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A B S T R A C T

Dynamic vibration absorber (DVA) is an effective device for suppressing resonant vibration of noisy machiner-
ies and structures. However, the optimum design of DVA requires precise tuning of the damping force in the
DVA, which unfortunately is often not practical and prone to changes of working conditions. In this paper, a
tunable electromagnetic shunt damper (EMSD) with different opposing magnet pairs configurations is tested
for the optimum design of DVA. The optimum magnet pairs configuration is derived to provide the maximum
damping force in the DVA. Both simulations and experiments are conducted to verify the damping coefficient
variation with the number of magnet pairs in the EMSD. The experimental optimization procedure of the DVA
is designed according to the fixed-points theory. The damping force generated by the EMSD can be readily
adjusted by varying the external resistance of the EMSD. This is the first experimental implementation report of
the optimization procedure described in the fixed-points theory. The proposed tunable EMSD can conveniently
allow for onsite optimal tuning of DVA. The proposed design methodology provides fine tuning of the damping
coefficient of EMSD to achieve robust optimal DVA performance, even when subject to changes of external
parasitic damping.
. Introduction

The theoretical analysis of dynamic vibration absorbers (DVAs) has
een the topic with extensive discussions in the literature review.
ishihara [1–3] gave the exact theoretical solution of the 𝐻∞ opti-
ization tuning based on Den Hartog’s classical fixed-points theory [4].
arburton [5] also developed the exact solution of the 𝐻2 optimization

uning condition for global vibration control. The damping require-
ent of DVAs were thoroughly analyzed for the optimal working

ondition of the DVA [6]. The theoretical optimization of DVA was
onducted for single degree of freedom (SDOF) vibrating system [7,8]
nd multi-degree of freedom vibrating system [9,10]. Structural mor-
hing [11–13], different combinations [14] and modified optimization
ethods [15,16] were proposed for various kinds of vibration con-

rol applications. Different types of dynamic vibration absorbers were
ategorized and the corresponding transfer functions of their dynamic
odels were compared [17].

Reported applications of DVAs cover both discrete [18] and con-
inuous structures such as beams [19,20] and plates [21,22]. DVAs
ere also applied in many on-site fields: the vehicle suspension [23],
uildings and towers [24,25], machine boring bar [26], micro-
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electromechanical systems (MEMS) [27,28], floating raft system [29],
pedestrian footbridge [30,31], truss structure [32], high speed rota-
tional machine [33], and piping system [34] etc. The high sensitivity
of DVAs to the variation of external conditions has always been a
challenging problem, which compromises their performance of DVAs
and hinders their wide applications in practice. In particular, the
amount of damping in the DVA requires precise tuning to ensure the
best effective vibration suppression performance of the controlled struc-
ture. Detuned DVA may even amplify the vibration of the controlled
structure. Conventional means such as the commonly used fluid viscous
damping, for example, is difficult to cope with such a need in terms of
providing tunable damping.

Electromagnetic shunt damper (EMSD) was first proposed by
Behrens [35] for vibration control with precise tunability of vibration
damping. The vibration isolation performance of EMSD is well studied
in both linear systems [36] and nonlinear systems [37]. When being
applied in the vibration system, the optimal damping resistance is also
given to suppress the resonant vibration [38]. With the fine tunability
of vibration damping, EMSD is applied in DVA system which requires
vailable online 2 March 2022
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precise damping to achieve the system optimal status [39]. A beam-
like DVA system is proposed by Kremer with EMSD, both harmonic
force [40] and transient [41] excitation in the system are investigated
to verify the vibration absorption performance of EMSD.

Moreover, with the capacity of transferring mechanical energy into
electrical energy, EMSDs in DVA system always function both in vibra-
tion control and energy harvesting. The performance of EMSD simulta-
neous vibration suppression and energy harvesting function is deeply
analyzed in both traditional [42] and beam-like [43] DVA system Gal-
luzzi [44] proposed a rotary shock absorber with EMSD in automotive
suspension to harvest energy from road irregularities, and the cor-
responding experiments verified the damping efficiency performance.
The theoretical analysis of EMSD in DVA system with is also conducted
to achieve both objectives optimal status [45]. With the aid of micro-
controller, the EMSD connected circuit is able to maintain a nearly
constant resistance that providing stable damping force [46]. Since
the dual-function is performed well, EMSD is widely used in bridge
cable [46,47], auto-suspension [44], seat suspension [48], railway
transportation [49] for both vibration control and energy harvesting.

Despite the existing work, the structural configuration of EMSD has
been seldom investigated in views of improving the electro-mechanical
coupling to obtain better damping performance. Existing efforts include
the improvement of the EMSD by introducing negative impedance
which demands the utilization of external power supply into the sys-
tem. Behrens [50] first proposed the concept of the negative inductor–
resistor for the EMSD shunt circuit. The numerical analysis of EMSD
in DVA system shows that, the system response will decrease and the
absorbing area will also be broaden with the negative inductance in the
shunt circuit [51]. The experimental study of EMSD with negative re-
sistance verified the improved the damping improvement in spacecraft
micro-vibration control system [52]. The linear-EMSD and nonlinear-
EMSD with negative resistance are both investigated by Yan [53] that
giving guidelines to design nonlinear damping.

