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Abstract The fundamental beam structure is often

regarded as a wave or energy carrier in a wide range of

research topics for structural engineering. Neverthe-

less, in the related literature the beam is positioned

either horizontally or vertically, which may limit its

application flexibility. Very few studies have investi-

gated the energy conversion and vibration control

characteristics induced by the flexural and axial waves

coupling at a slanted angle discontinuity. This research

aims to investigate the dynamic characteristics of a

slanted beam termination (SBT), a finite beam with

one end attached to a host structure and the other end

free in a slant configuration. A generic wave-based

formulation is developed to obtain both the waveg-

uides distribution and the point impedance of the SBT

taking the flexural and axial waves coupling into

account. The semi-infinite beam (SIB) with the

proposed SBT case is compared with the classic two

SIBs case in terms of the energy conversion

phenomena influenced by the connection angle and

frequency. In the SIB with the SBT case, a certain

connection angle will enable the SBT to achieve a

substantial energy conversion at its resonance. From

the vibration control perspective, a benchmark can-

tilevered beam is adopted to examine the SBT’s

vibration control performance theoretically and is

verified experimentally. This research lays the foun-

dation for the design of the beam-like device for

energy conversion and vibration suppression by the

variation of connection angle rather than the conven-

tional tuning method based on the stiffness, mass and

damping.

Keywords Wave � Beam � Connection angle �
Energy conversion � Vibration control

1 Introduction

The fundamental beam structure has facilitated pre-

liminary development in a wide range of structural

vibration acoustics research areas such as power flow

analysis [1–3] and statistical energy analysis (SEA)

[4–6]. From the application perspective, reductions of

the flexural wave’s power or magnitude and the lateral

movement within a beam structure have been playing

the role of paradigms for the implementation and

testing of various control strategies in the field of
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structure vibration [7–16] and structure-borne noise

attenuation [17–20].

Although the fundamental beam structure was

employed in extensive studies for vibration/ wave/

energy analysis, it was always regarded either as a

wave or energy carrier or a stiffness element, and very

few studies [21–27] considered the beam structure as

an independent vibration attenuation device taking

both its inertial mass and stiffness into account. Nashif

and Jones [21] and Jones et al. [22] proposed a light

resonant beam damper with a relatively wide fre-

quency bandwidth. Extra damping and stiffness were

offered by the viscoelastic attachment to the host

structure. Jacquot [23] established the distributed

parametric model of the free-free beam absorber with

its center connected to the plant so that the stiffness

and mass were provided by the beam absorber alone.

The same distributed parametric model was adopted

by Snowdon et al. [24] to develop the orthogonal

crossed double beam dynamic vibration absorber

(DVA) tuned to control the vibration of a continuous

clamped-clamped beam and a plate respectively. But

the distributed parametric model contained only the

first mode information of a free-free beam. More

modes were involved by Arpaci and Savci [25] and

Aida et al. [26] when the cantilevered beam was used

as an absorber. Hua et al. [27] suggested an analogy

between a vertical beam and a conventional DVA

when it was attached to a host cantilevered beam for

localized vibration suppression. These studies all

provided helpful modeling approaches to embody

the beam structure in the host system. However, in

these configurations, the beam must be laid horizon-

tally or vertically to the host structure. Meanwhile, the

impedance and mobility concepts of beam and plate

structures were introduced to facilitate the acoustic

analysis in the past two decades (Fahy and Gardonio

[6]; Gardonio and Brennan [28], Cremer and Heckl

[20]). But inadequate attention was paid to apply the

beam’s impedance to the vibration attenuation

researches. Intuitively, the question arises whether a

finite beam attached to the host structure at a slanted

connection angle could be analogous to a vibration

attenuation device or offer other benefits.

The second issue arises from the knowledge that

various factors are leading to the coupling of the

transverse wave and axial waves in the one-dimen-

sional (1D) structural components, e.g., the existence

of joints or junctions (Cremer and Heckl [20]), the

simply-supported beam with one end attached to the

tilted rolling surface (Ginsberg [29]) in the practical

environment. Although the reflection and transmission

ratios generated by the joints/junctions with a con-

nection angle within the 1D structure have been

studied extensively (Renno and Mace [30]; Langley

and Heron [31]; Horner and White [32]), the correla-

tion between the wave coupling and the force trans-

mission has not been fully comprehended.

Inspired by the above issues the current paper

proposes a slanted finite beam whose local coordinate

axis has a certain connection angle of b(degree) with
the host structure’s axis. It has one end attached to the

host structure and the other end free, hence is termed

as the slanted beam termination (SBT). To date, a

standard framework to correlate the waveguide distri-

bution and force transmission analysis for the SBT

structure has yet to be generated. Whether it is

analogous to a conventional DVA is also worth

investigation.

