub-harmonic peak generated at around 200 Hz. The outcome of the entire process is the creation of 
better chance for the low frequency vibration to be reduced and ABH effects to be broadened, resulting in a simultaneous low- and 

Fig. 13. Comparison of beam displacement spectra under single-frequency excitation forces with different frequencies: (a) 76.03 Hz; (b) 149.5 Hz; 
(c) 405.5 Hz; (d) 632.2 Hz. 
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high-frequency vibration reduction. 
In principle, the above observed energy dissipation is also partly from the introduced electrical shunt in addition to the ABH- 

induced dissipation. Calculations are conducted to separate these two components (electrical shunt and the damping layer) and 
quantify their respective contribution to the total energy dissipation. To this end, we first define power terms of different components 
in the system as: 

Pd(t) = ȧ(t) ⋅ C ⋅ ȧ(t)T (19)  

Pq(t) = v(t) ⋅ q̇(t) (20)  

Pf (t) = f (t) ⋅ ẇ(x, t) (21)  

where Pd (t), Pq (t) and Pf (t) represent the dissipated power by the damping layers, that of the electrical shunt and the input power of 
the force excitation, respectively. Their corresponding power spectra are obtained by Fast Fourier transform, denoted as Pd, Pq and Pf, 
respectively. The respective contributions of different power terms are assessed using. 

Pd% =
Pd

Pd + Pq
× 100 (22)  

Pq% =
Pq

Pd + Pq
× 100 (23) 

Obviously, Pd% and Pq% represent respectively the relative portion of the energy dissipated mechanically and electrically. 
Fig. 15 respectively shows the computed Pd% and Pq% in both full frequency range (Fig. 15(a)) and close-up view focusing on the 

higher frequency region (Fig. 15(b)) after a high pass filter above 1400 Hz is applied. Fig. 15(a) shows obvious energy dissipation by 
both the electrical shunt at its resonant frequency and its third-order harmonic. Due to the resonant nature of the circuit, however, 
system energy at other frequencies is mainly dissipated by mechanical damping (from both the beam and the damping layer). Focusing 
more on the high frequency range where effective energy transfer was observed before, Fig. 15(b) shows that, while electrical 
dissipation is present in the absence of the damping of the coating layer, especially towards the high-frequency end of the curves, the 
whole energy dissipation process is completely taken over and dominated by the damping layer after it is added to the system. This is 
particularly obvious in the broad region within which strong energy transfer is previously identified. In this frequency region, electrical 
damping contributes marginally, except near the third harmonics of the forcing frequency around 1900 Hz. These observations 
confirm that the vibration reduction at this high-frequency region is indeed due to the damping dissipation arising from the enhanced 
ABH effect.  

(2) Energy transfer from mechanical-to-electrical system 

In addition to the aforementioned energy transfer across frequency bands in the mechanical system, energy transfer also takes place 
from the ABH beam to the nonlinear electrical shunt, which is now investigated. Noting that the bridging of the fourth resonance peak 
with the fifth resonance peak, shown in Fig. 6, leads to a significant increase in the peak amplitude, we examine the associated 
nonlinear phenomena of the fifth structural mode. To this end, we examine the free vibration response of the beam. The onset of the 
system vibration is due to an initial force excitation at 993.8 Hz (fifth natural frequency of the beam) which is stopped after reaching 
steady state. The time-domain signals of the beam displacements, normalized to their respective maximum values, are shown in Fig. 16 
(a). Corresponding Pq (t)% is used to quantify the percentage of energy transferred from the mechanical system to the electrical system 

Fig. 14. Comparison of beam displacement spectra with different damping loss factor ηd under single-frequency excitation force at 632.2 Hz.  
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in time domain, defined as. 

Pq(t) \ % =
Pq(t)
Pf (t)

× 100 (24) 

Fig. 16(a) shows an enlarged view of the free vibration response of the beam within a truncated time-window starting from t = 2.14 
s (note the excitation for both cases stop at t = 2 s). Vibration response with electrical nonlinearity decays rapidly due to the enhanced 
damping effects. Roughly after t = 2.2 s, the nonlinear curve shows fluctuation with nevertheless significant signal attenuation. This 
instant roughly coincides with an obvious increase in the Pq (t)% as shown in Fig. 16(b), suggesting an increase in energy transfer to the 
electrical shunt. The fluctuation observed in Fig. 16(a) suggests a possible energy flow back to the beam, exemplified by a temporary 
increase, albeit slight, of the beam displacement at certain instants after t = 2.22 s. To better illustrate this phenomenon, a close-up of 
the time series in Fig. 17 reveals the existence of nonlinear beating. We see that the time between two successive maxima is decreasing 
over time, which indicates that the beating takes place between the excitation frequency, which coincides with the resonance fre-
quency of the fifth mode, and another frequency which evolves with time. It turns out in Fig. 18 that this latter frequency is the 
resonance frequency of the fourth mode, which, due to the nonlinearity, is in the vicinity of the fifth mode before decreasing with 
motion amplitude. This is confirmed by the wavelet transform in Fig. 19. There is thus a vivid exchange of energy between modes 4 and 
5. As a whole however, the energy transferred from the ABH beam to the electrical shunt dominates the process, which contributes to 
the rapid vibration attenuation of the beam alongside mechanical damping. 