Inspired by the proven effectiveness of opposing magnet configu-
ration for EMSD performance enhancement [54], this paper presents
tunable EMSDs with various opposing magnet pair configurations along
the axial direction to improve the damping performance. The damping
coefficient of the EMSD peaks when the opposing magnet pairs are
properly arranged to strike a balance between the peak radial magnetic
flux density and the number of opposing magnets pairs. The EMSD
damping peak can be easily searched out with the proposed method
below. And the corresponding experimental results verified exist and
the accuracy of the peak. The major contribution of this manuscript is:
(1) to analyze the effect of system parameters of EMSD with opposing
magnet pair configuration on its damping performance and (2) to
establish the optimal configuration for this type of EMSD based on
the numerical and experimental analysis results such that the damping
coefficient of the EMSD can be maximized.

The tunable EMSD empowers the DVA with flexible adaptability to
reach and maintain optimal working conditions even when the internal
parasitic damping changes by various external factors such as the fric-
tion variation of the internal components. As a side benefit, the tunable
EMSD also allows for saving energy of the system when working in the
higher frequency range exceeding the resonant frequency of the system.

In the following sections, the basic theoretical analysis of EMSD and
the classical optimization of DVA through fixed-points theory are intro-
duced first. Subsequently, the EMSDs with various opposing magnets
pair configurations are investigated, and the corresponding verifica-
tions are conducted through simulation and experiments. Finally, the
optimum DVA is implemented and experimentally tested.

2. Theoretical basis of EMSD and DVA

2.1. Basic concepts and principles of EMSD

The EMSD can be regarded as a linear electric generator, which can
potentially be used as an energy harvester. A typical EMSD structure
2

Fig. 1. Typical structure of an EMSD: (a) the magnet and coil, (b) the equivalent coil
circuit and external connected tunable resistor.

consists of a magnet and a coil as shown in Fig. 1(a). The motional
electromotive force (EMF) is induced between the magnet and the coil
by the relative motion. A tunable damping force will then be induced
if the two terminals are connected with a variable resistor as shown in
Fig. 1(b).

The induced motional EMF, 𝜀, is measured in volts when the EMSD
circuit is open. For the red dashed single loop coil with the red dot 𝑑𝑙
in Fig. 1(a), since the relative motion is along the axial direction (x-
axis) under the cylindrical coordinate system, the axial magnetic flux
density, 𝐵𝑥, makes no contribution to the motional EMF. Therefore,
only the radial magnetic flux density, 𝐵𝑟, contributes to the damping
function. Therefore, one as

𝜀= − ∮𝑙𝑜𝑜𝑝
𝐵𝑟 (𝑥, 𝑟) 𝑑𝑙�̇� (1)

Expressing

𝜀 = 𝐾𝑡�̇� (2)

The transduction factor, 𝐾𝑡, is defined as

𝐾𝑡 = −∮𝑙𝑜𝑜𝑝
𝐵𝑟 (𝑥, 𝑟) 𝑑𝑙 (3)

𝐾𝑡 quantifies the electromechanical coupling strength. In the whole
electric coil with 𝑁 turns loop as shown in Fig. 1(a), 𝐾𝑡 can be
simplified as

𝐾𝑡 = −2𝜋
𝑁
∑

𝑖=1
𝑟 (𝑖) |𝐵𝑟 (𝑥, 𝑟, 𝑖) | (4)

where r denotes the radius of the target point.
In the absence of flux leakage and eddy current in the system, if the

external resistance 𝑅𝑙𝑜𝑎𝑑 is connected with the EMSD coil, the induced
damping force 𝐹𝑒 can be expressed as

𝐹𝑒 = 𝐾𝑡𝑖 =
𝐾𝑡𝜀
𝑍

(5)

where i is the electric current in the closed circuit and Z the total circuit
impedance which is a tripartite written as

|𝑍| =
√

(𝑅𝑖𝑛 + 𝑅𝑙𝑜𝑎𝑑 )2 +
(

2𝜋𝑓𝐿𝑖𝑛
)2 (6)

where f is the EMF frequency in Hz; 𝐿𝑖𝑛 the internal inductance of the
coil and 𝑅𝑖𝑛 the internal resistance of the EMSD coil. Since the internal
inductance is always very small and the system is mostly applied in
low-frequency domain, the inductive impedance can be ignored in most
occasions.

Combining Eqs. (2) and (5) yields the damping force as

𝐹𝑒 =
𝐾2

𝑡
𝑍

�̇� (7)

Therefore, the damping coefficient 𝑐𝑒 of the EMSD can be expressed
as

𝑐 =
𝐹𝑒 =

𝐾2
𝑡 (8)
𝑒 �̇� 𝑍
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Fig. 2. A vibrating system with DVA.

