
applied
sciences

Article

Concrete Crack Detection Based on Well-Known Feature
Extractor Model and the YOLO_v2 Network

Shuai Teng 1 , Zongchao Liu 1, Gongfa Chen 1,* and Li Cheng 2

����������
�������

Citation: Teng, S.; Liu, Z.; Chen, G.;

Cheng, L. Concrete Crack Detection

Based on Well-Known Feature

Extractor Model and the YOLO_v2

Network. Appl. Sci. 2021, 11, 813.

https://doi.org/10.3390/app11020813

Received: 28 December 2020

Accepted: 13 January 2021

Published: 16 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil and Transportation Engineering, Guangdong University of Technology,
Guangzhou 510006, China; 1112009002@mail2.gdut.edu.cn (S.T.); 1111709005@mail2.gdut.edu.cn (Z.L.)

2 Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom,
Kowloon 999077 China; li.cheng@polyu.edu.hk

* Correspondence: gongfa.chen@gdut.edu.cn; Tel.: +86-136-6248-3527

Abstract: This paper compares the crack detection performance (in terms of precision and compu-
tational cost) of the YOLO_v2 using 11 feature extractors, which provides a base for realizing fast
and accurate crack detection on concrete structures. Cracks on concrete structures are an important
indicator for assessing their durability and safety, and real-time crack detection is an essential task
in structural maintenance. The object detection algorithm, especially the YOLO series network, has
significant potential in crack detection, while the feature extractor is the most important component
of the YOLO_v2. Hence, this paper employs 11 well-known CNN models as the feature extractor
of the YOLO_v2 for crack detection. The results confirm that a different feature extractor model of
the YOLO_v2 network leads to a different detection result, among which the AP value is 0.89, 0,
and 0 for ‘resnet18’, ‘alexnet’, and ‘vgg16’, respectively meanwhile, the ‘googlenet’ (AP = 0.84) and
‘mobilenetv2’ (AP = 0.87) also demonstrate comparable AP values. In terms of computing speed, the
‘alexnet’ takes the least computational time, the ‘squeezenet’ and ‘resnet18’ are ranked second and
third respectively; therefore, the ‘resnet18’ is the best feature extractor model in terms of precision
and computational cost. Additionally, through the parametric study (influence on detection results of
the training epoch, feature extraction layer, and testing image size), the associated parameters indeed
have an impact on the detection results. It is demonstrated that: excellent crack detection results can
be achieved by the YOLO_v2 detector, in which an appropriate feature extractor model, training
epoch, feature extraction layer, and testing image size play an important role.

Keywords: crack detection; YOLO network; feature extractor; feature extraction layer; computational
cost; detection precision

1. Introduction

Timely detection of cracks in concrete structures is an important step of structural
health monitoring (SHM) [1]. In recent years, due to aging and environmental impacts,
surface cracks of infrastructures, especially concrete structures, are a hidden danger that
needs to be focused on [2]. Therefore, it is necessary to detect the cracks of concrete
structures to prevent any further losses in their durability. In general, inspectors collect
images or videos through on-site optical instruments, process the collected data, and
finally draw the inspection conclusions; this is an effective method for simple tasks, but
it is unsuitable for large-scale inspection due to its low efficiency and high cost [3]. The
detection of bridge surface defects based on images is highly repetitive work [4]. In the
case of a large amount of data, manual detection is tedious, inefficient, and expensive [5].
Therefore, it is essential to investigate some automated methods, e.g., artificial intelligence
(AI) technology, to undertake this labor-intensive work.

AI technology provides a more advanced method for SHM, which has the ability
to perform various tasks (such as classification or regression) with outstanding perfor-
mance. A number of AI-based image processing methods can be used for bridge defect

Appl. Sci. 2021, 11, 813. https://doi.org/10.3390/app11020813 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1703-3362
https://orcid.org/0000-0001-7232-9583
https://orcid.org/0000-0001-6110-8099
https://doi.org/10.3390/app11020813
https://doi.org/10.3390/app11020813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020813
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/813?type=check_update&version=1

Appl. Sci. 2021, 11, 813 2 of 13

detection [5,6]. Fujita et al. detected cracks in an asphalt pavement surface using a sup-
port vector machine (SVM); Shi et al. detected road cracks using random structured
forests (RSF) [7]. Furthermore, as an emerging AI algorithm, the artificial neural network
(ANN) [8] has been used to classify rail surface cracks [9], and detect potholes on an asphalt
pavement surface [10], which has become a popular technique in the SHM field. However,
the practical application of this method is limited due to its slow convergence, over-fitting,
and high computational cost, etc. [11]. Therefore, a fast and automatic feature extraction
algorithm [12,13] is needed to process the huge monitoring data [12].

The application of deep convolutional neural network (DCNN) algorithms further
improve the detection method, and can automatically extract features from the raw data
and gradually obtain advanced features through multiple processing layers [14]. In the
field of SHM, the CNN can extract the signal distribution features from the images of fused
time and frequency domain information [15], extract the frequency features from the accel-
eration signals [12], and extract the structural damage features from the modal shapes [13].
Meanwhile, a DCNN uses partial connections and pooling of neurons, thus, requires less
computation, has better robustness, which makes the DCNN an effective and fast SHM
method. A lot of research has been conducted for SHM based on the DCNN [16,17] by
using vibration signals [12,18,19] and defect images [16,20,21]. In the field of defect images-
based SHM [22], image classification is a popular method for automatic defect detection.
The DCNN has been used in image classification for pavement cracks [23,24], sewer de-
fects [21], and road damages [25]. In further research to determine the location of defects, a
basic method was proposed to scan the image with a fixed size sliding window and then
apply the trained DCNN to each small window. With this method, Cha et al. proposed
a DCNN model to classify whether there are concrete cracks in each image block [16].
Liang et al. employed a transfer learning model (‘vgg-16’) [26] to classify two types of
defects: cracking and spalling [27]. These studies confirmed that the location of cracks
in an image can be obtained by using a sliding window. However, the challenge of this
sliding window method is to find the appropriate window size when dealing with defects
of different scales. Moreover, the computational cost of this method is very high, because
the DCNN classifier must be applied to every window in every image many times. To
improve the efficiency of detecting and locating an object (such as a crack), more advanced
object detection technology needs to be further explored.