This paper aims to gain some insights into the

design and analysis of beam-like structures from both

the energy conversion and vibration control perspec-

tives. Following the introduction, a wave-based for-

mulation describing a generic case where the

bidirectional incident waves coexist before and after

the angle discontinuity in the two semi-infinite beams

is introduced in Sect. 2.1. Then the slanted semi-

infinite beam is changed to the finite SBT structure to

obtain the reflection matrix in the primary semi-

infinite beam. The point impedance of the SBT

structure is also derived under the host coordinate in

Sect. 2.2. Based on the wave-based formulation, the

semi-infinite beam (SIB) with the proposed SBT case

is compared with the classic two SIBs case in terms of

the energy conversion phenomena influenced by the

connection angle and frequency in Sect. 3.1. In Sect.

3.2, the benchmark cantilevered beam model attached

with the SBT is established based on the mobility and

impedance method in Sect. 2.2 to investigate its

potential benefits in vibration attenuation. Both theo-

retical analysis and experimental verification are

presented. Relevant conclusions are presented in Sect.

4.
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2 Wave formulation for the SBT at a connection

angle discontinuity

2.1 Waveguide distribution of the SBT attached

to a semi-infinite beam

The connection angle discontinuity existing the 1D

beam system will generate the coupling between axial

and flexural waves. For clarity, the case of two beams

connected by a connection angle b is considered as

shown in Fig. 1. To consider the coupling effect, at the

connection point, four 1D waveguide vectors, namely,

qþA ; q
�
A;q

þ
B and q�B 2 C3�1, each consisting of three

components referring to the propagating and evanes-

cent flexural wave magnitudes as well as the propa-

gating axial wave magnitudes, are defined. The

subscripts A and B refer to the horizontal and slanted

beams, respectively. The symbols plus and minus refer

to positive and negative directions in the two beams’

local axes, respectively. The semi-infinite beam is

termed as SIB for short. A detailed description of the

waveguide vector formulation, as well as the deriva-

tion of the transmission and reflection matrices TAB,

TBA, RAB and RBA mentioned below are given in

Appendix 1.

The same system consisting of two SIBs is

employed in Fig. 1a, b. The waveguide distribution

in Fig. 1a is the same as Horner and White [32] where

the incident waveguide qþA is toward the discontinuity

and the transmitted qþB and reflected q�A are generated.

The reciprocal case where the incident q�B goes toward

the discontinuity is shown in Fig. 1b. Figure 1c

demonstrates the SIB attached with the SBT. In

Fig. 1c, the incident qþA goes towards the discontinuity

and generates the transmitted qþB in the SBT. Due to

the finite length of SBT, qþB will be reflected at the free

end and the reflected waveguide reaching the discon-

tinuity is q�B .

This paper aims to establish a generalized wave

formulation to describe the waveguide distribution.

Therefore the transmission and reflection matrices are

introduced. In Fig. 1a, the transmission matrix TAB 2
C3�3 and the reflection matrix RAB 2 C3�3 correlate

the waveguides qþA ; q
�
Aandq

þ
B . In Fig. 1a, the wave

transmission from horizontal to slanted beam is:

q�A ¼ RABq
þ
A

qþB ¼ TABq
þ
A :

ð1Þ

For the reciprocal case in Fig. 1b, the transmission

matrix TBA 2 C3�3 and the reflection matrix RBA 2
C3�3 are defined to describe the wave transmission

from slant to horizontal beam as follows:

q�A ¼ TBAq
�
B

qþB ¼ RBAq
�
B :

ð2Þ

Following Fig. 1a–c could be regarded as the

superposition of their waveguide distributions. In

Fig. 1 The general waveguide distribution existing in the beam

system with the discontinuity of b (degree) connection angle. a
Two SIBs with qþA as the incident waveguide; b two SIBs with

q�B as the incident waveguide; c one SIB and one SBTwith qþA as

the incident waveguide (qþA and q�A are the horizontal beam’s

waveguide vectors for positive-going and negative-going

waves. qþB and q�B are similarly defined for the slanted beam.)
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Fig. 1c the bidirectional waveguides qþA and q�B
coexist before and after the connection, the relation-

ship between the four waveguides satisfies:

q�A ¼ RABq
þ
A þ TBAq

�
B

qþB ¼ TABq
þ
A þ RBAq

�
B :

ð3Þ

Moreover, for the SBT structure, q�B and qþB could

be correlated by the transfer matrix TPR:

q�B ¼ TPRq
þ
B ; ð4Þ

where TPR equals the multiplication of the positive

propagation matrix Pþ
D , the reflection matrix RF at the

free end and the negative propagation matrix P�
D in the

SBT according to Mace (1984).

TPR ¼ P�
DRFP

þ
D ; ð5Þ

RF ¼
�i 1þ i 0

1� i i 0

0 0 1

2
64

3
75; Pþ

D ¼
e�ikbLBD 0 0

0 e�kbLBD 0

0 0 e�ikaLBD

2
64

3
75

P�
D ¼

eikbLBD 0 0

0 ekbLBD 0

0 0� eikaLBD

2
64

3
75:

where LBD; kb and ka are for the finite length, the

flexural and axial wavenumbers of the SBT.