Fig. 3. Displacement amplitude of the primary system with different damping ratios.

2.2. Optimization of DVA with the tunable EMSD based on the fixed-points
theory

When the EMSD is deployed as a tunable damper, attached to
a single-degree-of-freedom vibrating system as shown in Fig. 2, the
equations of motion of the system are given by

𝑚1�̈�1 + 𝑘1𝑥1 + 𝑘2
(

𝑥1 − 𝑥2
)

+ 𝑐2
(

�̇�1 − �̇�2
)

= 𝐹0 cos𝜔𝑡 (9)

𝑚2�̈�2 + 𝑘2
(

𝑥2 − 𝑥1
)

+ 𝑐2
(

�̇�2 − �̇�1
)

= 0 (10)

where 𝑘1, 𝑚1 and 𝑘2, 𝑚2 denote the spring stiffness and the mass of the
primary system and that of the DVA, respectively. 𝑥1 and 𝑥2 denote
their respective displacement of the primary system and DVA. 𝑐𝑒 is the
equivalent damping coefficient of the EMSD. The natural frequency
of the primary system and that of the DVA before they are coupled
together can be expressed by 𝜔𝑛1 =

√

𝑘1∕𝑚1 and 𝜔𝑛2 =
√

𝑘2∕𝑚2,
respectively. The dimensionless displacement 𝑋1 of the primary system
can be derived by solving Eqs. (9) and (10) with the fixed points
theory [4], giving

𝑋1
𝑋𝑠𝑡

=

√

√

√

√

√

(2𝜉𝜆)2 +
(

𝜆2 − 𝛾2
)2

(2𝜉𝜆)2
[

(1 + 𝜇) 𝜆2 − 1
]2 +

[

𝜇𝛾2𝜆2 −
(

𝜆2 − 1
) (

𝜆2 − 𝛾2
)]2

(11)

where 𝑋𝑠𝑡 = 𝐹0∕𝑘1 is the initial static displacement. 𝜉 = 𝑐𝑒∕𝑐𝑐 is the
damping ratio. 𝑐𝑐 = 2𝑚2𝜔𝑛1 is the critical damping constant of the DVA.
𝜆 = 𝜔∕𝜔𝑛1 is the frequency ratio. 𝛾 = 𝜔𝑛2∕𝜔𝑛1 is the natural frequency
ratio, and 𝜇 = 𝑚2∕𝑚1 is the mass ratio. The displacement responses
of the primary system with respect to different damping ratios in the
frequency domain are shown in Fig. 3 when the mass ratio is 0.1.

As shown in Fig. 3, two fixed points can be observed in the response
spectra of the primary system. Moreover, the displacement of the pri-
mary mass reaches a min–maximum value at a certain set of frequency
3

Table 1
Parameters of the magnet and coil.

Material NdFeB N33
Internal diameter 4 mm

Magnet External diameter 15 mm
Length 10 mm
Number 12

Internal diameter(𝑑1) 18 mm
External diameter(𝑑2) 32 mm
Total length(𝑙𝑐 ) 108 mm

Coil Turns(𝑁𝑡𝑜𝑡𝑎𝑙) 756
Wire diameter(𝑑𝑤𝑖𝑟𝑒) 1 mm
Wire length(𝐿𝑤𝑖𝑟𝑒) 64 m
Internal resistance(𝑅𝑖𝑛) 1.5075 Ω

ratio and damping ratio value, calculated by [4]

⎧

⎪

⎨

⎪

⎩

𝛾𝑜𝑝𝑡𝑖𝑚𝑎𝑙=
1

1+𝜇

𝜉𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
√

3𝜇
8(1+𝜇)3

(12)

Upon a proper design of the EMSD, the optimization of the DVA
can be achieved and the tuning procedure is described in the following
section.

3. Design analyses of EMSD configurations

3.1. EMSD with various opposing magnets pairs

Owing to the significantly improved radial magnetic flux density,
particularly in the area where the magnet poles are connected, EMSDs
with opposing magnets configuration has shown promise in increasing
the damping coefficient [54]. With the same amount of magnets and
wires, the damping coefficient variation with different opposing mag-
nets pairs configuration needs to be investigated. In this work, twelve
ring-shaped magnets, each having a length of 10 mm (as shown in
Fig. 1) and an amount to 756 turns with 1 mm wire diameter, are used
to construct the EMSDs. Details of the magnet and coil parameters are
tabulated in Table 1.

