Journal of Scientific Computing (2021) 88:83
https://doi.org/10.1007/s10915-021-01599-5

®

Check for
updates

Calculating Characteristic Roots of Multi-Delayed Systems
with Accumulation Points via a Definite Integral Method

Qi Xu'2 . Zaihua Wang3 - Li Cheng?

Received: 20 February 2020 / Revised: 1 March 2021 / Accepted: 10 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Multi-delayed systems, especially the neutral ones, have infinitely many and complex dis-
tributed characteristic roots that are crucial for system dynamics. The definite integral method,
which determines the system stability by using only a definite integral, is extended in this
paper for calculating all the characteristic roots in an arbitrarily given area on the complex
plane of both retarded and neutral multi-delayed systems with constant discrete delays. Two
simple algorithms are proposed for implementing the proposed method, by first calculating
the distribution of the real parts of all the characteristic roots, then the imaginary parts by
using an iteration method. The real part distribution can be used for the quick estimation
of key characteristic roots such as the rightmost ones or the corresponding accumulation
point(s), thus allowing adjusting the upper limit of the integral to further simplify the calcu-
lation procedure. Examples are given to show the feasibility and the efficiency of the proposed
method through numerical analyses.
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1 Introduction

Time delays are very common in real world, see for instance several engineering applications:
Internet control [1], metal cutting [2], man-machine interaction [3], thermo-acoustic interac-
tion [4] and so on [5]. The evolution of a time-delay system depends not only on the present
state as in systems described ordinary differential equations (ODEs), but also the past states
over previous time period(s). Thus, irrespective of the number of time delays, a time-delay
system has always infinite-dimensional solution space. As a matter of fact, time delay often
exerts strong impact on system dynamics, such as deteriorating its performance, destabilizing
dynamic responses, and results in complex nonlinear behaviors like double Hopf bifurcation
[6], chaos [7], and so on [8].

Time-delay systems are usually modeled by delay differential equations (DDEs). Depend-
ing on whether the highest-order derivative terms have time delay(s) or not, DDEs can be
classified into neutral ones (NDDEs) and retarded ones (RDDESs) [9]. NDDEs have different
features compared with RDDEs. For example, in the linear stability analysis that requires the
knowledge of root location of the characteristic equation, the infinite number of characteristic
roots of an RDDE reside in the left half complex plane of a line parallel to the imaginary
axis, while the infinite number of characteristic roots of a linear NDDE are distributed in a
strip between two lines that are parallel to the imaginary axis with possible accumulation
point(s) on the boundary. Thus, the stability of an RDDE is guaranteed if all the characteris-
tic roots have negative real parts (or equivalently the real part of the rightmost characteristic
roots is negative); on the contrary, the stability of an NDDE is ensured if the real part of the
rightmost characteristic roots is negative and no accumulation point exists on the imaginary
axis. Based on this fact, many stability criteria have been developed for the stability analyses
of DDEs, exemplified by the Pontryagin method [10], the Nyquist Plot method [11,12], the
Stepan/Hassard method [13,14] and the definite integral method (DIM) [15-17], the linear
6-method [18], all by checking whether the number of characteristic roots with nonnegative
real parts is zero. Meanwhile, some algorithms have been proposed for directly calculating
the rightmost characteristic roots of some DDEs which also offer means for stability assess-
ment, such as calculating the RDDE’s rightmost roots on the basis of the Lambert W function
[19], and the NDDE’s rightmost roots based on the DIM [20] with strong stability condition
[21] holds.

For stable NDDE, whose real part of the rightmost characteristic roots is negative, the sta-
bility can be strong or weak, depending on whether the characteristic roots have accumulation
point(s) at infinity on the imaginary axis [21]. Strong stability is the case that is most widely
investigated in the literature. By comparison, studies on weak stability is relatively scarce. In
typical weak stability problems, both the rightmost characteristic roots and the accumulation
point(s) are crucial for stability assessment. In addition,as a delay increases from zero to a
certain level, the rightmost characteristic roots of DDEs are generated differently from the
root branches initiated, either from the rightmost ones of the corresponding delay-free system
for short delay, or from other roots of the delay-free system for large delay [4]. This means
that other characteristic roots but the rightmost ones might be crucial to the stability of DDEs
from a parametric point of view. On the other hand, due to infinity and complex distribution
of the characteristic roots of NDDEzs, it is not possible to calculate all the characteristic roots
whose right part is larger than a given value, if this value is less than the real part of NDDE’s
accumulation point(s). Thus, an effective algorithm for calculating characteristic roots in a
given region of the complex plane is necessary of the stability analysis of NDDEs. There has
been a few numerical methods that are able to achieve this for both RDDEs and NDDEs.
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As typical examples, the MATLAB package DDE-Biftool [22,23] uses the linear multistep
method to discretize the system equation for obtaining approximated characteristic roots in a
given region and then uses the Newton-Raphson Method to correct the estimated roots. The
QPmR algorithm [25] computes the intersection points of the real and imaginary parts on the
meshed complex plane. The advanced QPmP algorithm [26,27] uses the Argument principle
to judge the existence of the characteristic roots in a given strip of the complex plane, which
enhances the computation efficiency by omitting grids in this strip.