Region-based classification or object detection provides a state-of-the-art method
for SHM. This method creates a bounding box around the region of interest (ROI), such
as cracks, spalls, components, etc. Common methods include two-stage and one-stage
algorithms. Two-stage algorithms include region-based CNN (R-CNN), Fast R-CNN, and
Faster R-CNN. The R-CNN has been applied to post-event building reconnaissance with
an accuracy of nearly 60% [28], and the related research shows that its computation speed
is low [29]. As an advanced version of the R-CNN, the Fast R-CNN is proposed to improve
computational efficiency and accuracy, and it is used to detect different defects and locations
of concrete structures [30]. Then a faster R-CNN (Faster R-CNN) is proposed by introducing
a region proposal network (RPN) [29], and it is employed to automatically detect structural
components of the RC bridge system [31] and cracks for asphalt pavements [32]. Although
the above studies demonstrated the ideal accuracy of two-stage detectors, their detection is
not very fast. High-speed detection is essential for the development of real-time automatic
inspection systems, which seem to be the future trend of the industry [33]. Due to the
above limitations, one-stage detectors have been proposed. The popular one-stage models
include You Only Look Once (YOLO) and single-shot multi-box detector (SSD). These are
faster than two-stage deep learning object detectors, such as region-based CNN (i.e., Faster
R-CNN) [34]. Recent studies employed the YOLO network to detect multiple concrete
bridge defects [6] and pavement cracks [35]; the SSD was also applied to detect road defects
in real-time [25]. However, some researchers found that locating defects using one-stage
detectors could compromise the accuracy of the detection [36]. The above research results
show that the crack detection method based on an object detection algorithm has become

Appl. Sci. 2021, 11, 813 3 of 13

a hot topic, and both two-stage and one-stage algorithms need a feature extractor (i.e., a
CNN model), but the effect of different feature extractors on image feature extraction is not
clear. With the continuous updating of neural networks, some well-known CNN models
are widely used to complete different situations, which will provide more suitable feature
extractors for defect detection. Therefore, the influence of different feature extractors on
crack detection is a problem worthy of in-depth investigation.

The application of transfer learning technology provides a state-of-the-art method
for feature extraction. As the well-known CNN models have strong feature extraction
ability, it will save a lot of time (no-training process) to use these CNN models as feature
extractors. Therefore, this paper compares various CNN models (e.g., ‘alexnet’, ‘resnet18’,
etc.) as the feature extractor of the YOLO_v2 to identify a model with high precision and
fast computational speed. Meanwhile, parametric studies are implemented to confirm the
effect of the relevant parameters on the detection results. Finally, the influence of different
feature layers on the detection results is revealed by feature visualization.

2. Methods

Popular programming languages such as Java, C++, Python, and MATLAB (Math-
Works Inc., Natick, MA, USA) are usually used to build the YOLO_v2, among which
MATLAB is more suitable for non-professional programmers. In this paper, the YOLO_v2
was established by using MATLAB, in which 11 CNN models were used respectively as
the feature extractor of the YOLO_v2 network. The precision and computational cost were
compared by using different feature extractors.

2.1. YOLO_v2

The YOLO_v2 object detector is a one-stage detection network, which runs a CNN
model (Figure 1) on an input image to produce feature images from a feature extraction
layer. Then, these feature images are input into the YOLO_v2 detection layer and the
classification and anchor box of the detection object are obtained. Therefore, the selection
of the feature extractor model would be an interesting focus for object detection. It should
be noted that the detailed feature extractor contains the convolution, pooling, and ReLU
layers [18].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14

accuracy of the detection [36]. The above research results show that the crack detection
method based on an object detection algorithm has become a hot topic, and both
two-stage and one-stage algorithms need a feature extractor (i.e., a CNN model), but the
effect of different feature extractors on image feature extraction is not clear. With the
continuous updating of neural networks, some well-known CNN models are widely
used to complete different situations, which will provide more suitable feature extractors
for defect detection. Therefore, the influence of different feature extractors on crack de-
tection is a problem worthy of in-depth investigation.

The application of transfer learning technology provides a state-of-the-art method
for feature extraction. As the well-known CNN models have strong feature extraction
ability, it will save a lot of time (no-training process) to use these CNN models as feature
extractors. Therefore, this paper compares various CNN models (e.g., ‘alexnet’, ‘res-
net18’, etc.) as the feature extractor of the YOLO_v2 to identify a model with high preci-
sion and fast computational speed. Meanwhile, parametric studies are implemented to
confirm the effect of the relevant parameters on the detection results. Finally, the influ-
ence of different feature layers on the detection results is revealed by feature visualiza-
tion.

2. Methods
Popular programming languages such as Java, C++, Python, and MATLAB (Math-

Works Inc., Natick, MA, USA) are usually used to build the YOLO_v2, among which
MATLAB is more suitable for non-professional programmers. In this paper, the YO-
LO_v2 was established by using MATLAB, in which 11 CNN models were used respec-
tively as the feature extractor of the YOLO_v2 network. The precision and computational
cost were compared by using different feature extractors.

2.1. YOLO_v2
The YOLO_v2 object detector is a one-stage detection network, which runs a CNN

model (Figure 1) on an input image to produce feature images from a feature extraction
layer. Then, these feature images are input into the YOLO_v2 detection layer and the
classification and anchor box of the detection object are obtained. Therefore, the selection
of the feature extractor model would be an interesting focus for object detection. It should
be noted that the detailed feature extractor contains the convolution, pooling, and ReLU
layers [18].

Figure 1. The YOLO_v2 architecture.

Furthermore, anchor boxes (Figure 2) were adopted to detect classes of objects in the
image. Anchor boxes are a set of predefined bounding boxes of certain heights and

Figure 1. The YOLO_v2 architecture.

Furthermore, anchor boxes (Figure 2) were adopted to detect classes of objects in the
image. Anchor boxes are a set of predefined bounding boxes of certain heights and widths.
These boxes (defined based on the object sizes of the samples) capture the scale and aspect
ratio of the specific object classes to be detected. The use of anchor boxes significantly
improves the efficiency of object detection [37], making real-time detection possible.