The length of the coil is 12 mm shorter than that of the magnet to
provide the skeleton space for winding the coils. Assuming the coil is
tightly wound as shown in Fig. 1, the total number of turns 𝑁𝑡𝑜𝑡𝑎𝑙 is

𝑁𝑡𝑜𝑡𝑎𝑙 =

(

𝑟2 − 𝑟1
)

𝑙𝑐
𝑑2𝑤𝑖𝑟𝑒

(13)

Then, the total wire length 𝐿𝑤𝑖𝑟𝑒 of the coil can be expressed as

𝐿𝑤𝑖𝑟𝑒 = 𝜋
(

𝑟1 + 𝑟2
)

𝑁𝑡𝑜𝑡𝑎𝑙 (14)

Moreover, the internal resistance can be written as

𝑅𝑖𝑛 = 𝜌
𝐿𝑤𝑖𝑟𝑒
𝑆

= 𝜌
𝐿𝑤𝑖𝑟𝑒

𝜋
(

𝑑𝑤𝑖𝑟𝑒∕2
)2

(15)

where 𝜌 denotes the electrical resistivity of copper and S the cross-
section area of the wire. The calculated results using Eqs. (13) to (15)
are shown in Table 1.

Since the number of magnets used is twelve, the value of opposing
magnet pairs could be the common divisor of twelve, i.e. 1, 2, 3, 4,
6, and 12. The possible EMSD structures with serial numbers 𝑀1, 𝑀2,
𝑀3, 𝑀4, 𝑀6 and 𝑀12 are shown in Fig. 4. The twelve magnets are
divided into groups depending on the number of the opposing magnets
pairs. For 𝑀1 case, the magnets are separated into 2 groups, each con-
taining six magnets. The six magnets are connected in a homodromous
direction to form a longer magnet of 60 mm long, then the two longer
magnets are tightly connected in opposing direction by a screw through
a central 4 mm hole. Other opposing magnets configurations as shown
in Fig. 4 follow similar connection rules.
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Fig. 4. Structural configuration of EMSDs with different numbers of opposing magnet
pairs.

Fig. 5. The magnet flux density of 𝑀6 and 𝑀12, obtained from simulation with the
nominal coercivity.

For each adjacent coil pair connected in phase difference with 𝑀𝐼
opposing magnets pairs in Fig. 4, the transduction factor 𝐾𝑡 in Eq. (3)
is derived and written as

𝐾𝑡 = −2𝜋
𝑀𝑎
∑

𝑗=1

𝑁
∑

𝑖=1
𝑟 (𝑖, 𝑗) |𝐵𝑟 (𝑥, 𝑟, 𝑖, 𝑗)| (16)

Since the coil radius 𝑟 (𝑖, 𝑗) is fixed, 𝐾𝑡 mainly depends on the values
and distribution of the radial magnetic flux density 𝐵𝑟 (𝑥, 𝑟). 𝐵𝑟 (𝑥, 𝑟)
corresponding to different configurations are discussed in the following
section.

3.2. Analyses on EMSD performance

3.2.1. Radial magnetic flux density
Finite element analysis software FEMM is used to obtain the dis-

tribution of 𝐵𝑟 (𝑥, 𝑟) around the magnets. FEMM defines the permanent
magnet by entering the magnet’s coercivity 𝐻𝑐𝑏 which can be explained
by the current model [55]. According to the standard GB/T 13560-2017
of the sintered NdFeB, the nominal coercivity of the N33 magnet is 876
kA/m and its minimum coercivity is 820 kA/m. However, the actual
coercivity of purchased magnets in practice could be lower than the
minimum coercivity because of the machining process.

The magnet coercivity 𝐻𝑐𝑏 is an important parameter which needs
to be calibrated for the accurate data fitting. The peak value of the
magnetic flux density, 1 mm above the surface with the 𝑀6 config-
uration, is measured as 0.9351 𝑇 by using a Gaussmeter. However,
the corresponding simulation result of the target point is 1.2 𝑇 with
𝐻 as shown in Fig. 5(a), which is very different from the measured
4

𝑐𝑏
Fig. 6. Surface magnetic flux density of the target point with different coercivity values
and the corresponding measuring data.

value. This needs some corrective actions. As shown in Fig. 6, the
magnet coercivity is found to be about 700 kA/m by matching the peak
value of magnetic flux density 1 mm above the surface with the 𝑀6
configuration between the simulation results and measuring data.

With the ratified 𝐻𝑐𝑏, 𝐵𝑟 (𝑥, 𝑟) variation with the radius and length
under different opposing magnet pair configurations are calculated and
plotted in Fig. 7. The number of 𝐵𝑟 (𝑥, 𝑟) peaks increases with the
increase of the number of opposing magnets pair 𝑀𝐼 . The peak values
of 𝐵𝑟 (𝑥, 𝑟) in Fig. 7 versus the radius r are plotted in Fig. 8. It shows
that the peak of 𝐵𝑟 (𝑥, 𝑟) decreases when 𝑀𝐼 increases. As a result, there
should exist a certain 𝑀𝐼 at which 𝐾𝑡 becomes maximum.