The main objective of this paper is to extend the DIM for calculating the characteristic roots
of both RDDEs and NDDEs with constant discrete delays in a given area in the complex plane.
Compared with the original DIM that calculates only the rightmost roots under strong stability
condition, the currently proposed extended version is applicable to all systems regardless
whether the strong stability condition holds or not. To the best of our understanding, the
proposed algorithm shows some merits over the existing methods. For example, the definite
integral used in the proposed algorithm takes integer jumpings only, and its calculation allows
around error between —0.5 and 0.5, unlike the calculation of real/imaginary numbers using
other methods that might be sensitive to the parameter uncertainties. Meanwhile, the extended
DIM first gives the distribution of the real parts of the characteristic roots by searching where
the calculated number of roots jumps, then finds the imaginary roots by iteration methods.
The pre-calculation of the real part distribution is efficient for system analysis. For example,
by adjusting the upper limit of the integral, the extended DIM offers a fast way of estimating
the rightmost roots and the accumulation point(s), other than estimating them after calculating
all the characteristic roots in the given region.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of the
original DIM for stability test of both linear RDDEs and NDDEs with constant discrete
delays, alongside its application in calculating the rightmost characteristic roots. Section 3
presents the proposed DIM for the calculation the characteristic roots in an arbitrary but
bounded area in the complex plane. Then in Sect. 4, four numerical examples of different
type of DDEs are illustrated. Finally, in Sect. 5, concluding remarks are summarized.

2 Calculating Rightmost Roots of NDDEs

Consider a linear time invariant delay differential equations (DDE), which takes the form of

m m
£+ Y Nik(t — 1) = Ax()) + Y Bix(t — 7;) (1
i=1 i=1
where x € R", 7; > 0, A, B, N; € R"*". When N, =0forallk =1,2,...,m,Eq.(1)is
referred to as a retarded delay differential equation (RDDE), and when at least one Ny # 0
for some k = 1,2,...,m, it is called a neutral delay differential equation (NDDE). The
characteristic equation of Eq. (1) is in the form of f(X) = 0, where f(A) is called the
characteristic function which satisfies

n
FO =24 e e )
i=0

where o;(z1,...,2m),(@ = 0,1,...,n), are real polynomials with respect to z; =

e*)hfl — a—ATp

) L) Zm =¢e .

From [9], it is proved that the largest real part of the accumulation point(s) of the charac-
teristic roots of system (1), i.e., the value that separates apart the rightmost and non-rightmost
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roots, is the largest real part of the roots of
l+age™,..,e ™) =0.

The DIM, capable of analyzing the stability of system (1), can also be used to calculate
all its rightmost characteristic roots. Next we first introduce the stability criterion by using
the DIM.

2.1 Definite Integral Method for Stability Test

The trivial solution x = 0 of system (1) is asymptotically stable if and only if all the character-
istic roots have negative real parts and are uniformly bounded away from the imaginary axis
[8]. To guarantee that the accumulation point(s) of the characteristic roots have negative real
parts and are bounded away from the imaginary axis, the strong stability condition stipulates

that the coefficient ag(e ™7, ..., e *™) should satisfy
sup  |ao(e™*, L eTM )| < 1. 3)
R > 0, |A] > oo
Condition (3) actually guarantees that the roots of 1 + ag(e™, ..., e *™) = 0 have

negative real parts and are bounded away from the imaginary axis. For single delay cases, if
condition (3) does not hold, the system is unstable because the accumulation point(s) has/have
positive real part; however in rare cases where multiple time delays exist and are rationally
dependent with each other, even if condition (3) does not hold, the accumulation point(s) can
still have negative real part(s) and be bounded away from the imaginary axis and the system
response of Eq. (1) can be asymptotically stable . This is called weak stability because it is not
robust, as an arbitrarily small variance of time delay, which breaks the rational dependence
between the time delays, can make the system asymptotically unstable [21].

Lemma 1 Assuming that the characteristic equation (2) has no roots on the imaginary axis,
and condition (3) holds, then there exists a sufficiently large positive real number Ty, such
that for all T > Ty, the integer number N of the unstable characteristic roots, i.e., the roots
whose real parts are positive, is located in the interval

Ne(_F(O,T)+n—l’_F(0,T)+n+l>’ @
T 2 T 2
where
T 13
L f (i)
FO,T)= R - d 5
.0 /o (f(lw))w ©)

with N(z) denoting the real part of a complex number z.

Lemma 1 suggests that the exact number A of the unstable characteristic roots of an NDDE
satisfying condition (3) can be easily calculated by rounding off

N = round n_FOD
= 5 - .