Numerical simulations also suggest that the level of the above mechanical–electrical energy transfer process does not monoto-
nously increase with the nonlinearity strength (decreasing nonlinear capacitance values). This motivates us to examine the rela-
tionship between nonlinear capacitance and the amount of transferred energy from ABH beam to the electrical circuit, so as to optimize 

Fig. 15. Energy dissipation by damping layers and nonlinear electrical shunt for different ηd: (a) Broadband results; (b) Close-up view of higher 
frequency range after filtering. 

Fig. 16. Comparison of (a) normalized beam displacements and (b) the percentages of the circuit power to the total input power, when the 
excitation frequency is 993.8 Hz, ηd = 0. 
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the circuit design to achieve the highest mechanical–electrical energy transfer efficiency. To quantify the process, we defining Wq% as. 

Wq% =
Wq

Wd + Wq
=

∫ t2
t1

Pq(t)dt
∫ t2

t1
Pd(t)dt +

∫ t2
t1

Pq(t)dt
× 100 (25) 

Physically, Wq% represents the portion of the electrically dissipated energy over the total dissipated energy of the electrome-
chanical system (the sum of energy dissipated by circuit Wq and energy dissipated by damping Wd) with a time duration delimited by 

Fig. 17. Enlarged view of the normalized beam displacement in the beating region.  

Fig. 18. Power spectral densities using different time series in the beating region.  

Fig. 19. Wavelet Transform Spectrum of the beam displacement in the beating region.  
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two time instants t1 and t2. 
Variation of Wq% with respect to nonlinear capacitance Cnl is depicted in Fig. 20. It shows that electrical energy dissipation is the 

highest for a particular level of the nonlinearity. In addition, there exists a threshold nonlinearity level below which nearly no energy 
could be dissipated by the electrical shunt. This observation is also consistent with the nonlinear energy sink (NES) [33]. 

Note that all above analyses use an electrical nonlinear shunt whose linear resonant frequency fq is designed to precisely target the 
fourth natural frequency of the beam. It is then relevant to comment on cases where fq is not exactly tuned to match one particular 
mode. Numerical analyses show that as long as fq is around the targeted mode, either below and above, basically the same phenomena 
as described above are still persistent, providing the flexibility and the tolerance for the design of the nonlinear electrical shunt. 

4. Conclusions 

This paper is concerned with intentionally imposing electrical nonlinearities via PZT patches over an ABH beam to tactically in-
fluence its dynamics through electromechanical coupling for achieving enhanced ABH effects. To this end, a previously established 
semi-analytical electromechanical coupling model is improved, which allows for the inclusion of a nonlinear shunt circuit annexed to 
an ABH beam. Salient nonlinear features in the electro-mechanical coupled system as well as major ABH-specific benefits are 
numerically demonstrated and physically explained. 

It is shown that the introduction of electrical nonlinearity enables obvious and rich nonlinear phenomena in both the electrical and 
mechanical systems. For the former, the deployment of a cubic capacitance in the resonant shunt generates pronounced hardening 
phenomenon. The targeted resonance peak bends to higher frequency as a branch, which might even bridge/merge with the neigh-
boring resonance peak provided the introduced nonlinearity is sufficiently strong. The process is accompanied by the creation of higher 
harmonics with energy transfer to higher frequencies in the circuit. As a result, the amplitudes of electrical resonances in the lower 
frequency range are reduced. Corresponding to the same frequency region, the branches observed in the electrical signal appear as an 
isolated loop in the frequency response curves (FRCs) of the ABH beam, which is shown to produce similar phenomena as a nonlinear 
energy sink (NES), in terms of generating energy transfer from the beam to the electrical circuit. Meanwhile obvious cross frequency 
energy transfer is also achieved. Although the phenomenon is not as obvious as in the electrical circuit due to the limited level of 
electromechanical coupling, it does lead to the low-frequency vibration reduction of the ABH beam, and most importantly, generates 
typical nonlinear phenomena which are vital for achieving low-to-high frequency energy transfer. Analyses show two dominant energy 
transfer paths within the ABH beam as well as between the mechanical and electrical components: one through the formation of a 
branch/bridging of resonance modes as a result of hardening and the other through the generation of higher harmonics. The latter is 
shown to be more compelling and predominant. These two energy transfer paths collectively alter the system dynamics, increase the 
ABH-specific energy focusing ability and enhance the passive damping effects of the ABH beam at lower frequencies. 

Energy analyses also confirm the above physical process, particularly in relation to the energy dissipation by different components 
in the coupled electro-mechanical system. It is shown that the vibration reduction at high frequencies is indeed due to the damping 
dissipation, which is caused and amplified by the nonlinearity-enhanced ABH effects. In addition to the energy transfer across the ABH- 
imposed cut-on frequency barrier in the mechanical part, electro-mechanical energy transfer and dissipation also take place, similar to 
a NES. Among major features, a typical nonlinear beating phenomenon is observed, alongside a threshold nonlinearity level to trigger 
energy transfer from the ABH beam to the electrical circuit. This suggests that the nonlinearity level in the shunted resonant circuit 
needs to be properly tuned to reach the optimal configuration. While the system nonlinearity increases with the forcing level and 
decreases with the nonlinear capacitance, there is however no stringent requirement on the precise tuning of the resonant frequency of 
the electrical shunt, as long as it is around the natural frequency of structural mode which is targeted to achieve ABH-specific energy 
transfer. 

Fig. 20. Electrical energy dissipation with respect to Cnl.  
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