Appl. Sci. 2021, 11, 813 4 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 14

widths. These boxes (defined based on the object sizes of the samples) capture the scale
and aspect ratio of the specific object classes to be detected. The use of anchor boxes sig-
nificantly improves the efficiency of object detection [37], making real-time detection
possible.

For the detection layer, the YOLO_v2 predicted the location of the anchor box by the
following four steps (Figure 2):

Step 1: Obtained feature images from the feature extractor;
Step 2: The predefined anchor boxes were tiled across the image;
Step 3: To generate the final object detections, tiled anchor boxes that belonged to the

background class were removed;
Step 4: The location error (the distance between refined and predefined anchor box)

was gradually reduced by minimizing the loss function. As shown in Figure 2, the upper
left coordinates of the predefined anchor box were (x1, y1), and the refined anchor box
was (x2, y2). During training, the precise location of the anchor box was obtained by
minimizing the loss function (squared error loss, SEL):

2 2
2 1 2 1() ()SEL x x y y= − + − (1)

Figure 2. Locate the anchor box using the detection layer.

Finally, the most suitable anchor box (crack location) and the highest classification
score (crack or background) were obtained. As a result, the YOLO_v2 predicted the class
probability (i.e., how precisely the model found the object) and the crack location (i.e.,
using anchor box) for each image.

2.2. Transfer Learning-Based Feature Extractors
Transfer learning technology is the reuse of a pre-trained model on a new problem.

With transfer learning technology, we transferred the weights that CNN had learned at
‘Question A’ to a new ‘Question B’. Some well-known CNN models (e.g., alexnet, goog-
lenet, etc.) were trained on the ImageNet database [22] which was used in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [38]. These CNN models had strong
feature extraction ability and could classify images into 1000 object categories. Therefore,
we employed these excellent CNN models as feature extractors of the YOLO_v2.

(x1, y1)

(x2, y2)

Detected object

Predefined anchor box

Refined anchor box

Step 1 Step 2 Step 3 Step 4

Figure 2. Locate the anchor box using the detection layer.

For the detection layer, the YOLO_v2 predicted the location of the anchor box by the
following four steps (Figure 2):

Step 1: Obtained feature images from the feature extractor;
Step 2: The predefined anchor boxes were tiled across the image;
Step 3: To generate the final object detections, tiled anchor boxes that belonged to the
background class were removed;
Step 4: The location error (the distance between refined and predefined anchor box) was
gradually reduced by minimizing the loss function. As shown in Figure 2, the upper left
coordinates of the predefined anchor box were (x1, y1), and the refined anchor box was (x2,
y2). During training, the precise location of the anchor box was obtained by minimizing
the loss function (squared error loss, SEL):

SEL = (x2 − x1)
2 + (y2 − y1)

2 (1)

Finally, the most suitable anchor box (crack location) and the highest classification
score (crack or background) were obtained. As a result, the YOLO_v2 predicted the class
probability (i.e., how precisely the model found the object) and the crack location (i.e.,
using anchor box) for each image.

2.2. Transfer Learning-Based Feature Extractors

Transfer learning technology is the reuse of a pre-trained model on a new problem.
With transfer learning technology, we transferred the weights that CNN had learned at
‘Question A’ to a new ‘Question B’. Some well-known CNN models (e.g., alexnet, googlenet,
etc.) were trained on the ImageNet database [22] which was used in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [38]. These CNN models had strong feature
extraction ability and could classify images into 1000 object categories. Therefore, we
employed these excellent CNN models as feature extractors of the YOLO_v2.

In this paper, 11 well-known CNN models were employed as the YOLO_v2 feature
extractor. including: ‘alexnet’, ‘googlenet’, ‘mobilenetv2’, ‘inceptionv3’, ‘squeezenet’,
‘resnet18’, ‘resnet50’, ‘resnet101’, ‘vgg16’, ‘vgg19’, and ‘inceptionresnetv2’, which were
named as TN1, TN2, . . . , TN11, respectively. Table 1 lists their properties; Table 2 lists the

Appl. Sci. 2021, 11, 813 5 of 13

feature extraction layer of these well-known CNN models, the details are referred to in
the manual of the MATLAB [39]. The network included a series of processing layers, e.g.,
convolutional layer, pooling layer, fully connected layer, etc. RGB (three channels) images
were used as the input for all networks.

Table 1. The properties of these well-known convolutional neural network (CNN) models.

Network TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TN11

Depth (layers) 8 22 53 48 18 18 50 101 16 19 164

Model size (MB) 227 27 13 89 4.6 44 96 167 515 535 209

Table 2. The feature extraction layer of these well-known CNN models [39].

Network Feature Extraction Layer Network Feature Extraction Layer

TN1 ‘relu5’ TN7 ‘activation_40_relu’

TN2 ‘inception_4d-output’ TN8 ‘res4b22_relu’

TN3 ‘block_13_expand_relu’ TN9 ‘relu5_3’

TN4 ‘mixed7’ TN10 ‘relu5_4’

TN5 ‘fire5-concat’ TN11 ‘block17_20_ac’

TN6 ‘res4b_relu’

2.3. Experimental Setup and Performance Evaluation

An image dataset included 990 RGB crack images (namely CR, 227 × 227 pixels) of
a concrete bridge. Among them, 90% of the images were used for training (891 images)
and 10% for testing (99 images) the performance of the YOLO_v2. The ‘Image labeler’
toolbox in MATLAB was employed to label cracks (including the classification and location
of cracks with anchor boxes). Figure 3 shows two examples of the labeled images. The
YOLO_v2 was built using Deep Learning Toolbox in MATLAB. The specific parameters
included: (1) Optimizer: sgdm [40]; (2) Mini-batch-size: 8; (3) Maximum epoch: 30; (4)
Learning rate: 0.001. The training platform was performed on a computer with NVIDIA
GTX GeForce 1650 GPU, Intel Core i7-4790 @ 3.60 GHz CPU, windows 10.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 14

Figure 3. Labeled images by the ‘Image labeler’ toolbox.