3.2.2. The transduction factor
With the simulated 𝐵𝑟 (𝑥, 𝑟) as shown in Fig. 7, the transduction

factors, 𝐾𝑡, are calculated using Eq. (16) and plotted in Fig. 9 to show its
variation with the number of opposing magnets pairs. Both the nominal
coercivity and minimum coercivity in production are considered in the
𝐾𝑡 calculations. As shown in Fig. 9, 𝐾𝑡 reaches the maximum at 4
opposing magnets pairs and decreases with the number of opposing
magnets pairs further increases. One can concludes that the number
of opposing magnets pairs plays a dominant role to 𝐾𝑡 when the pair
number is small while the magnetic flux density has a larger effect to
𝐾𝑡 when the pair number is large. Therefore, the maximum 𝐾𝑡 appears
in Fig. 9 is a result of the balance between these two factors.

3.2.3. Internal inductance of the coil
The damping coefficient of the EMSD can be obtained with the

calculated transduction factor based on Eqs. (6) and (8). The internal
resistance 𝑅𝑖𝑛 can be calculated by considering the whole length of the
wire. However, the calculation of the internal inductance 𝐿𝑖𝑛 is more
complicated because of the winding style and the opposing connections
in the coils for each magnet pair. Since the adjacent coils are connected
with 180◦ phase difference, the mutual inductance 𝑀𝑖𝑗 among the coils
needs to be added to the coil inductance while calculating the total
internal inductance [56] expressed as

𝐿𝑖𝑛 =
𝑀𝑎
∑

𝑖=1
𝐿𝑖 ± 2

𝑀𝑎
∑

𝑖=1

𝑀𝑎
∑

𝑗=1
𝑀𝑖𝑗 ×

(

1 − 𝛿𝑖𝑗
)

(17)

where 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗, otherwise 𝛿𝑖𝑗 = 0. The plus-minus sign in
Eq. (17) depends on the coil phase difference 𝛥𝜙 equals to 0◦ or 180◦.
𝑀𝑖𝑗 is also multiple summations of the basic mutual inductance of
any two single coaxial coils. Taking EMSD with 𝑀4 configuration in
Fig. 10(b) as an example, with a coil C1 containing 𝑇 layers and 𝐿
𝐶1 𝐶1
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Fig. 7. Radial magnetic flux density of different opposing magnets pairs configurations.
Fig. 8. Radial magnetic flux density variation with radius.

Fig. 9. Transduction factor (𝐾𝑡) variation with the number of opposing magnets pairs.
5

loops and a coil C2 containing 𝑇𝐶2 layers and 𝐿𝐶2 loops, 𝑀𝑖𝑗 between
the two coils can be expressed as

𝑀12 =
𝑇𝑐1
∑

𝑖=1

𝑇𝑐1
∑

𝑗=1

𝐿𝑐1
∑

𝑚=1

𝐿𝑐2
∑

𝑛=1
𝑀

(

𝑅𝐶1∶𝑚, 𝑅𝐶2∶𝑛, 𝑑𝑟(𝑖,𝑗)
)

(18)

where 𝑅𝐶1∶𝑚 and 𝑅𝐶2∶𝑛 are the radius of the 𝑚th loop of C1 and the 𝑛th
loop of C2, respectively, and 𝑑𝑟(𝑖,𝑗) denotes the axial distance between
the target coils.

Moreover, the basic mutual inductance expression of the two single
coaxial coils as shown in Fig. 10(a) could be obtained by the Neumann’s
formula written as

𝑀 =
𝜇0
4𝜋 ∮ ∮

𝑑 ⃖⃖⃖⃖⃗𝑙𝐶1 × 𝑑 ⃖⃖⃖⃖⃗𝑙𝐶2
𝑅𝑃

(19)

where 𝑅𝑃 is the distance between the vector 𝑑 ⃖⃖⃖⃖⃗𝑙𝐶1 and 𝑑 ⃖⃖⃖⃖⃗𝑙𝐶2.
The mutual inductance in Eq. (19) can be rewritten as

𝑀 =
𝜇
4𝜋 ∫

2𝜋

0 ∫

2𝜋

0

𝑅1𝑅2 cos
(

𝜑1 − 𝜑2
)

√

𝑅2
1 + 𝑅2

2 + 𝑑2𝑟 − 2𝑅1𝑅2 cos
(

𝜑1 − 𝜑2
)

𝑑𝜑1𝑑𝜑2 (20)

For the self-inductance 𝐿𝑖 in Eq. (17), the mutual inductance of the
loops for a single layer and the loops of other layers should also be
considered since the coil contains 𝑁𝑡 layers and 𝑁𝑙 loops, as shown in
Fig. 1a. Taking 𝐿1 as an example, the self-inductance of the coil can be
expressed as

𝐿1 = 𝑁𝑡

𝑁𝑙
∑

𝑖=1
𝐿
(

𝑅𝑖, 𝑑𝑤𝑖𝑟𝑒
)

+ 2 ×𝑁𝑡

𝑁𝑙
∑

𝑖=1

𝑁𝑙
∑

𝑗=1
𝑀

(

𝑅𝑖, 𝑅𝑗 , 0
)

× (1 − 𝛿𝑖𝑗 )

+2 ×
𝑁𝑡
∑

𝑖=1

𝑁𝑙
∑

𝑘=1

𝑁𝑡
∑

𝑗=𝑖+1

𝑁𝑙
∑

𝑙=1
𝑀

(

𝑅𝑘, 𝑅𝑙 , 𝑑𝑖𝑗
)

(21)

The coil internal inductance can be calculated under different op-
posing magnet pair configurations as shown in Table 2 based on
Eqs. (17)–(21). The internal inductance decreases with the increase of
number of opposing magnet pairs. However, in the low frequency range
from 10 to 50 Hz, the internal impedance of the coils is not significantly
affected by the variations of the internal inductance.