Substituting Eqs. (5)–(3) yields the relationship

between the positive waveguide qþA and negative

waveguide q�A in the horizontal beam of Fig. 1c:

q�A ¼ RAB þ TBATPR I� RBATPRð Þ�1TAB

h i
qþA ð6Þ

Note that Eq. (6) should include but not be limited

to the specific SBT structure in the present work. Any

discontinuity or boundary conditions that generate the

bidirectional waveguides qþA and qþB towards the

discontinuity could be presented by Eq. (6) if the

propagation matrix TPR is derived experimentally or

numerically.

2.2 Point impedance of an SBT under host

coordinate

The mechanical impedance and mobility approach

arose from the electrical field at the end of the 19

century. Later, the electromechanical analogies were

extended to both acoustic and mechanical researches.

A comprehensive review was presented by Gardonion

and Brennan [33]. Although the impedance and

mobility concept for the flexible distributed structures,

e.g., the 1D beam, rod, plate (Fahy and Gardonio [6];

Gardonio and Brennan [28], Cremer et al. [20]), have

been formally presented, the impedance for the SBT

has not been fully understood not to mention its

application to vibration control.

The impedance matrices for a finite 1D beam Zbeam

and rod Zrod represents the transmission matrices

between force f, fx and velocity vectors v, vx at the two

ends in the beam and rod respectively as shown in

Appendix 2. It is necessary to modify and assemble

Zbeam and Zrod to derive the point impedance of SBT

with the free end and the coupling effects into

consideration.

To clarify the problem, in Fig. 2 the local coordi-

nate ðx2; y2Þ of the SBT and the host coordinate

ðx1; y1Þ for the plant sharing the same origin at the

connection point is defined. The host coordinate

ðx1; y1Þ is b degree clockwise with coordinate

ðx2; y2Þ. In the local coordinate ðx2; y2Þ, the point

impedance Zc 2 C3�3 correlates the point force vector

fc comprising the shear force S1, momentM1 and axial

force Fx1 and the point velocity vector vc comprising

the lateral velocity _W1, rotational velocity _h1 and axial

velocities _U1 at the connection point

fc ¼ Zcvc:

fc ¼ fS1M1Fx1gT

vc ¼ _W1
_h1 _U1

n oT

:

ð7Þ

where Zc is the modified point impedance at coordi-

nate ðx2; y2Þ:

Zc ¼
ZB 0

0 ZR

� �
; ð8Þ

Fig. 2 The coordinates of the SBT ðx2; y2Þ and the host system
ðx1; y1Þ with a connection angle of b (degree)
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ZB ¼ Zbeam 1 : 2; 1 : 2ð Þ � Zbeam 1 : 2; 3 : 4ð Þ
Z�1
beam 3 : 4; 3 : 4ð ÞZbeam 3 : 4; 1 : 2ð Þ;

ZR ¼ Zrod 1; 1ð Þ � Zrod 1; 2ð ÞZ�1
rod 2; 2ð ÞZrod 2; 1ð Þ:

where Zbeam i : j; k : mð Þ stands for the block matrix

from the ith row to the jth row in the columns from kth

to mth and Zrod i;mð Þ for the element in the ith row and

the mth column in the matrix.

To compute the effective forces and impedance

transmitted to the plant, the force and velocity vectors

and the impedance in the SBT coordinate ðx2; y2Þ
should be transformed to the plant coordinate ðx1; y1Þ
by the rotational matrixR. To distinguish from the two

coordinates, the variables with a tilde refer to the plant

coordinate ðx1; y1Þ. The force vector ef c ¼
eS1 eM1

eFx1

n oT

; the velocity vector evc = _~W1
_~h1

n

_~UgT, the impedance matrix ~Zc in the plant coordinate

(x1, y1) are related to fc and vc as:

fc ¼ R~fc; ð9aÞ

vc ¼ R~vc ð9bÞ

~fc ¼ ~Zc~vc ð9cÞ

where R ¼
cosb 0 �sinb
0 1 0

sinb 0 cosb

2
4

3
5:

The point impedance ~Zc in the plant coordinate

ðx1; y1Þ could thus be explicitly presented as

The emergence of the nonzero cross terms (i.e.,
~Zcð1; 3Þ, ~Zcð2; 3Þ, ~Zcð3; 2Þ and ~Zcð3; 1Þ) implies the

coupling between the flexural and axial motions since

the initial cross-terms in Zc are zero. These cross-

terms are at the core of the SBT’s vibration control

performance as to be discussed in Sect. 3.2.

3 Numerical example

3.1 The energy conversion characteristics

of the SBT attached to the SIB

In this section, the specified case of the incident

flexural wave from the horizontal beam is adopted to

compare the energy conversion performance between

the case of two SIBs in Fig. 1a and the case of one SIB

with an SBT in Fig. 1c. Figure 3 presents the energy

ratios of reflected and transmitted waves in the two

SIBs of Fig. 1a under three different frequencies of

1 Hz/200 Hz/1000 Hz respectively. Under each fre-

quency, the reflected flexural wave ratio gff , the

reflected axial wave ratio gaf , the transmitted flexural

wave ratio dff , and the transmitted axial wave ratio daf
are plotted against the connection angle. The reflected

energy flexural and axial energy ratios in the SIB with

an SBT structure in Fig. 1c are presented in Fig. 4a, b

respectively.