If N = 0, the corresponding NDDE must be asymptotically stable.
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2.2 Calculating the Rightmost Characteristic Roots

A direct application of the DIM is to calculate the rightmost characteristic roots of system

(1):

Lemma 2 Assuming that the strong stability condition holds for f (X + &) = 0, and no roots
of f(A 4+ 8) = 0 are on the imaginary axis, there exists a sufficiently large positive real
number Ty, such that for all T > Ty one has

_ no 1T (f+oi)

Remark 1 The roots of f(A + §) = 0 are the same as the roots of f(1) = 0 but shifted §
leftward in the complex plane. Thus using Lemma 2, when § keeps decreasing from a large
value 8o which guarantees that all the real parts of the roots of f(A) = 0 are less than Jo, it
can be proved that A/(8) increases from O to infinity. Meanwhile A/ (8) jumps at § when § is
the real part of at least one of the roots of f(A) = 0. Upon getting the root’s real part, the
imaginary part can be easily carried out by using iteration method.

It is worth noting that the exploration of the characteristic roots is an elaborated way
to analyze stability boundaries. For certain complex systems, however, the characteristic
functions can be hard to compute and numerical perturbations of system parameters can
affect the robustness of the characteristic root calculation as well as the stability assessment,
especially for NDDEs when time delays are perturbed. For these complex systems, other
stability methods directly based on the system equation may be utilized.

Remark 2 For an RDDE, N/ (8) goes to infinity only when § goes to negative infinity, thus all
the roots in a bounded area can be calculated. However for an NDDE, N(§) goes to infinity
when § approaches the real part of the accumulation point(s), and all the roots whose real
part are smaller than the real part of the accumulation points, can not be calculated using
Lemma 2.

3 Calculating Characteristic Roots Located in a Bounded Area

This section aims at improving the DIM, so as to calculate the characteristic roots of system
(1) in any bounded area in the complex plane, without imposing the strong stability condition
3).

A general relationship between the integral (5) and the number of the unstable roots A
can be obtained from the Argument Principle:

Lemma 3 Fordelay differential system (1), assuming that the characteristic equation f ()) =
0 has no roots on the boundary of Curves Cy and C», as shown in Fig. 1, and let N be the
number of all the characteristic roots of Eq. (2) in the area encircled by C1 and C», one has

N=%—LO’ B am ©)
s
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Fig.1 Contour Cy and Cy

iR C,

where,

—iRT|
s

1 " a;i(e ..., e iRy
A(R) = S—arg (1 + ; iR )

1 "o (ein‘ e ein'")
- 1 -
(1 (—iR)
i=0

Proof Directly from Argument Principle, one has that

1
N = —Acarg(f(1)
i (7

1
= 5— (Acare(f (1) + Acyarg(f (1)

Calculate Ac,arg(f (1)), from {A = iw| w € (=R, R)} one has

w=—R w=R
Acyarg(f0) =arg(f ()| _ " = —2are(fliw)| _ .

It is easy to prove that [16]

9 are(Fliw)) = (f/(iw)>
dw

f(w)
therefore one has

f'(iw)
S (iw)

R
Acyarg(f() = 2 /0 % (

Calculating Ac,arg(f (1)) yields

- (e~ 1R —iRTy
Ac,arg(f (L)) = Ac,arg (An (1 +Zaz(e ,).Llj.,e )))

i=0

) do = —2F(0,R) . (8)

n —iRt —iRT,
o (e e m)
— Ac,arg(M") + A, arg (1 +) - 3 ) :
i=0
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substituting A = Re'? | 0 € (—m/2, 7/2)} into the above equation generates
—11 Re™1/2

b1 b1 % (e e TR
A M =n=—n(-= 1 ’ -
crarg(F (1) =n5 —n ( 2)+arg< 3 (Remy )

—mi/2

n (~—T1Re —17,, Re~71/2
a;j(e ,...,€
—arg <1+ E i )>

i=0 (Refﬂi/z)i

n —iRt —iRT,

aj(e Rt eTiRTm) )

:nn—i—arg(l—i—g — >_
i=0 (iR)

n iRt iRT,
(e, L, ettt
arg (1 + E iRy
i=0

=nm +2mA(R) .

Equation (6) can be derived from Eqgs. (7), (9) and (8). This completes the proof.

Remark 3 Lemma 3 applies to both RDDEs and NDDEs, regardless whether condition (3)
holds or not. For RDDEs and strong stability cases of NDDEs, it can be proved that any
|A(R)] is strictly less than 1/2 for a sufficiently large R. Hence Eq. (4) holds, where the
critical upper limit 7 of Eq. (4) is given in [17]. However, for weak stability cases, A(R) can
be either bounded or unbounded when R gets larger and larger. Even if bounded, |A(R)| can
be either less, equal or even larger than 1/2: for the larger than 1/2 case, there are more than
one integer that satisfy Eq. (4), only one of which is the right \/.