Mechatronics 83 (2022) 102763R. Sun et al.
Fig. 10. (a) Model of two single coaxial coils. (b) the 𝑀4 configuration.

Table 2
Calculated results of coil parameters.

𝑅𝑖𝑛 (Ω)
∑

𝐿𝑖 (mH) ∑

𝑀𝑖𝑗 (mH) 𝐿𝑖𝑛 (mH)

𝑀1 1.5 2.5738 0 2.5738
𝑀2 1.5 2.3246 −0.0837 2.1571
𝑀3 1.5 2.1142 −0.1598 1.7947
𝑀4 1.5 1.9367 −0.2209 1.4950
𝑀6 1.5 1.6578 −0.2945 1.0687
𝑀12 1.5 1.1681 −0.3314 0.5053

3.3. Experimental verifications

Experimental tests are conducted to verify the damping coefficient
variations of the EMSDs with different configurations predicted in the
previous section.

3.3.1. Experimental setup
Three EMSDs, 𝑀4, 𝑀6 and 𝑀12, are manufactured and tested for as

shown in Fig. 11. The opposing magnets are aligned and fixed following
the procedure outlined in Section 3.2. The thickness of the coil spacing
board is 3 mm in 𝑀4, 2 mm in 𝑀6 and 1 mm in 𝑀12 configurations
respectively. Therefore, the coils of the three EMSDs have the same
total length.

The two EMSDs are successively mounted in turn to the vibrating
system designed for the DVA test as shown in Fig. 12. Each EMSD
has its one end fixed on the floor with a force sensor connected in
the middle for damping force measurement while the other end is
connected to the vibrating mass. A displacement sensor is fixed on
the supporting shelf for the vibration displacement measurement. An
non-contact exciter is connected with the B&K 2712 power amplifier to
provide a sinusoidal excitation at 10 Hz. The power amplifier and the
sensors are all connected to the B&K PULSE 7767 for signal generation
and processing.

3.3.2. Damping coefficient measurement
Fig. 13 shows the measured hysteretic loops, whose enclosed area

represents the damping capacity of the system. The yellow rectangular
loop denotes the unavoidable parasitic damping including friction and
air damping in the system. It can been seen that 𝑀4 offers much
larger damping than 𝑀12 with the same external resistance in the
EMSD circuit. The results of 𝑀12 is also measured. Since the similarity
between 𝑀4 and 𝑀6 except for slight smaller damping tuning range
than 𝑀6, the damping coefficient range of 𝑀6 is only shown in Fig. 15
to avoid the convoluted illustration.
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Fig. 11. Three EMSD prototypes with the configurations: (a) 𝑀4, (b) 𝑀6 and (c) 𝑀12.

Fig. 12. Experimental setup for EMSD hysteretic loop measurement.

The damping coefficient c can be determined from the energy lost
per cycle expressed as

𝑐 = 𝛥𝑈
𝜋𝜔𝑋2

=
𝑈1 − 𝑈0

2𝑓𝜋2𝑋2
(22)

where 𝛥𝑈 is the energy loss per cycle which can be evaluated by the
enclosed area of the hysteretic loop. 𝑈1 denotes the energy lost in the
vibration system with a given external resistance in the closed circuit
of the EMSD while 𝑈0 denotes the energy loss when the circuit is
opened. X is the displacement amplitude. 𝜔 and f are the excitation
frequencies in rad/s and Hz, respectively. The calculation yields damp-
ing coefficient 𝑐𝑒 = 15.84 N s∕ m for 𝑀4, 𝑐𝑒 = 14.60 N s∕m for 𝑀4 and
𝑐𝑒 = 5.99 N s∕m for 𝑀12 with an external resistance of 1.1 Ω in the
EMSD circuit.

The simulated damping results are compared with the measured
ones. The possible range of the transduction factor is shown in Fig. 9.
For the coil internal resistance, the calculated result is 1.5 Ω as shown
in Table 1 with the assumption that the coil wires are wound tightly as
shown in Fig. 14(a). This results in 7 loops per layer in the skeleton
based on the diameter between 18 mm and 32 mm. However, the
measured resistances are 1.291 Ω, 1.305 Ω and 1.294 Ω respectively
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Fig. 13. Hysteretic loops of (a) 𝑀4 and (b) 𝑀12. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Top view of the coils with (a) tight winding and (b) loose winding with a
0.2 mm gap.

for 𝑀4, 𝑀6 and 𝑀12 configurations. The difference suggest that the air
gaps exist between the loops as shown in Fig. 14(b), which should be
considered. The average value of the measured coil internal resistance
is 1.2967 Ω. Since the coil internal resistance is proportional to the
number of turns of coil based on Eqs. (14) and (15), the corrected total
turns 𝑁𝑡𝑜𝑡𝑎𝑙 and the number of loops per layer 𝑁𝑙 are determined as
shown in Table 3.