The two beams have material properties and cross-

sectional areas corresponding to a type ofAluminumalloy

as shown in Table 1 whose parameters have been verified

by the experiment in Sect. 3.2.2. All the parameter values

in Table 1 are used throughout the paper. The SBT has a

length of 90mmwith the cantilevered boundary condition

such that its first flexural resonance appears at 180Hz. The

higher-order flexural and axial resonances are out of the

frequency range of interest below1000Hz.No damping is

considered in the following analysis to clarify the energy

ratio’s distribution among different waves.

Several phenomena are observed in Figs. 3 and 4.

Notice that since no damping is added, the energy

conservation law applies to both cases. In the two SIBs

case in Fig. 3, the energy ratio summation of the four

types of waves is unitary for any b at all frequencies. In
the case of SIB with an SBT, the SBTwill not dissipate

~Zc ¼ RTZcR ¼
cosbð Þ2Zc 1; 1ð Þ þ sinbð Þ2Zc 3; 3ð Þ cosbð ÞZc 1; 1ð Þ sinbð Þ cosbð Þ Zc 3; 3ð Þ � Zc 1; 1ð Þ½ �

cosbð ÞZc 1; 2ð Þ Zc 2; 2ð Þ � sinbð ÞZc 1; 2ð Þ
sinbð Þ cosbð Þ Zc 3; 3ð Þ � Zc 1; 1ð Þ½ � � sinbð ÞZc 1; 2ð Þ cosbð Þ2Zc 3; 3ð Þ þ sinbð Þ2Zc 1; 1ð Þ

2
4

3
5

ð10Þ
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or transmit energy. Hence the incident flexural wave is

only transmitted to the reflected flexural and axial

waves in the SIB part. The summation of the flexural

and axial wave energy is therefore unitary for any b at

all frequencies as shown in Fig. 4. The energy ratios

are extracted at the SBT’s resonance of 180 Hz and

off-resonance at 200Hz and shown in Fig. 5.

A second observation is the influence of frequency

and b on the energy ratio distributions for both cases.

For the two SIBs case in Fig. 3, the reflected flexural

wave and transmitted axial wave dominates the energy

distribution over a wide range of connection angle

from 30� to 140�. The increase of b prohibits the

transmission of the flexural wave. At certain b close to

the horizontal configuration, the conversion between

the flexural and axial waves becomes strongest. For

instance, under 1 Hz case, the major conversion

occurs at around 7� and 175� where the transmitted

axial energy reaches a maximum of 50% overall

connection angles. The variation of frequency will

change the magnitude of energy ratios and the

connection angle where the maximum conversion

occurs. But the general energy distribution against b
will not be substantially affected by the frequency

change. This is attributed to the fact that no resonance

exists in the two SIBs.

Fig. 3 The energy ratios of the transmitted and reflected waves

in the two SIBs case in (Fig. 1a) at various frequencies with the

incident flexural wave. Solid line (1 Hz); dash-dotted line (200

Hz); dotted line (1000 Hz) (gff reflected flexural wave energy

ratio; gaf reflected axial wave energy ratio; dff transmitted

flexural wave energy ratio; daf transmitted axial wave energy

ratio)

Fig. 4 The contour plot of

the reflected energy ratios

from SIB to SBT in (Fig. 1c)

over the connection angle

from 0� to 180� within the

frequency range below 1000

Hz: a reflected flexural

energy ratio (incident

flexural wave); b reflected

axial energy ratio (incident

flexural wave)

Table 1 The parameters of the host beam and the SBT

E (Pa) q (Kg m-3) Thickness (mm) Width (mm) Length* (mm) First three natural* frequency

Host beam 55E9 2700 6 20 360 34 Hz; 212 Hz; 592 Hz

SBT 2 90 180 Hz; 1130 Hz; 3160 Hz

*For the SIB structure, the length is infinite. But the young’s modulus, the density, the thickness and the width still apply to the SIB

structure
*The natural frequency is computed for the Host beam and SBT in Sect. 3.2.2
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On the other hand, the energy ratios of the SIB with

an SBT case show a relatively simple trend in Figs. 4

and 5. In the off-resonance frequencies, the reflected

flexural wave dominates 90% of the total energy

distribution at any b by comparing the flexural and

axial ratios in Fig. 4. But at the resonance of 180 Hz,

significant energy conversion occurs at about 150�

making the reflected axial energy ratio jump from 10%

to 65% as shown in Fig. 5.

Briefly, the energy distribution of the two SIBs case

is more related to b variation than the frequency

variation. The maximum energy conversion occurs for

all frequencies at certain b close to the horizontal

configuration.

But for the SIB with an SBT, the energy distribution

is only sensitive to b variation at resonance but relative
stable off-resonance. The maximum energy conver-

sion could be achieved under a certain b at resonance.