Based on Lemma 3, the following theorem is proposed for the unstable roots of f(1) =0
when they are shifted in the complex plane:

Theorem 1 Assuming that the characteristic equation f(A+380) = Oand f(A+65) =0, 0 <
|8 — 80| << 1 both have no roots on the boundary of Curves CI1 and C2, as shown in Figure
1, and letting N, and N be the number of all the characteristic roots of f(1) = 0 and
f (X4 68) = 0 in the area encircled by CI and C2, respectively, for any € > 0, there exists a
y > 0, such that for |6 — 8o| < v,

- F5 (0, R)  F5(0, R)
T T

-/\/’5_]\/—60_6

R e
B F/lio +5)
0. R)_/o m(f(iwa))d‘”

<Ns — Ny, + €. (10)

where

Proof Denoting that

1 n o (e*(iR+5)7717 o e*(iR‘i’s)Tm)
As(R) = — 1 -
(R = 5 are | 142 (iR
i=0
1 n o (e(iR+3)Tl’ R e(iR"Fa)Tm)
——arg |1+ - ,
then from Lemma 3, one has
n Fs(0, R
Ny == — a )+A5(R)-
2 b4
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Hence, it yields that

Fs,(0, R Fs(0, R
N — Ny, = 50(71 ) s(ﬂ )

+ As(R) — Asy(R), an

Notice that «;(z1,...,2m),i = 0,1, ..., n are real polynomials with respect to z; =
e M .., zm = e M as stated above. Thus for R > 0, As(R) is continuous with respect
to § = §p, which means that for any € > 0, there exists a y > 0 such that for |§ — dp| < ¥

|As(R) — Asy(R)| < e. (12)
From Eqgs. (11) and (12) , one has

Fs, (0, R Fs(0, R
-/V:S_-/\/:SO_6< So(n )_ 8(7_[ )

< N5 —Nsy + €.
This completes the proof of Theorem 1.

Remark 4 The value N5 — N, is an integer, thus for a small enough § varying in the neigh-
borhood of §p, the characteristic roots of f(A + &p) encircled by C1 and C2 may become

different from that of f(A + &), which indicates that A’s — N5, will jump to a certain integer.

FsoO,R) _ F5(0.R)
m ps

Consequently, Theorem 1 stipulates that the value of will also jump a value

Fs,(0,R) _ F0O.R)
2 2

close to this integer. As in the case of Ny — N, = 0, the value of remains

in a small neighborhood of 0.

The exact relationship between the roots of f (1) = 0 and the jumping of N is as follows:

Theorem 2 As § is increasing in a small enough neighborhood of &y, calculating the two
values of N5 when § = SSF and § = &, if./\/'[sar — ./\faa decreases, then & is the real part
of at least one of the roots of f(A) = 0. Moreover, defining Ay = 'A/:SE — /\/’56r (positive
means decrease case and negative increase case) and denoting the exact number of roots of
f(X) = 0 whose real part is 8o by Ns,, one has Ay < Ns,.

Proof When § is increasing in a small enough neighborhood of § = §y, all the roots of
f (A + 8) = 0 are shifted rightward in the complex plane. Four cases corresponding to the
root shifting leftward are illustrated in Fig. 2 and discussed below.

Case 1. No roots are crossing C1 and Cp, as shown in Fig. 2b. Thus Ns, = 0. Noticing
that N is the number of characteristic roots of f (A + 8) encircled by C| and Cy, thus
AN = /\/'56 —./\/'58r =0, and hence Ay = 0 = N,

Case 2. There is at least one root that is crossing C and no root is crossing C», as shown
in Fig. 2b. In this case /\/50+ — ./\/57 decreases, and there are Ay number of roots shifting
out of the region encircled by C; and C;, where &g corresponds to the critical situation that
there is/are Ay number of root(s) located on C;. Hence, there are Ay number of roots of
f (A4 8p) = 0 whose real part is 0, i.e., Ay number of roots of f(A) = 0 whose real part is
NR(A) = dp. Hence, 0 < Ay = Ns,.

Case 3. There is at least one root that is crossing C» and no root is crossing Cy, as shown in
Fig. 2c, thus Ns, = 0. Similarly to Case 2, it can be proved that J\/’(SSr - N56 increases. and

8 = o corresponds to the critical situation that for f (X 4 §p) = 0, there are —A y number
of roots located on C,. Hence Ay < N5, =0
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iR iR c, iR c, iR c,
Y fi+s, L,_}
- \._7 T e,
f(A+8,) S f(A+3, )/.q '/\um;) C|| f(2+g, )/. \./\(Ma'") \\C: - [(2+8,)
o[ed W/ 17 W/
-R -R R /f -R //
(@) (b) (©) (d)

Fig.2 The root tendency of a: Case 1; b: Case 2; c¢: Case 3; and d: Case4

Case 4. There are roots crossing both C; and C, at the same time, as shown in Fig. 2d. In
this case, ./\/'36r — ./\/56 may either decrease, stay the same, or increase, depending on whether
the number of roots of f(A) = 0 on C; is more than, equal to, or less than that of C;. And
respectively, one has 0 < Ay < Ngy, Ay =0 < Nsj,or Ay <0 < Ng,.