3.3.3. Analysis of the test results
With the calibrated coercivity and total number of turns in the coil,

the transduction factor can be evaluated based on Eq. (16). The total
impedance can be obtained with the measured internal resistance, cal-
culated internal inductance in Section 3.2.3, and the selected external
resistance in Section 3.3.2. Then, the simulated damping coefficient
7

Table 3
Coil parameters comparison between theory and measurements.

Theoretical Corrected Measured
data theoretical data data

𝑅𝑖𝑛 1.5075 1.2921 1.2967
𝑁𝑙 7 6 6
𝑁𝑡𝑜𝑡𝑎𝑙 756 648 648

Fig. 15. Comparison of damping coefficient between simulations and experiments.

curve with various configurations is obtained and shown as dashed
line in Fig. 15. The three red dots are the measured results for 𝑀4,
𝑀6 and 𝑀12. The calculated damping coefficient results agree well
with the measured data, which verifies the validity of the EMSD mod-
eling methodology. The hatched zone in Fig. 15 shows the possible
damping coefficient due to the variation of different estimated system
parameters.

With the increase of number of opposing magnets pairs, the number
of the peak values of |𝐵𝑟| increases as shown in Fig. 7 while the radial
magnetic flux density magnitude |𝐵𝑟| induced by opposing magnets
configuration decreases as shown in Fig. 8. Therefore, these two coun-
teracting factors on the transduction factor 𝐾𝑡 generate a peak on the
curve of 𝐾𝑡 versus number of opposing magnets pairs as shown in Fig. 9.
The damping coefficient of the EMSD is related to 𝐾2

𝑡 as shown in
Eq. (4). Therefore, there is an optimum number of opposing magnet
pairs for achieving the maximum damping coefficient of the EMSD in
Fig. 15. This can be obtained with an optimum number of opposing
magnet pairs in similar EMSD configurations.

4. Experimental optimization of DVA with the tunable EMSD

4.1. Experimental setup

Experiments are conducted to test the optimization of the proposed
DVA with the tunable EMSD based on the fixed points theory and
reported in this section. To the best of our knowledge, this experiment
should be the first attempt to conduct on-site optimization of a DVA
with a tunable damper based on the fixed-points theory.

The experimental system is built as shown in Fig. 16 to implement
the vibration model in Fig. 2. An non-contact electromagnetic exciter
on the top provides the driving excitation force with no additional
stiffness from the external shaker. A force sensor is mounted below
the exciter to monitor the exciting force input to the dynamic system.
Two laser displacement sensors are fixed on the supporting holder to
monitor the respective displacements of the primary system and the
DVA. Four bearings rolling on the smooth glass surface on each side
surface to provide a linear guide with minimum friction to the moving
parts. The top end of the proposed EMSD coil is rigidly connected
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Fig. 16. Experimental setup.
to the primary system. The opposing magnets bar is located in the
central hole of the coil skeleton with the pre-compressed DVA spring
support. The tunable electrical resistance is implemented with an 8-
bit electromagnetic relay as shown in Fig. 16. Moreover, the data
acquisition system and signal generation devices are identical to the
verification experiment used in Section 3.3.

4.2. DVA parameters calibration

The parameters of an optimum DVA require accurate and metic-
ulous calibration based on the fixed-points theory. In practice, both
the frequency and damping ratios can hardly be adjusted on-site to
the optimum values because both the stiffness of the spring and the
damping of the viscous damper of common DVA are fixed. This is why
the application of DVA is limited. In this experiment, the frequency
ratio of the DVA is adjusted by changing its mass to achieve the
optimum value required by the fixed-points theory. After tuning to the
optimum frequency ratio of the DVA, the optimal damping of the DVA
is achieved through fine-tuning the electrical resistance of the EMSD
circuit.

4.2.1. Parameters identification
According to the fixed-points theory, the optimum frequency ratio

𝛾 and damping ratio 𝜉 in Eq. (12) can be determined once the mass
ratio 𝜇 is fixed. The mass and the stiffness of the primary system are
assumed to be fixed. The target mass ratio is firstly set to 0.1 in this
experiment, and then the spring stiffness 𝑘2 of the DVA can be deter-
mined according to Eq. (12). However, the actual spring stiffness 𝑘2
can hardly match precisely the theoretical result in practice. Therefore,
it is more practical to achieve the optimum frequency ratio 𝛾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 as
depicted in Eq. (12) through fine adjustment of the DVA mass 𝑚2.