3.2 Benchmark study of a host cantilevered beam

connected with an SBT

3.2.1 The mobility and impedance model

This section aims to examine SBT’s vibration control

performance when it is attached to the free end of a

benchmark cantilevered beam as shown in Fig. 6a. The

assumptions of Sect. 2.2 for the force, velocity vectors

and coordinates are used here. The control target is the

response at the connection point xc ¼ L1. An external

force vector consisting of the lateral force at xe ¼ L1=2

in terms of the unit white noise signal is written as

fe ¼ 100f gT in the frequency domain. Replacing the

SBT part with its control force vector ~fc exerted on

xc ¼ L1 yields Fig. 6b, showing that the motion of the

primary beam is the summation of the contributions

from the external force fe and control force ~fc. Based

on the mobility and impedance formulation of beams

(Gardonio and Brennan [28]), the velocity vector ~vc at
the controlled point xc ¼ L1 can be given as

~vc ¼ Ycefe þ Ycc
~fc: ð11Þ

where Yce 2 C3�3 denotes the mobility from xe to xc

andYcc 2 C3�3 is the direct point mobility at xc. These

mobility matrices are assembled by the flexural and

axial terms by the modal superposition method

(Gardonio and Brennan [28]) in the fixed-free condi-

tion for both beams and rod as shown in Appendix 3. A

total of 250 modal shape functions are used for the

mobility matrices Ycc and Yce to ensure the conver-

gence of the results.

Substituting the point impedance matrix in

Eqs. (10)–(11) yields the relationship between the

velocity vector ~vc, the acceleration vector ~ac and

external force vector fe with the SBT attached:

Fig. 6 The host cantilevered beam connected with an SBT at its

free end a Coordinates ðx1; y1Þ along the axis of host beam and

Coordinates ðx2; y2Þ along the axis of the SBT with the

connection angle of b; b the velocity and force vectors at the

excitation and connection points of the host cantilevered beam

Fig. 5 The reflected energy ratios from SIB to SBT in (Fig. 1c)

versus the connection angle b at the resonance of 180 Hz and

off-resonance of 200Hz with the incident flexural wave; red

dash-dotted line: reflected flexural energy at resonance; red

dotted line: reflected axial energy at resonance; black solid line:

reflected flexural energy off-resonance; black dashed line:

reflected axial energy off-resonance
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~vc ¼ I� Ycc
~Zc

� ��1
Ycefe: ð12aÞ

~ac ¼ s I� Ycc
~Zc½ ��1Ycefe: ð12bÞ

where s ¼ ix denotes the Laplace transformation. The

acceleration magnitude with unit excitation force is

defined as accelerance. The analytical results of

accelerance of the numerical model will be plotted

in Fig. 8 8 to compare with the experiment

measurement.

Recall that the reduction rate of the harmonically

excited host single degree of freedom (SDOF) system

response with control is given as (Brennan [34]):

Xcontrol=Xfree ¼ 1=ð1þ ZDVA=ZprimaryÞ: ð13Þ

Assuming ~vc free ¼ Ycefe and Zprimary ¼ Y�1
cc , the

expression for the ratio of the controlled response to

the free vibration response is given as:

~vc ¼ I� Z�1
primary

~Zc

h i�1

~vc free ð14Þ

Note that the response ratio by SBT is similar to that

by conventional DVA but in a matrix format. In this

sense, the proposed SBT could be regarded as a

specific type of DVAs.

3.2.2 The experimental validation of the compound

system dynamics

To verify the previous theoretical model, an experi-

mental test of the dynamics of the benchmark

cantilevered beam attached to an SBT is conducted.

Five specimens with the same properties for the host

beam and SBT in Table 1 have been manufactured. As

shown in Fig. 7a, the five specimens were bent to

different connection angles representing b equaling

0�, 45�; 90�; 135� and 180� respectively. For the last

two angles, welding was also necessary since a

fracture at the connection point occurred, although

extra damping was consequently introduced.

Figure 7b demonstrates a diagram of the experi-

mental setup. A shaker excited the middle span of the

host beam with a pseudorandom signal generated by

the signal analyzer. A force gauge with a stinger

measured the force signal exerted on the host beam,

which was transferred to the analyzer as a reference

signal. Three BK accelerometers were attached at the

excitation point, the connection point and the free end

of the SBT, respectively. The measured quantities

were the complex accelerances, i.e., the ratio of

acceleration to the force, at the three points. The

sampling frequency is 2560 Hz. The interested fre-

quency range is below 500 Hz so that only the first two

modes of the host beam are presented. And the target is

to suppress the second mode of the host beam.

Figure 8 compares the experimental accelerance

magnitudes at the connection point under five different

connection angles with the results from the previous

theoretical impedance and mobility approach as from

Eq. (11). The response at the free end of the host beam

without SBT is also presented as a reference. Accord-

ing to Table 1, the first two resonances of the host

beam are 34 Hz and 212 Hz respectively. The first

resonance of SBT is 180 Hz close to the second

resonance of the host beam. Consequently, the second

mode at 212 Hz is split into two peaks or shifted due to

the addition of SBT. In the cases of b ¼ 0�=45�, the

Fig. 7 Experimental preparation and setup a The five speci-

mens bent to different connection angles (b = 0�/45�/90�/135�/
180�; b Schematic of the experimental setup
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SBT is more like a conventional DVA that splits the

host second mode into two peaks. But in the cases of

b ¼ 90�=135�=180�, the SBT will both add weight to

the host beam and play its role as a DVA. Conse-

quently, the second resonance will be shifted to the

lower frequency range and be split into two.