The performance of the YOLO_v2 was investigated by comparing four factors:
(1) Feature extractor model. The 11 well-known CNN models (illustrated in Section 2.2)

were used as the feature extractor of the YOLO_v2;
(2) Maximum epoch. An epoch was a full circle in the entire training dataset. When the

precision of the YOLO_v2 reached a plateau and was clearly no longer improving,
the starting epoch of the plateau was defined as the maximum epoch. In this paper,
1~30 epochs were designed to observe the change of detection results with epochs.

(3) Feature images in different CNN layers. The optimal model obtained in Step (2) was
the feature extractor, and feature images of multiple layers were obtained and used
as the input of the YOLO_v2 detection layer, the influence of feature images of dif-
ferent layers on the detection results was studied.

(4) Testing image size. On the basis of Step (3), different sized (32 × 32, 64 × 64, 128 × 128,
256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048) images were used as the testing data.
The influence of testing image size on detection results was studied.
Computational cost and detection precision are important indexes to evaluate the

performance of the YOLO detector. The computation time (the unit is seconds) was the
processing time of the entire detection process, which included feature extraction and
detector training. Detection precision included precision, recall, and average precision
(AP). The following is a detailed explanation of these three terms:

Precision: represented the classification effect of the classifier, which was the ratio of
true positive instances to the total positive instances (Equation (2)). Recall: was a ratio of
true positive instances to the sum of true positives and false negatives in the detection
(Equation (3)).

TPP=
TP FP+

 (2)

TPR=
TP FN+

 (3)

where TP (true positive instances): positive instances that were predicted to be positive
instances. FN (false negative instances): positive instances that were predicted to be neg-
ative instances. FP (false positive instances): negative instances that were predicted to be
positive instances.

Figure 3. Labeled images by the ‘Image labeler’ toolbox.

Appl. Sci. 2021, 11, 813 6 of 13

The performance of the YOLO_v2 was investigated by comparing four factors:
(1) Feature extractor model. The 11 well-known CNN models (illustrated in Section 2.2)

were used as the feature extractor of the YOLO_v2;
(2) Maximum epoch. An epoch was a full circle in the entire training dataset. When

the precision of the YOLO_v2 reached a plateau and was clearly no longer improving,
the starting epoch of the plateau was defined as the maximum epoch. In this paper,
1~30 epochs were designed to observe the change of detection results with epochs.

(3) Feature images in different CNN layers. The optimal model obtained in Step (2)
was the feature extractor, and feature images of multiple layers were obtained and used
as the input of the YOLO_v2 detection layer, the influence of feature images of different
layers on the detection results was studied.

(4) Testing image size. On the basis of Step (3), different sized (32 × 32, 64 × 64,
128 × 128, 256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048) images were used as the testing
data. The influence of testing image size on detection results was studied.

Computational cost and detection precision are important indexes to evaluate the
performance of the YOLO detector. The computation time (the unit is seconds) was the
processing time of the entire detection process, which included feature extraction and
detector training. Detection precision included precision, recall, and average precision
(AP). The following is a detailed explanation of these three terms:

Precision: represented the classification effect of the classifier, which was the ratio of
true positive instances to the total positive instances (Equation (2)). Recall: was a ratio
of true positive instances to the sum of true positives and false negatives in the detection
(Equation (3)).

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP (true positive instances): positive instances that were predicted to be positive
instances. FN (false negative instances): positive instances that were predicted to be
negative instances. FP (false positive instances): negative instances that were predicted to
be positive instances.

AP was used to reflect the detection precision, which was a combined outcome of the
precision and recall metrics.

AP =
N

∑
k=1

P(k)∆R(k) (4)

where k = 1, 2, . . . , N; and N is the number of samples, P(k) is the precision of the k-th sample,
and is the difference of ∆R(k) the recall between the k-th sample and k − 1-th sample.

3. Results and Discussion
3.1. Crack Detection Results of the YOLO_v2

The testing images described in Section 2.3 were input into the trained YOLO_v2,
the detection results of using 11 CNN models as the feature extractors are illustrated in
Table 3. The feature extractor based on six transfer learning models achieved superior
detection results, the AP values were higher than 0.6. Among them, ‘resnet18’ achieved
the best detection results with the AP value reaching 0.89, and ‘googlenet’ (AP = 0.84) and
‘mobilenetv2’ (AP = 0.87) also had comparable AP values. The performance of some feature
extractors (i.e., ‘alexnet’, ‘resnet50’, ‘vgg16’) was unsatisfactory, and the AP value tended
to 0.

The computational cost was an important index to evaluate whether the model was
suitable for fast and real-time detection. In this paper, the computation time of the 11 models
was recorded and illustrated in Table 3. The ‘alexnet’ took the least computation time,
the ‘squeezenet’ and ‘resnet18’ were ranked second and third respectively in terms of the
computation time; the ‘inceptionresnetv2’ used the most computation time which was

Appl. Sci. 2021, 11, 813 7 of 13

more than 10 times that of ‘alexnet’. For a certain series of networks, the computational
cost would increase with the increase of network complexity, e.g., in the series of ‘resnet18’,
resnet50’, and ‘resnet101’. On the whole, ‘resnet18’ was the best detector in the trade-off
between detection precision and computational cost.

Table 3. The results of different feature extractors in locating cracks.

Models Detection Precision (AP) Computational Cost (s)

alexnet 0 2,266
googlenet 0.84 4,451

mobilenetv2 0.87 8,763
inceptionv3 0.16 9,720
squeezenet 0.60 2,873

resnet18 0.89 3,299
resnet50 0.02 10,321

resnet101 0.73 17,457
vgg16 0 13,580
vgg19 0.23 15,719

inceptionresnetv2 0.86 22,523

3.2. Parametric Study

Three parameters of the YOLO_v2 using ‘resnet18’ (as the feature extractor) were
studied, (1) Influence of the training epochs on detection results; (2) Influence of the feature
extraction layer on detection results; (3) Influence of the testing image size on detection
results.