For all above cases, it can be seen that A > 0 always relates to the cases where § is the
real part of at least one of the roots of f (1) = 0, and for all cases one has Ay < Nj,. This
completes the proof.

Remark 5 The condition Ay > 0 is only a necessary one for the cases where &g is the real
part of at least one of the roots of f(A) = 0. As can be seen from Case 4 that, Ay > 0 can
relates to that dp is the real part of at least one of the roots of f (1) = 0. However, Case 4 is
rare and can be easily avoided by choosing a different radius R for the contour C; and C5.
This R must exist, since the characteristic roots of f(1) = 0 in a bounded contour C; and
C, is always limited, and one can always find a bounded contour for which Case 4 will not
happen by shifting all these limited roots.

Corollary 1 Assuming that the radius R for contour Cy and C; is properly chosen such that
Case 4 does not happen, hence for small enough § varying in the neighborhood of &y, one
has that, f (L) = 0 has root(s) whose real part is R(A) = &g if and only if

F, (0,R) Fy:(0,R)
round ( % _ <0.
T T

Moreover, the number of these roots Ns, satisfies

Fg+(0,R)  F;-(0,R)
Nj, = round 0 S . (13)
b4 b4
Proof From Theorem 1, by choosing € = 1/2, one has
F56 0, R) F50+ 0, R)
round - =Nyt — N-.
T T 0 0

The condition /\faar - /\[56 = —Ay < 0 with properly chosen contour radius R, satisfies

Case 2, then from Theorem 2 one has that N5, = Ay, which completes the proof.

Algorithm 1 Based on Corollary 1, the following algorithm can be compiled to calculate the
roots in a bounded square region {(a, b) X (—Ri, Ri) | a, b, R € R}:
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Step 1. Calculate the characteristic function f(A) in Eq. (2).
Step 2. Choose a sufficiently small number § > 0, vary &g in a meshed (a, b), and calculate

F;-(0,R) Fs+(0,R) R g B
round ( % _ ) = round / I:f}t (M)
T T 0 fliw+ 80— 6)

([0 +80 +8)
N —— ) |dw
flw + 8o +6)
Step 3. If the calculated value in Step 2 decreases at 69 = oy, then the characteristic root(s)

of (1) = 0 can be obtained numerically with the estimation Ay = o + iwg, wg < R, by
using the Newton-Raphson iteration method within a few iterations steps [16]:

SO0
foa)
In practice, Step 2 will most likely yield value of 0 in most cases, whilst only in limited

cases it yields none zero values. Also, if § is too small while the meshed §¢ is not small

enough, the values following Step 2 would be all O for the meshed &y, which deteriorates the

applicability of Algorithm 1.

The following theorem is the main result of the paper.

Mgl = A i=0,1,2,... (14)

Fi+ (O,R)
Theorem 3 With the condition of corollary 1, and assuming that % #k+1/2,k € Z,

L

then for small enough § varying in the neighborhood of 8o, f(A) = 0 has root(s) whose real
partis (L) = & if and only if

Fs-(0,R) Fs+(0, R)
round | —24—— ) —round | —>——] <O.

T T

Moreover, the number of these roots Ny, satisfies

Fs-(0, R) Fs+(0, R)

Ns, =round [ ——— | —round [ —>——] . (15)

T b4

Fyr (0.R)
Proof Let —— =k+y,—1/2 <y < 1/2, which suggests
Fs+(0, R)
round | 24— | =k. (16)
T

Then from Theorem 1, one has
F50+ 0, R) F56 0, R) - Faar 0, R)

T

+Ngr = Ng- —€ < + N+ —Ns- + €.
0 0 0 0

For the case of 0 < y < 1/2, by choosing 0 < € < 1/2 — y, it yields

F;- (0, R)
k+ Ny —Ngs +2y —1/2 < <k+Ngr =N +1/2,

which is equivalent to

Fy (0, R)

k+/\[‘30+_'/\/56_1/2< <k+./\/58r—./\f50—+1/2.
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Same result can be obtained for the case of —1/2 < y < 0 by choosing 0 <€ <y + 1/2.
Thus for —1/2 < y < 1/2, one has

Fy (0. R)
round | —— | =k + N+ — Nj-. (17)
b 0 0

Equations (16) and (17) give

Fs-(0, R) Fs+(0, R)
N5o —/\/55 =round | —>—— | —round | —>——

T T

Same as Corollary 1, the condition /\/50+ — NSJ < 0 satisfies Case 2, and the conclusion can
be proved similarly.

Different from Eq. (13) in Corollary 1, the right hand side of Eq. (15) indicates that in
practice, the real-part-distribution of the roots of f(1) = 0in {(a, b) x (—Ri, Ri) |a,b, R €
R} can be identified by just calculating

R e
round (M) = round (l / 9N <M> da)) (18)
T T Jo flw +6)

with § varies in the meshed (a, b). More precisely, as § increases in the neighborhood of
8 = oy, if the calculated value of Eq. (18) jumps from one integer k; to a larger integer k>,
one can conclude that the number of roots of f (1) = 0 with the real part R(A) ~ oy is equal
to ko — ki . Thus, we call the jumps of value of Eq. (18) as root jump in the following.