In Fig. 8, the good agreement between experimental

measurement and the theoretical results is also

presented. In the 0� and 45� cases, there are only

minor differences in the resonance and antiresonances,

which might be due to the material damping mismatch

since the theoretical model assumes no damping.

There are relatively larger differences in the cases of

b ¼ 90�=135�=180�. It is postulated that these differ-

ences might be caused by the large deformation in the

connection point and the extra damping introduced by

the welded joints. More research will be conducted in

the future to validate this.

Besides the resonance suppression, the antireso-

nance range covers about 30Hz frequency bandwidth

when the connection angle increase from 0� to 180�

according to both the experiment and theoretical

results. This implies the application of SBT for forced

vibration control when the system is subjected to

varying frequency excitation. In combination with a

certain physical control system(e.g., motor and micro

control unit) it is possible to rotate the SBT in real-

time to reach the appropriate angle that makes the

controlled point reach antiresonance under that dis-

turbance frequency. In this scenario, the SBT is like

Fig. 8 The comparison between the experimental and theoret-

ical accelerance magnitudes at the connection point (y-axis:
Accelerance magnitude at the connection point (m s-2 N-1); x-
axis: Frequency (Hz) in the range from 0 to 400 Hz). Solid red

line: experimental results; black dash-dotted line: theoretical

results from Eq. (11); blue short-dashed line: the response at the

free end of the host beam without SBT under the same

excitation; number in red: the antiresonance of the experimental

results; number in black: the antiresonance of the theoretical

results

Fig. 9 a The shear forces, rotational moments, lateral displacement and rotational angle at the two ends of a finite uniform Euler–

Bernoulli beam; b axial forces and displacements at the two ends of a finite uniform rod structure
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the adaptive tuned vibration absorber (ATVA) with a

variable stiffness or mass-distribution that can track

the varying frequency excitation and make the host

structure reach antiresonance at the disturbance

frequency (Bonello and Beltrán-Carbajal [35]; Kidner

and Brenna [36, 37]; Brennan [34]). A drawback of

conventional ATVA is that although the vibration at

the disturbance is suppressed, a new peak close to the

disturbance frequency emerges leading to a narrow

effective frequency range of ATVA (Brennan [34]).

The host beam with the SBT shows that the antires-

onance is quite separated from the two new peaks in

the cases of b ¼ 0�=45�=90�, indicating appropriate

frequency bandwidth.

Generally, the experimental results verify the

accuracy of the model based on impedance and

mobility theory. The results also imply that compared

to conventional vibration absorber whose own dynam-

ics is tuned for vibration control, it is also possible to

implement the SBT into the host structure by changing

the connection angle rather than its dynamics to reach

the control target. In the future, more effort will be

devoted to combining the SBT with the physical

control system to achieve a large tunable range by

changing the connection angle.

4 Conclusions

This study established a generic wave-based formu-

lation for the dynamic analysis of a slanted beam

termination (SBT) featured by the flexural and axial

wave coupling. Moreover, this wave formulation can

be extended to arbitrary boundary conditions and

discontinuities, including but not limited to the slant

angle and the free end. Based on the wave formulation,

the energy conversion and vibration control charac-

teristics of the SBT when it is attached to the host

beam structure are identified and examined. The major

conclusions are listed as follows.

(a) In terms of the reflected energy ratio, the SBT

can convert incident wave energy very effec-

tively when its axis is positioned to certain

connection angles at resonance. Its energy

conversion capability is less sensitive to the

frequency and connection variation off-reso-

nance. This phenomenon offers some guidance

for the design of the termination.

(b) From the vibration control perspective, the point

impedance of the SBT is also obtained through

the wave formulation, implying their consis-

tency. The benchmark cantilevered beam is

adopted to build up the general mobility and

impedance model when the SBT is attached to

it. The experimental verification of the same

structure agrees well with the response by the

mobility and impedance method, indicating the

accuracy of the model.

(c) In terms of resonance suppression, the SBT

could act as the DVA at certain connections

angles or simultaneously add weight to the plant

and function as the DVA. In terms of adaptive

vibration control under varying frequency exci-

tation, the SBT could achieve a wide antireso-

nance frequency range by varying the

connection angle. This implies that the connec-

tion angle could be regarded as a fourth tunable

element for vibration control problems given

that the conventional vibration control devices

usually tune their own dynamics by changing

the stiffness, mass and damping elements.