(1) A case study for the maximum epoch was therefore performed on a training set
with 891 training images to determine the optimal epoch for the training. The AP value
and computing time were recorded in Figure 4, 22–30 epochs corresponded to the most
stable AP value, meanwhile, the computational cost increased with the increase of the
epoch number. Therefore, an optimal epoch of 22 was chosen for the best balance between
speed and precision.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14

and computing time were recorded in Figure 4, 22–30 epochs corresponded to the most
stable AP value, meanwhile, the computational cost increased with the increase of the
epoch number. Therefore, an optimal epoch of 22 was chosen for the best balance be-
tween speed and precision.

Figure 4. The AP value and computational cost of different epochs. (a) AP value; (b) computational cost. .

By studying the influence of epoch on detection results, the optimal detection preci-
sion could be achieved with fewer epochs. Because once the detection precision was sta-
ble, with the increase of epoch number, the computational cost would increase, which
was not necessary.

(2) Eight layers (L1~L8 in Figure 5) of the ‘resnet18’ were employed as the feature
extraction layers of the YOLO_v2 respectively. These networks were trained with the
training data, the computational cost was recorded, and then the testing data were input
into the eight YOLO_v2 detectors. The results are illustrated in Table 4. The AP value
increased first, and then decreased with the increase of the layer depth; ‘L6’ achieved the
best detection results. However, the computational time increased gradually by selecting
a deeper layer as the feature extraction layer.

Figure 5. The architecture of the ‘resnet18’.

Table 4. The detection results of different feature extraction layers (‘resnet18’).

Layers Detection Precision (AP) Computational Cost (s)
L1 0.18 2411
L2 0.40 2558
L3 0.82 2637
L4 0.80 2767

Input layer

Convolution layer

ReLU layer
Pooling layer

Output layer

=

L1

L2

L3

L4

L5

L6

L7

L8

Figure 4. The AP value and computational cost of different epochs. (a) AP value; (b) computational cost.

By studying the influence of epoch on detection results, the optimal detection precision
could be achieved with fewer epochs. Because once the detection precision was stable,
with the increase of epoch number, the computational cost would increase, which was
not necessary.

(2) Eight layers (L1~L8 in Figure 5) of the ‘resnet18’ were employed as the feature
extraction layers of the YOLO_v2 respectively. These networks were trained with the
training data, the computational cost was recorded, and then the testing data were input
into the eight YOLO_v2 detectors. The results are illustrated in Table 4. The AP value
increased first, and then decreased with the increase of the layer depth; ‘L6’ achieved the
best detection results. However, the computational time increased gradually by selecting a
deeper layer as the feature extraction layer.

Appl. Sci. 2021, 11, 813 8 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14

and computing time were recorded in Figure 4, 22–30 epochs corresponded to the most
stable AP value, meanwhile, the computational cost increased with the increase of the
epoch number. Therefore, an optimal epoch of 22 was chosen for the best balance be-
tween speed and precision.

Figure 4. The AP value and computational cost of different epochs. (a) AP value; (b) computational cost. .

By studying the influence of epoch on detection results, the optimal detection preci-
sion could be achieved with fewer epochs. Because once the detection precision was sta-
ble, with the increase of epoch number, the computational cost would increase, which
was not necessary.

(2) Eight layers (L1~L8 in Figure 5) of the ‘resnet18’ were employed as the feature
extraction layers of the YOLO_v2 respectively. These networks were trained with the
training data, the computational cost was recorded, and then the testing data were input
into the eight YOLO_v2 detectors. The results are illustrated in Table 4. The AP value
increased first, and then decreased with the increase of the layer depth; ‘L6’ achieved the
best detection results. However, the computational time increased gradually by selecting
a deeper layer as the feature extraction layer.

Figure 5. The architecture of the ‘resnet18’.

Table 4. The detection results of different feature extraction layers (‘resnet18’).

Layers Detection Precision (AP) Computational Cost (s)
L1 0.18 2411
L2 0.40 2558
L3 0.82 2637
L4 0.80 2767

Input layer

Convolution layer

ReLU layer
Pooling layer

Output layer

=

L1

L2

L3

L4

L5

L6

L7

L8

Figure 5. The architecture of the ‘resnet18’.

Table 4. The detection results of different feature extraction layers (‘resnet18’).

Layers Detection Precision (AP) Computational Cost (s)

L1 0.18 2411
L2 0.40 2558
L3 0.82 2637
L4 0.80 2767
L5 0.86 2944
L6 0.89 3299
L7 0.87 3739
L8 0 4155

(3) According to the optimal network obtained above (the YOLO_v2 with ‘resnet18’,
and ‘L6’ as the feature extraction layer), seven testing image sets (Section 2.3) with different
sizes were input into the YOLO_v2 respectively to evaluate the influence of image resolu-
tion (image size) on detection results (Table 5). The results indicated that: with the increase
of resolution, the AP value increased gradually and tended to become stable. However, The
FPS (frames per second), which evaluates the testing speed, decreased gradually with the
increase of resolution. Therefore, the image with an appropriate resolution could achieve
the optimal combination of precision and computing speed.

Table 5. Detection results of different sizes of testing images.

Image Size Detection Precision (AP) FPS

32 × 32 0 20
64 × 64 0.15 17

128 × 128 0.81 14
256 × 256 0.88 13
512 × 512 0.88 11

1024 × 1024 0.89 10
2048 × 2048 0.88 5

3.3. Visualization of Features

As the feature extractor of the YOLO_v2, the deep CNN network was a key component.
In this paper, the features extracted by ‘resnet18’ were visualized to explain the influence
of the feature extraction process on the detection results. The feature images of L1~L8
(Figure 5) were displayed respectively. Figure 6 is the feature images of L1 and L2, and 64

Appl. Sci. 2021, 11, 813 9 of 13

feature images were obtained for each layer. Some feature images showed the outline of the
crack. But there was interference by other non-target objects (some grass and background).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14

L5 0.86 2944
L6 0.89 3299
L7 0.87 3739
L8 0 4155

(3) According to the optimal network obtained above (the YOLO_v2 with ‘resnet18’,
and ‘L6’ as the feature extraction layer), seven testing image sets (Section 2.3) with dif-
ferent sizes were input into the YOLO_v2 respectively to evaluate the influence of image
resolution (image size) on detection results (Table 5). The results indicated that: with the
increase of resolution, the AP value increased gradually and tended to become stable.
However, The FPS (frames per second), which evaluates the testing speed, decreased
gradually with the increase of resolution. Therefore, the image with an appropriate res-
olution could achieve the optimal combination of precision and computing speed.