Thus, a simpler and more practical Algorithm 2 can be proposed, by revising Step 2 and
Step 3 in Algorithm 1 as:
Step 2. Vary § in a meshed (a, b), and calculate the value as expressed in Eq. (18).
Step 3. If root jump happens, i.e., the calculated value of Eq. (18) jumps to larger integer as
§ increases in the neighborhood of § = oy, then the characteristic root(s) of f(A) = 0 can
be obtained similarly as that of Step 3 in Algorithm 1.

Remark 6 Both Algorithm 1 and 2 need a properly chosen radius R of contour C; and C» to
avoid Case 4. In practice, Algorithm 2 is recommended for use, and a randomly chosen R
usually can satisfy the needed condition, since the number of roots of f(A) = 0 is limited
for bounded R. Also, repeating the procedures of Algorithm 2 by choosing two different R,
and if the jumping remains the same, this would further increase the reliability of the results.

Fi+(O,R)
Remark 7 If condition —0—— # k+1/2, k € Z does not hold, Eq. (18) may increase even

when the number of rootsjiioes not change. This false increment is exactly 1 while usually
the corresponding increment is 2 when the number of roots does change, as shown in Case
2. Similarly as Remark 6, repeating the procedures of Algorithm 2 by choosing two different
R would help to identify the false increment.

Fyt (O.R)
Remark 8 Condition —*—— =k +1/2, k € Z introduces discontinuity to the rounding off
value of F5(0, R)/m in the neighborhood of § = §p. However, it does not affect the continuity

of the value of F5(0, R)/m in the neighborhood of § = 8g. Hence, the false increment caused
Fi1(O,R)
by % — =k + 1/2, k € Z can be avoided by using just F5(0, R) /7 instead of rounding
it off. In this case, a root jump only happens when F5(0, R)/m jumps.
It is worth noting that popular tools like DDE-Biftool and QPmR (including the advanced

QPmR) carry out the stability analysis of time-delay systems also through calculating the
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characteristic roots. The extended DIM provides an alternative way of doing this, and it
shows some merits over the existing methods. For example, the definite integral used in
the extended DIM only takes integer values or integer jumps, and its calculation allows a
round error between -0.5 and 0.5. As a result, the proposed algorithm is expected to be less
sensitive to the parameter uncertainties. Meanwhile, the advanced QPmR method calculates
the characteristic roots in a similar way as the extended DIM following Algorithm 2: it first
judges the existence of the characteristic roots in a given strip of the complex plane by directly
employing Argument Principle, and then calculates the characteristic roots in grids by using
the original QPmR method while omitting the strips that have no characteristic roots. The first
step of the argument calculation of the advanced QPmR method is converted into a closed
curve integral over a square strip with four different sides, while the extended DIM, based
also on Argument Principle, calculates a closed curve integral with the same integrand over a
half circle and further simplifies this closed curve integral into a simple definite integral. Thus
the definite integral method could be more computational efficient and easily programmed
compared to the advanced QPmR method for argument calculation.

4 Numerical lllustrations

Example 1 As the first example, we calculate the roots of an RDDE which takes the form of

xX(t)+ax@)+bx(x—1)=0 (19)
As stated in Example (3.25) in [13], system (19) is unstable for a = —0.5, » = 1. From Eq.
(2), the characteristic function when a = —0.5, b = 1 takes the form of

f)=xr—-05+e"

Since the system is unstable, it must have root(s) whose real part is positive. However, in
this example, we are interested in calculating the roots with negative real parts that locate in
the square (—10, 0) x (—200i, 200i) in the complex plane.

Directly applying Algorithm 2 for R = 100, the real-part-distribution can be clearly
identified from Fig. 3.

) . . . F5(0,R)
Following Step 2, root jump happens 16 times, i.e., the calculated value round (‘ST

increases 16 times, and each time the increment is 2, which means there are totally 16 pairs
of conjugate roots of f(A) = 0 located in the square region (—10, 0) x (—200i, 2001), and
the real parts of these roots are the coordinates where jumping takes place.

Then following Step 3, further calculating by using the Newton-Raphson iteration method
can give the approximated value of all these roots, among which the left most 3 pairs are
—4.563 4 95.7681,—4.496 4+ 89.480i and —4.260 =+ 70.619i, and the rightmost 3 pairs are
—2.658 +13.9141,—2.073 £ 7.524i, —0.163 £ 0.972i.