In the future, more effort will be devoted to

expanding the wave formulation to more generic

structures attached with an SBT. The current beam-

based framework is suitable for the mechanical design

as well as the vibration/acoustic control problems

existing in the pipe system conveying fluid [38, 38],

the flexible and long aerospace manipulator [40, 40],

etc. A common issue existing in these structures is the

vibration and the associated noise radiation affecting

the service life and the environment. With some

assumptions, these structures could be modeled by the

Euler Bernoulli beam such that the theory in this paper

could be applied. For instance, the pipe conveying

fluid could be modeled by the beam with additional

mass and damping terms related to the fluid speed and

mass [38]. The proposed wave-based formulation of

the slanted beam structure will benefit the wave,

energy and vibration analysis of such structure in real

practice and offer guidance for the arrangement and

optimization of the beam-like system to minimize

their vibration and elongate their service life.
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Appendix A: Formulation of Reflection matrix

and Transmission matrix

In Fig. 1a, suppose the incident waveguide qþA is

towards the connection point, a reflected waveguide

q�A in the horizontal beam and a transmitted waveg-

uide qþB are generated in the slanted beam respectively.

Note that the two beams are semi-infinite, so q�B does

not exist in this case. The components in the waveg-

uide vector comprise the wave magnitudes of both

flexural and axial waves. In the horizontal section, the

incident flexural waveWin and axial wave Uin as well

as the reflected flexural wave Wrf and axial wave Urf

coexist and they can be represented in the wave

formulation.

Win ¼ Aþe�ikb1x1 þ Aþ
Ne

�kb1x1 ð15Þ

Wrf ¼ A�eikb1x1 þ A�
Ne

kb1x1 ð16Þ

Uin ¼ Bþe�ika1x1 ð17Þ

Urf ¼ B�eika1x1 ð18Þ

where kb1 and ka1 are the wavenumbers for the flexural

and axial waves in the horizontal beam, respectively.

The incident waveguide and the reflected waveguide

are therefore given as:

qþA ¼ AþAþ
NB

þ� �T
; ð19Þ

q�A ¼ A�A�
NB

�� �T
: ð20Þ

In the slanted beam part, the transmitted flexural

and axial waves Wtm and Utm are given by:

Wtm ¼ Cþe�ikb2x1 þ Cþ
Ne

�kb2x1 ; ð21Þ

Utm ¼ Dþe�ika2x1 ; ð22Þ

where kb2 and ka2 are the wavenumbers for the flexural

and axial waves in the slanted beam, respectively.

The transmitted waveguide is then represented as:

qþB ¼ CþCþ
ND

þ� �
: ð23Þ

The reflection and transmission matrices from A to

B satisfy the following equilibrium:

q�A ¼ RABq
þ
A ; ð24Þ

qþB ¼ TABq
þ
A : ð25Þ

To derive the reflection and transmission matrices

at the connection point in Fig. 1a, the force and

displacement equilibriums are established.

E1I1
o2W1

ox21
¼ E2I2

o2W2

ox22
;

E1S1
oU1

ox1
¼ E2S2

oU2

ox2
cosbþ E2I2

o3W2

ox32
sinb;

E1S1
o3W1

ox31
¼ �E2S2

oU2

ox2
sinbþ E2I2

o3W2

ox32
cosb;

U1 ¼ U2cosb�W2sinb
W1 ¼ U2sinbþW2cosb
oW2

ox2
¼ oW1

ox1
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð26Þ

where W1 ¼ Win þWrf ; W2 ¼ Wtm; U1 ¼
Uin þ Urf ; U2 ¼ Utm: Each column of RAB and TAB

correspond to the transmission coefficient from the

incident wave magnitude to the transmitted and

reflected wave magnitude respectively. For instance,

let qþA ¼ Aþ 0 0½ �, the first column of RAB and TAB

could be derived by solving the above equations in

Eq. (26). Similarly, when the incident wave is from the

inverse direction, i.e., q�B the incident wave, q�A the

transmitted wave and qþB the reflected wave, the

reflected and transmitted matrices RBA and TBA could

be derived through the same process. The derivation of

the transmission and reflection matrices when there is

only a unidirectional incident waveguide is the same

as presented in the study (Horner and White [32]). But

when the bidirectional incident waveguides, i.e., q�B
and qþA coexist, Eq. (1) in this paper should be

employed to present the more general case.

After obtaining the waveguide magnitude through

Eq. (26), the reflected and transmitted waves’ energy
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ratios to the incident wave could be derived. Take the

incident propagating flexural wave as an example.

The energy ratio of the reflected flexural wave to

the incident flexural wave is:

gff ¼ ðA�=AþÞ2 ð27Þ

The energy ratio of the reflected axial wave to the

incident flexural wave is:

gaf ¼ E1S1ka1ðB�=AþÞ2= 2E1I1k
3
b1

� �
ð28Þ

The energy ratio of the transmitted flexural wave to

the incident flexural wave is

dff ¼ ðE2I2k
3
b2C

þÞ2=ðE1I1k
3
b1A

þÞ
2

ð29Þ

The energy ratio of the transmitted flexural wave to

the incident flexural wave is

daf ¼ ðE2S2ka2D
þÞ2=ð2E1I1k

3
b1A

þÞ
2

ð30Þ

Appendix B: Wave approach formulation

Suppose there is a finite beam of length L. The origin

of the reference coordinate system is assumed to start

at the left end. The internal forces and velocities of the

beam can be represented by the shear forces Si,

rotational moments Mi, lateral velocity _Wi and

angular velocity _hi. The subscript i=1 denotes the left

end (x=0), while i=2 denotes the right end (x ¼ L).