Table 5. Detection results of different sizes of testing images.

Image Size Detection Precision (AP) FPS
32 × 32 0 20
64 × 64 0.15 17

128 × 128 0.81 14
256 × 256 0.88 13
512 × 512 0.88 11

1024 × 1024 0.89 10
2048 × 2048 0.88 5

3.3. Visualization of Features
As the feature extractor of the YOLO_v2, the deep CNN network was a key com-

ponent. In this paper, the features extracted by ‘resnet18’ were visualized to explain the
influence of the feature extraction process on the detection results. The feature images of
L1~L8 (Figure 5) were displayed respectively. Figure 6 is the feature images of L1 and L2,
and 64 feature images were obtained for each layer. Some feature images showed the
outline of the crack. But there was interference by other non-target objects (some grass
and background).

Figure 6. Feature images of L1 and L2. (a) Raw image; (b) Feature images of L1 (64 images); (c) Feature images of L2 (64
images).

Figure 7 is the feature images of L3 and L4, and 128 feature images were obtained for
each layer. Compared with L1 and L2, the resolution of the feature images was reduced
due to the convolution process. Some extra interference was filtered out. The ideal fea-
ture (crack shape, marked by a red circle) of the crack was extracted from some feature

Figure 6. Feature images of L1 and L2. (a) Raw image; (b) Feature images of L1 (64 images); (c) Feature images of L2
(64 images).

Figure 7 is the feature images of L3 and L4, and 128 feature images were obtained for
each layer. Compared with L1 and L2, the resolution of the feature images was reduced
due to the convolution process. Some extra interference was filtered out. The ideal feature
(crack shape, marked by a red circle) of the crack was extracted from some feature images.
Therefore, using L3 and L4 as a feature extraction layer, the detection effect (Table 4) was
better than L1 and L2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14

images. Therefore, using L3 and L4 as a feature extraction layer, the detection effect (Ta-
ble 4) was better than L1 and L2.

Figure 7. Feature images of L3 and L4. (a) Feature images of L3 (128 images); (b) Feature images of L4 (128 images).

Figure 8 is the feature images of L5 and L6, and 256 feature images were obtained for
each layer. The resolution continued to decrease and the features were still visible, as
shown in the marked location in Figure 8. Using L5 and L6 as feature extraction layers,
the detection performance (Table 4) remained at a high level.

Figure 7. Feature images of L3 and L4. (a) Feature images of L3 (128 images); (b) Feature images of
L4 (128 images).

Appl. Sci. 2021, 11, 813 10 of 13

Figure 8 is the feature images of L5 and L6, and 256 feature images were obtained
for each layer. The resolution continued to decrease and the features were still visible, as
shown in the marked location in Figure 8. Using L5 and L6 as feature extraction layers, the
detection performance (Table 4) remained at a high level.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

Figure 8. Feature images of L5 and L6. (a) Feature images of L5 (256 images); (b) Feature images of L6 (256 images).

Figure 9 is the feature images of L7 and L8, and 512 feature images were obtained for
each layer. At this point, the resolution continued to decrease. At L7, the crack features
were still visible, but at L8, the image became extremely fuzzy and the visual features
disappeared. This was also confirmed in Table 4 (detection results).

Figure 9. Feature images of L7 and L8. (a) Feature images of L7 (512 images); (b) Feature images of L8 (512 images).

In general, a deeper network layer (deeper layer to get lower resolution feature im-
age) could help to filter out some non-target objects (grass and background). However, it
did not mean that the lower the resolution, the better the detection results. If the resolu-

Figure 8. Feature images of L5 and L6. (a) Feature images of L5 (256 images); (b) Feature images of L6 (256 images).

Figure 9 is the feature images of L7 and L8, and 512 feature images were obtained for
each layer. At this point, the resolution continued to decrease. At L7, the crack features
were still visible, but at L8, the image became extremely fuzzy and the visual features
disappeared. This was also confirmed in Table 4 (detection results).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

Figure 8. Feature images of L5 and L6. (a) Feature images of L5 (256 images); (b) Feature images of L6 (256 images).

Figure 9 is the feature images of L7 and L8, and 512 feature images were obtained for
each layer. At this point, the resolution continued to decrease. At L7, the crack features
were still visible, but at L8, the image became extremely fuzzy and the visual features
disappeared. This was also confirmed in Table 4 (detection results).

Figure 9. Feature images of L7 and L8. (a) Feature images of L7 (512 images); (b) Feature images of L8 (512 images).

In general, a deeper network layer (deeper layer to get lower resolution feature im-
age) could help to filter out some non-target objects (grass and background). However, it
did not mean that the lower the resolution, the better the detection results. If the resolu-

Figure 9. Feature images of L7 and L8. (a) Feature images of L7 (512 images); (b) Feature images of L8 (512 images).

Appl. Sci. 2021, 11, 813 11 of 13

In general, a deeper network layer (deeper layer to get lower resolution feature image)
could help to filter out some non-target objects (grass and background). However, it did not
mean that the lower the resolution, the better the detection results. If the resolution was too
low, it was easy to ignore the features of the object (crack), which can be confirmed in Table 4.
Therefore, the selection of the feature extraction layer was worth further studying, which
determined the feature information obtained by the YOLO_v2 detection layer. Figure 10
shows some results of crack feature extraction (‘resnet18’ with ‘L6’ feature extraction layer).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14

tion was too low, it was easy to ignore the features of the object (crack), which can be
confirmed in Table 4. Therefore, the selection of the feature extraction layer was worth
further studying, which determined the feature information obtained by the YOLO_v2
detection layer.
Figure 10 shows some results of crack feature extraction (‘resnet18’ with ‘L6’ feature ex-
traction layer).

Figure 10. Results of crack feature extraction.