Example 2 In this example, we calculate the roots of a multi-delay NDDE for which the
strong stability condition (3) holds [28]:

ZM) +2012(t) + z2(1) + pZ(t — 1) + 202(t —2) =0, (20)

where p = 0.4, & = 0.25,& = 0.24 and the two delay values are 7y = 4, 75 = 3. The
characteristic function reads as

F) = (1404 )22 4+ (0.5+0.48e3H)n + 1. (21)
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Fig.3 Root jump with respect to § in (—100,0) when R = 100 for system (19)
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Fig.4 Root jump with respect to § € (—1, 0) when R = 200 for Eq. (22)

The rightmost and non-rightmost roots are divided by the infinitely many roots of
14+04e =0, (22)

which is an NDDE with one single delay. The roots of Eq. (22) can be theoretically calculated

as
1 5 1
rM=——In{Z)=—-A+27i, k=1,2,...
0 4n<2> 4(+k)m,k .2,

Notice that the number of the roots of Eq. (22) is infinitely many, and all the roots share the
identical real part 9(Ao) ~ —0.229 with the imaginary part goes to infinity. Thus it can be
proved that for system (20), there are infinitely many roots of Eq. (21) whose the real parts
approaches to J(Ag) while the imaginary part goes to infinity, and 9% (Ag) distinguishes the
rightmost roots and the non-rightmost roots of Eq. (21) [9].

Since Eq. (22) is an NDDE, the proposed extended version of DIM can also be applied.
By applying § € (—1, 0) and R = 100, the results from Step 2 are plotted for the roots of Eq.
(22)in (—1, 1) x (—200i, 200i) as shown in Fig. 4, from which we can see that the value
jumps over 250 at § ~ —0.229. This indicates that at least more than 250 roots of Eq. (22)
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Fig. 5 Root jump with respect to a: § € (—1,0), R = 100; b: § € (—1,—-0.25),R = 10 and ¢: § €
(=1, -0.3), R = 10 for Eq. (21)

are located in (—1, 1) x (—200i, 200i), with their real parts being close to —0.229. Hence,
a good guess can be made that there are infinitely many roots of Eq. (22) whose real part
is close to —0.229, and the rightmost roots should be those whose real parts are larger than
—0.229.

Next, we calculate all the roots of Eq. (22) located in the square (—1, 1) x (—200i, 200i) of
the complex plane, as well as the non-rightmost roots in the square (—1, —0.25) x (—101i, 101)
and the square (—1, —0.3) x (—21i, 2i). Applying Algorithm 2 for § € (—1,0), R = 100;
8 €(—1,-03),R=10and § € (-1, —0.3), R = 10, respectively. The calculated results
from Step 2 are plotted in Fig. 5a, b, c.

From Fig. 5a, it can be seen that root jump happens many times, and the increment around
8 &~ —0.229 is the highest, which suggests that the accumulation point of Eq. (20) is around
8 ~ —0.23. Together with Fig. 4, both figures increase rapidly at § &~ —0.23, which testifies
that both Eq. (21) and Eq. (22) have the same accumulation points.

From Fig. 5b, it can be seen that root jump value increases 2 by three times, one at
8 &~ —0.55 and the other two at § &~ —0.25. Then from Fig. Sc the root jump value increases
2 by only once, at § &~ —0.55. Comparing these two figures, one can conclude that the
imaginary part of the conjugate roots corresponding to § &~ —0.55 must be —3 < w < 3,
and the other two pairs of conjugate roots corresponding to —15 < w < —3,0r3 < w < 15.
From Step 3, the approximated values of all these roots are calculated as —0.550 % 0.2551,
—0.250 = 4.006i and —0.252 4 5.488i, which agrees with the analysis from both Figs. 5b
and c.

Example 3 This example considers a special NDDE, which has only non-rightmost roots and
does not satisfy the strong stability condition. The system equation takes the form of [20]

xX(t)+ px(t—1)+ax(t) =0, (23)
where p = 1, a = 0.5, t = 0.3. The characteristic function reads as

(1+e " r+05=0. (24)

It has been proved in [20] that all the roots of Eq. (23) are non-rightmost ones, whose
accumulation point’s real part is 0. With the proposed method, we evaluate the roots in the
square (—0.002,0.001) x (—Ri, Ri) for R = 2000 or R = 100, and give the real part
distribution based on Step 2 of Algorithm 2. It can be seen from Fig. 6a that, more than 90
roots are located in (—0.002, 0.001) x (—20001i, 2000i), and all of them have negative real
parts which are very close to zero. Thus it could be concluded that the accumulation point’s
real part is approximately zero. In addition, the values in Fig. 6a jump rapidly for § < 0
while keeping invariant for § > 0, this suggests that there are no roots whose real parts are
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Fig.6 Root jump with respect to § € (—0.002, 0.001) with a: R = 2000 and b: R = 100, for system (23)

positive, i.e., no rightmost roots, exist in (—0.002, 0.001) x (—2000i, 2000i). In Fig. 6b, the
values undergo 4 obvious jumps within the given range, which suggests that 4 pairs of the
non-rightmost roots are located in (—0.002, 0.001) x (—100i, 100i), and their approximated
values can be calculated from Step 3 of Algorithm 2 as —0.000420 £ 31.469i, —0.000152 £
52.392i, —0.0000775 % 73.3271, —0.0000469 £ 94.265i.