The stiffnesses 𝑘1 and 𝑘2 of the selected springs are found through
the force and displacement relationship as shown in Fig. 17 from
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Fig. 17. The spring stiffness determination of (a) primary system and (b) DVA.

compression tests. The blue dots denote the measured data, and the
slope of the red dash line gives the spring stiffness obtained from linear



Mechatronics 83 (2022) 102763R. Sun et al.
Fig. 18. The free vibration response of the primary system in (a) time domain and (b)
frequency domain.

Table 4
Identified parameters of the experimental system.

Item Value

𝑓𝑛1 10.5 Hz
𝑓𝑛2 9.552 Hz
𝛾 0.9097
𝑘1 20.961 N/mm
𝑘2 1.7213 N/mm
𝑚1 4.8159 kg
𝑚2 0.4778 kg
𝜇 0.0992

curve fitting. The measured stiffness of the primary system and that of
the DVA are 20.961 N/mm and 1.7213 N/mm, respectively. The target
natural frequency is set at around 10 Hz. The mass of coil of the EMSD
should be regarded as part of the primary system mass because of the
connection between the EMSD and the primary system as shown in
Fig. 16. Since the equivalent mass is hard to be measured, the primary
system is identified with natural frequency measurement. The obtained
natural frequency of the primary system is 10.5 Hz through the real-
time frequency domain analysis of the free vibration response as shown
in Fig. 18.

With the calibrations above, the parameters of the system are found
and listed in Table 4. However, the mass of the DVA still requires fine-
tuning to adjust the fixed-points to the same response amplitude in the
vibration spectrum of the mass 𝑚1.

4.2.2. Fixed-points calibration
The frequency ratio 𝛾 is firstly tuned to adjust the locations of the

two fixed-points P and Q in the response spectrum of mass 𝑚1, as
illustrated in Fig. 19. Since the natural frequency of the primary system
𝜔𝑛1 and the spring stiffness 𝑘2 of the DVA are fixed, the fixed-points
can be tuned by changing the DVA mass 𝑚2 as shown in Fig. 19 so
that the response magnitudes of the fixed points P and Q are roughly
equal. As shown in Fig. 19, the properly calibrated fixed-points P and Q
9

Fig. 19. Calibrated fixed points of the experimental system.

possess the same magnitude of the primary system response when the
system is under the swept sinusoidal excitation from 0.1 Hz to 20 Hz
with sweeping speed of 1 Hz/s.

The second tuning step is to adjust the damping of the DVA such
that the two fixed-points P and Q in Fig. 19 become the highest
points of the response spectrum of mass M. Three different values of
external resistance are selected and their respective response curves are
measured and plotted in Fig. 19. The intersections of the three response
curves at different damping show the existence of the fixed points P and
Q in Fig. 19. The intersection points are more easily identified with
larger differences among the selected external electrical resistances.

4.3. Results analyses

Once the fixed-points are identified and tuned to have equal peaks,
the primary system response measurement with different amount of
damping can be conducted by changing the external resistance. The
measured response spectra of mass M with DVA equipped with EMSDs,
𝑀4 or 𝑀12 connected to ten different external resistances are measured
and plotted in Fig. 20 respectively. The results show that the optimum
DVA is experimentally achieved when the external resistance is 3 Ω in
M4 and 0.5 Ω in M12 configuration. The tunability or controllability
of the proposed EMSD can provide robustness to the optimal DVA by
compensating the detuning effect of the DVA due to any changes of
the parameters such as additional friction increases or decreases. The
results also show that the EMSD with 𝑀4 configuration possesses a
larger damping tunable range than the one with 𝑀12 configuration,
which also confirms the simulation and test results in Fig. 15.

Moreover, the response of primary mass in higher frequency range
above the resonant frequencies is also measured and shown in Fig. 21.
It can be seen that the minimum vibration response of the system is
obtained with maximum damping when the external resistance is 0 Ω.

5. Conclusions

An optimum dynamic vibration absorber (DVA) is designed and
experimentally implemented with tunable electromagnetic shunt damp-
ing (EMSDs) in this paper. The proposed EMSD is composed of opposing
magnet pairs with 180◦ phase difference coils configuration. The design
allows damping to be tuned up to its maximum value with a specific
number of opposing magnet pairs, verified by both simulations and
experiments. In particular, the proposed EMSD design has a twelve
magnets configuration which can offer the best damping performance
when they are grouped into four opposing magnets pairs. The EMSD is
applied to provide tunable damping to a DVA connected to a single
degree-of-freedom system. The DVA is tuned experimentally to its
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Fig. 20. Primary mass response with different external resistance values of the DVA
system with tunable EMSD: (a) 𝑀4, (b) 𝑀12.

Fig. 21. Primary mass response with different external resistance values in higher
frequency domain (a) just crossed the resonant frequency, (b) far way from the resonant
frequency; when 𝑀12 EMSD is applied in the DVA system.
10
optimum working condition by using the proposed damper. The tunable
EMSDs are shown to be able to uphold the optimal DVA performance
even under external disturbances.
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