4. Conclusions
In this paper, we have compared the detection performance of 11 well-known CNN

models as the YOLO_v2 feature extractors and identified an excellent feature extractor
based on the precision and computational cost. Then, the parametric studies were carried
out: (1) Influence of the training epochs on detection results. (2) The influence of different
feature extraction layers on the detection results was compared. (3) The size of the testing
images also affects the detection results. The associated parameters indeed have an im-
pact on the detection results. Finally, the working mechanism of the feature extractor was
explained by visualizing the features obtained by the feature extractor.

Based on the above research results, this paper draws the following conclusions:
1. The comparison of 11 well-known network models indicated that the ‘resnet18’ has

a high precision (AP = 0.89) and fast computing speed.
2. Influence of relevant parameters on detection results:

(a) Once the detection precision is stable, there is no need to increase the epoch
number, which will increase the computing cost.

(b) An appropriate selection of the feature extraction layer can help to improve the
detection results. Too shallow or too deep layers can also lead to unsatisfactory
detection results.

(c) The detection precision increases with the resolution of the images used; but
once it reaches the optimal value, it is meaningless to further increase the image
resolution, as it means more detection time.

3. In the process of feature visualization, the feature extractor can extract effective
crack features and confirms the conclusion of 2 (b).

Author Contributions: S.T. contributed to the paper in conceptualization, methodology, investi-
gation, formal analysis, original draft preparation, software, visualization, and data curation. Z.L.
contributed to the paper in conceptualization, methodology, investigation, formal analysis, original
draft preparation, and supervision. G.C. and L.C. contributed to the paper in investigation, formal
analysis methodology, investigation, and review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Figure 10. Results of crack feature extraction.

4. Conclusions

In this paper, we have compared the detection performance of 11 well-known CNN
models as the YOLO_v2 feature extractors and identified an excellent feature extractor
based on the precision and computational cost. Then, the parametric studies were carried
out: (1) Influence of the training epochs on detection results. (2) The influence of different
feature extraction layers on the detection results was compared. (3) The size of the testing
images also affects the detection results. The associated parameters indeed have an impact
on the detection results. Finally, the working mechanism of the feature extractor was
explained by visualizing the features obtained by the feature extractor.

Based on the above research results, this paper draws the following conclusions:

1. The comparison of 11 well-known network models indicated that the ‘resnet18’ has a
high precision (AP = 0.89) and fast computing speed.

2. Influence of relevant parameters on detection results:

(a) Once the detection precision is stable, there is no need to increase the epoch
number, which will increase the computing cost.

(b) An appropriate selection of the feature extraction layer can help to improve the
detection results. Too shallow or too deep layers can also lead to unsatisfactory
detection results.

(c) The detection precision increases with the resolution of the images used; but
once it reaches the optimal value, it is meaningless to further increase the
image resolution, as it means more detection time.

3. In the process of feature visualization, the feature extractor can extract effective crack
features and confirms the conclusion of 2 (b).

Author Contributions: S.T. contributed to the paper in conceptualization, methodology, investiga-
tion, formal analysis, original draft preparation, software, visualization, and data curation. Z.L.
contributed to the paper in conceptualization, methodology, investigation, formal analysis, original
draft preparation, and supervision. G.C. and L.C. contributed to the paper in investigation, formal
analysis methodology, investigation, and review and editing. All authors have read and agreed to
the published version of the manuscript.

Appl. Sci. 2021, 11, 813 12 of 13

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data, models, or code generated or used during the study
are available from the corresponding author by request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A review on computer vision based defect detection and condition

assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 2015, 29, 196–210. [CrossRef]
2. Prakash, G.; Narasimhan, S.; Al-Hammoud, R. A two-phase model to predict the remaining useful life of corroded reinforced

concrete beams. J. Civil Struct. Health Monit. 2019, 9, 183–199. [CrossRef]
3. Xu, J.; Gui, C.; Han, Q. Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural

network. Comput. Aided Civil Infrastruct. Eng. 2020, 35, 1160–1174. [CrossRef]
4. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Buyukozturk, O. Autonomous Structural Visual Inspection Using Region-Based

Deep Learning for Detecting Multiple Damage Types. Comput. Aided Civil Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]
5. Li, G.; Ren, X.; Qiao, W.; Ma, B.; Li, Y. Automatic bridge crack identification from concrete surface using ResNeXt with

postprocessing. Struct. Control Health Monit. 2020, 27, e2620. [CrossRef]
6. Zhang, C.; Chang, C.C.; Jamshidi, M. Concrete bridge surface damage detection using a single-stage detector. Comput. Aided Civil

Infrastruct. Eng. 2019, 35, 389–409. [CrossRef]
7. Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell.

Transp. Syst. 2016, 17, 3434–3445. [CrossRef]
8. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 2015, 29, 31–44. [CrossRef]
9. Wang, L.; Zhuang, L.; Zhang, Z. Automatic Detection of Rail Surface Cracks with a Superpixel-Based Data-Driven Framework.

J. Comput. Civil Eng. 2019, 33, 04018053. [CrossRef]
10. Hoang, N.D. An Artificial Intelligence Method for Asphalt Pavement Pothole Detection Using Least Squares Support Vector

Machine and Neural Network with Steerable Filter-Based Feature Extraction. Adv. Civil Eng. 2018, 4, 1–12. [CrossRef]
11. Yao, X. Evolutionary Artificial Neural Networks. Int. J. Neural Syst. 1993, 4, 203–222. [CrossRef]
12. Lin, Y.Z.; Nie, Z.H.; Ma, H.W. Structural Damage Detection with Automatic Feature extraction through Deep Learning.

Comput. Aided Civil Infrastruct. Eng. 2017, 32, 1–22. [CrossRef]
13. Zhong, K.; Teng, S.; Liu, G.; Chen, G.; Cui, F. Structural Damage Features Extracted by Convolutional Neural Networks from

Mode Shapes. Appl. Sci. 2020, 10, 4247. [CrossRef]
14. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
15. Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional neural network-based data anomaly detection method using multiple information

for structural health monitoring. Struct. Control Health Monit. 2019, 26, e2296. [CrossRef]
16. Cha, Y.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. Aided Civil Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
17. Rafiei, M.H.; Adeli, H. A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Des.