The force and velocity vectors, f and v, are composed

of the shear forces and moments, and the flexural and

rotational velocities at the two ends, i.e., f ¼
S1M1S2M2

T and v ¼ _W1
_h1 _W2

_h2
� 	T

as

shown in Fig. 9a.

The lateral displacement at any point x along a

beam can be interpreted as the superposition of

positive and negative waves (Fahy and Gardonio

2007):

W xð Þ ¼ A1e
�ikbxþA1Ne

�kbx þ A2e
ikbx þ A2Ne

kbx;

ð31Þ

where kb ¼ qS=EIð Þ1=4x1=2 is the wavenumber of the

flexural wave and A1; A2;A1N; A2N are the complex

magnitudes of the propagating and evanescent waves

in both directions. Assuming the wave component

vector q ¼ A1 A1N A2 A2Nf gT , the internal force vector

f and the velocity vector v satisfy the following

relationship:

f ¼ T1q; v ¼ T2q ð32Þ

where transfer matrices T1;T2 2 C4�4 and the

detailed expressions for T1 and T2 can be derived by

the relationship between general forces, velocities,

and wave magnitudes based on the waveform in

Eq. (31). Consequently, the impedance matrix

Zbeam 2 C4�4 can be derived by Zbeam ¼ T1T2
�1 as

follows:

f ¼ Zbeamv ¼ EIk3b
jxN

�K11 �P
�P Q11

K12 V
�V Q12

K12 �V
V Q12

�K11 P
P Q11

2
64

3
75v;

ð33Þ

where

K11 ¼ cos kbLð Þ sinh kbLð Þ þ sin kbLð Þ cosh kbLð Þ;
K12 ¼ sinh kbLð Þ þ sin kbLð Þ;
P ¼ sinh kbLð Þ sin kbLð Þ=kb;
V ¼ cos kbLð Þ � cosh kbLð Þ½ �=kb
Q11 ¼ cos kbLð Þ sinh kbLð Þ � sin kbLð Þ cosh kbLð Þ½ �=k2b
Q12 ¼ sin kbLð Þ � sinh kbLð Þ½ �=k2b;
N ¼ cos kbLð Þ cosh kbLð Þ � 1:

ð34Þ

Identically, the longitudinal direction’s impedance

Zrod 2 C2�2 can be derived by the wave formulation

of a finite rod with length L in Fig. 9b. The axial waves

existing in the rod are non-dispersive, so the axial

displacement at any point x comprises only the

propagating waves:

U xð Þ ¼ B1e
�iklx þ B2e

iklx ð35Þ

where kl ¼ q=Eð Þ1=2x is the axial wavenumber and B1

and B2 are the complex magnitudes of the propagating

waves in both directions. The force and velocity

vectors fx ¼ Fx1Fx2
T and vx ¼ _U1

_U2
T
comprise the

axial forces and velocities at the two ends.

fx ¼ Zrodvx ¼
Z11 Z12

Z21 Z22

� �
_U1

_U2


 �
ð36Þ

where

Z11 ¼ �Z22 ¼ �jS
ffiffiffiffiffiffi
Eq

p
cot klLð Þ;Z12 ¼ �Z21 ¼ jS

ffiffiffiffiffiffi
Eq

p
=sin klLð Þ.
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The expressions for the impedance matrices are the

same as those directly given by (Gardonio and

Brennan [28]), where the procedure of obtaining these

impedance matrices was not presented. This section

validates the consistency between the wave approach

and impedance matrix formulation.

Appendix C: Beam mobility formulation

The mobility formulation of the cantilevered host

beam will be introduced with both axial and flexural

motions being considered. The mobility matrix repre-

senting the transmission from the force vector at xi to

the velocity vector at xj is given through the modal

superposition (Gardonio and Brennan [28]) as:

Yij ¼
Y _WjSi

Y _WjMi
0

Y _hjSi
Y _hjMi

0

0 0 Y _UjMi

2
4

3
5 ð37Þ

Y _hjSi
¼

X1
n¼1

ixW
0

n xj
� �

Wn xið Þ
qSL x2

n 1þ jgð Þ � x2
� � ;

Y _hjMi
¼

X1
n¼1

ixW
0

n xj
� �

W
0

n xið Þ
qSL x2

n 1þ jgð Þ � x2
� �

Y _WjSi
¼

X1
n¼1

ixWn xið ÞWn xj
� �

qSL x2
n 1þ jgð Þ � x2

� � ;

Y _WjMi
¼

X1
n¼1

ixW
0

n xið ÞWn xj
� �

qSL x2
n 1þ jgð Þ � x2

� � ;

Y _UjFxi
=

X1
m¼1

ixum xið Þum xj
� �

qSL X2
m 1þ jgð Þ � x2

� � ;

ð38Þ

where Wn xð Þ and xn are the n
th modal shape function

and the natural frequency of a cantilevered beam,

respectively, and um xð Þ and Xm are the mth modal

shape function and the natural frequency of a fixed-

free rod, respectively. The hysteresis damping ratio g
is assumed to be material damping. It is set to zero in

the main content.
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