Example 4 Consider again a multi delay NDDE, for which the strong stability condition does
not hold:

Xt) =Xt —1)+ Xt —1)+x()+x(t —13)+50x(1) =0. (25)

The three-time delays are given as 11 = 2, 1o = 3, 13 = 1.5, and the corresponding charac-
teristic function reads as

W =(1-e?*—e?) a2 +a+e 54 +50. (26)
It can be seen that

sup |—e_2)‘—e_3)‘|=2>1,
R >0, [A] = 00

which suggests that the strong stability condition (3) does not hold. For such systems, though
they might be stable when time delays are rationally dependent with each other, arbitrar-
ily small perturbation could break this rationally dependence, and hence make the system
unstable.

Similar to Example 2, the accumulation roots of Eq. (26) can be calculated by setting first
coefficient to be zero, that is a two-delayed NDDE of the form

1 —e 2 —e* =0. 27)
Let . = 0 + wi, Eq. (27) can be solved from

1 —e2%cos(2w) —e 3 cos Bw) =0
e 2%sin(Qw) +e 3 sin(Bw) =0’

which gives §; &~ —0.141 and §; &~ 0.281, and §, determines the boundary between the
rightmost roots and the non-rightmost roots.

The accumulation points can also be approximated by using the DIM. From Step 2 of
Algorithm 2, the real part distribution of the roots in the square (—1, 1) x (—100i, 100i) in
the complex plane is obtained in Fig. 7a and b for both Egs. (27) and (26).
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Fig.8 Root jump of system (25) with respect to 6 € (—1, 1) for a: R = 10; b: R = 8; and ¢ R = 10 without
rounding off following Remark 8

As can be seen from both figures, the plotted value increases very rapidly at § ~ —0.14
and § ~ (.28, which means that there are two accumulation points with real parts being close
to these two values. Further calculation following Step 3 of Algorithm 2 gives the roots of Eq.
(26) with similar real parts of the accumulation points, and a few of them are listed as follows:
—0.1134+21.319i, —0.108£22.6951, —0.127427.5911,—0.1324+33.869i1, —0.125+35.264i,
—0.135£40.149i, and that 0.341£18.8771,0.292443.992i,0.290£50.2741, 0.287£56.5561i,
0.286 + 62.8391, 0.285 £ 69.1211.

In typical engineering problems, low frequency roots, i.e., the roots of small imaginary
parts, are usually required. Thus Fig. 8a shows the plot for R = 10. Compared to R = 100
in Fig. 7b, the result in Fig. 8a needs less computational time because the integral interval is
smaller. In Fig. 8a, the plotted value increases 2 by 5 times, and increases 1 by one time (at§ ~
0.06). Based on these jumping value, further iteration using Step 3 of Algorithm 2 calculates
the corresponding 5 pairs of conjugates roots, giving —0.860 £ 1.5461, —0.668 + 3.2324i,
0.128 % 4.9041, 0.699 + 6.942i, 0.065 + 8.969i. However, the jumping at § ~ 0.06 should

relate to areal root since the increment is only 1, which can easily be proved to be non-existent.
Fy+ (0.R)
Actually, from Remark 7, § ~ 0.06 corresponds to the situation when % — =k+1/2,

and by choosing a different R = 8, this false jumping can be avoided, as shown in Fig.
F+ (O,R)
8b. Furthermore, from Remark 8, since % ~ = k + 1/2 introduces false jumping, we

calculate only F5(0, R)/m with R = 10 for 6 € [—1, 1] as shown in Fig. 8c. The results
show that the false jumping at § &~ 0.06 in Fig. 8a is avoided, and all other jumpings in Fig.
8c are related to the corresponding real parts of the characteristic roots of system (25) in
(—=1,1) x (—10i, 10i) of the complex plane.
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5 Conclusion

This paper extends the DIM to calculate the characteristic roots of both retarded and neutral
multi-delay systems with constant discrete delays. Based on the root shifting technique, the
extended DIM first identifies the closely approximate real parts of the characteristic roots,
and then calculates the imaginary parts by using the iteration method. Two algorithms are
proposed to implement the extended DIM, both through capturing the changes in the number
of the critical characteristic roots by shifting them on the complex plane. Among the two
proposed algorithms, Algorithm 2 uses simpler criterion and is more recommended for use.
Numerical examples show that the proposed method works efficiently and accurately.

The original DIM for stability test is derived and simplified from the Argument Principle.
It holds the advantages of easy coding, high efficiency, as well as the ability of dealing with
multiple time delays, and an increase in the number of delays does not pose particular diffi-
culty in its implementation. Inheriting the merits of the original DIM, the extended DIM has
simpler integrand and smaller integral interval, and hence improves the computational effi-
ciency more. In addition, the extended DIM calculates all characteristic roots in an arbitrary
and bounded area in the complex plane, regardless whether the strong stability condition
holds or not. And a side benefit is that, since the real part distribution of the characteristic
roots is calculated first, the extended DIM provides a fast way of estimating the rightmost
roots and the accumulation point(s) by adjusting the upper limit of the integral, other than
estimating them after calculating all the characteristic roots in the given region.
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