Tall Spec. Build. 2017, 26, e1400. [CrossRef]
18. Teng, S.; Chen, G.; Gong, P.; Liu, G.; Cui, F. Structural damage detection using convolutional neural networks combining strain

energy and dynamic response. Meccanica 2019, 55, 945–959. [CrossRef]
19. Teng, S.; Chen, G.; Liu, G.; Lv, J.; Cui, F. Modal Strain Energy-Based Structural Damage Detection Using Convolutional Neural

Networks. Appl. Sci. 2019, 9, 3376. [CrossRef]
20. Gao, Y.; Mosalam, K.M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Comput. Aided Civil Infras-

truct. Eng. 2018, 33, 748–768. [CrossRef]
21. Kumar, S.S.; Abraham, D.M.; Jahanshahi, M.R.; Iseley, T.; Starr, J. Automated defect classification in sewer closed circuit television

inspections using deep convolutional neural networks. Autom. Constr. 2018, 91, 273–283. [CrossRef]
22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceed-

ings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012;
pp. 1097–1105.

23. Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement
Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput. Aided Civil Infrastruct. Eng. 2017, 32, 805–819.
[CrossRef]

24. Li, B.; Wang, K.C.P.; Zhang, A.; Yang, E.; Wang, G. Automatic classification of pavement crack using deep convolutional neural
network. Int. J. Pavement Eng. 2020, 21, 457–463. [CrossRef]

25. Hiroya, M.; Yoshihide, S.; Toshikazu, S.; Takehiro, K.; Hiroshi, O. Road Damage Detection and Classification Using Deep Neural
Networks with Smartphone Images. Comput. Aided Civil Infrastruct. Eng. 2018, 33, 1127–1141.

http://doi.org/10.1016/j.aei.2015.01.008
http://doi.org/10.1007/s13349-019-00327-w
http://doi.org/10.1111/mice.12563
http://doi.org/10.1111/mice.12334
http://doi.org/10.1002/stc.2620
http://doi.org/10.1111/mice.12500
http://doi.org/10.1109/TITS.2016.2552248
http://doi.org/10.1109/2.485891
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000799
http://doi.org/10.1155/2018/7419058
http://doi.org/10.1142/S0129065793000171
http://doi.org/10.1111/mice.12313
http://doi.org/10.3390/app10124247
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1002/stc.2296
http://doi.org/10.1111/mice.12263
http://doi.org/10.1002/tal.1400
http://doi.org/10.1007/s11012-019-01052-w
http://doi.org/10.3390/app9163376
http://doi.org/10.1111/mice.12363
http://doi.org/10.1016/j.autcon.2018.03.028
http://doi.org/10.1111/mice.12297
http://doi.org/10.1080/10298436.2018.1485917

Appl. Sci. 2021, 11, 813 13 of 13

26. Kaur, T.; Gandhi, T.K. Automated Brain Image Classification Based on VGG-16 and Transfer Learning. In Proceedings of the 2019
International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019.

27. Liang, Y.; Bing, L.; Wei, L.; Liu, Z.; Xiao, J. Deep Concrete Inspection Using Unmanned Aerial Vehicle Towards CSSC Database.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada,
24–28 September 2017; pp. 24–28.

28. Yeum, C.M.; Dyke, S.J.; Ramirez, J. Visual data classification in post-event building reconnaissance. Eng. Struct. 2018, 155, 16–24.
[CrossRef]

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

30. Xu, Y.; Wei, S.; Bao, Y.; Li, H. Automatic seismic damage identification of reinforced concrete columns from images by a
region-based deep convolutional neural network. Struct. Control Health Monit. 2019, 26, e2313. [CrossRef]

31. Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian
optimization. Comput. Aided Civil Infrastruct. Eng. 2018, 3, 112–119. [CrossRef]

32. Tran, V.P.; Tran, T.S.; Lee, H.J.; Kim, K.D.; Baek, J.; Nguyen, T.T. One stage detector (RetinaNet)-based crack detection for asphalt
pavements considering pavement distresses and surface objects. J. Civil Struct. Health Monit. 2020. [CrossRef]

33. Lattanzi, D.; Miller, G. Review of Robotic Infrastructure Inspection Systems. J. Infrastruct. Syst. 2017, 23, 04017004. [CrossRef]
34. Yin, X.; Chen, Y.; Bouferguene, A.; Zaman, H.; Kurach, L. A deep learning-based framework for an automated defect detection

system for sewer pipes. Autom. Constr. 2019, 109, 102967. [CrossRef]
35. Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.-S.; Ding, L. Automated pavement crack detection and segmentation based on

two-step convolutional neural network. Comput. Aided Civil Infrastruct. Eng. 2020, 35, 1291–1305. [CrossRef]
36. Li, R.; Yuan, Y.; Zhang, W.; Yuan, Y. Unified Vision-Based Methodology for Simultaneous Concrete Defect Detection and

Geolocalization. Comput. Aided Civil Infrastruct. Eng. 2018, 33, 527–544. [CrossRef]
37. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
38. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. ImageNet

Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
39. Available online: http://www.mathworks.com/ (accessed on 14 December 2020).
40. Mandt, S.; Hoffman, M.D.; Blei, D.M. Stochastic Gradient Descent as Approximate Bayesian Inference. J. Mach. Learn. Res. 2017,

18, 1–35.

http://doi.org/10.1016/j.engstruct.2017.10.057
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1002/stc.2313
http://doi.org/10.1111/mice.12425
http://doi.org/10.1007/s13349-020-00447-8
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
http://doi.org/10.1016/j.autcon.2019.102967
http://doi.org/10.1111/mice.12622
http://doi.org/10.1111/mice.12351
http://doi.org/10.1007/s11263-015-0816-y
http://www.mathworks.com/

	Introduction
	Methods
	YOLO_v2
	Transfer Learning-Based Feature Extractors
	Experimental Setup and Performance Evaluation

	Results and Discussion
	Crack Detection Results of the YOLO_v2
	Parametric Study
	Visualization of Features

	Conclusions
	References

