
Radiation modes and sound radiation from a flexible structure
mounted in a duct

Yang Liu,1,a) Jingtao Du,1,b) and Li Cheng2

1College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

ABSTRACT:
The concept of the radiation modes, originally proposed for free-field problems, has found its widespread use in

sound radiation analyses of vibrating structures and their active control applications. In this paper, the sound radia-

tion of a flexible structure, flush-mounted inside a duct in both 2D and 3D configurations, is investigated via an

energy-based formulation in conjunction with the near-field integration technique. The structural radiation character-

istics are first discussed in terms of modal radiation efficiency, which exhibits obvious oscillating behavior with

respect to frequencies, in which symmetric patterns are dominant with smooth variations for small acoustic

wavenumbers. Then the interior sound radiation modes are investigated. It is shown that, as compared with their

free-space counterparts, the lower-order radiation modes in a duct are more sensitive and prone to be affected by the

duct starting from its cut-on frequency. Drastic changes in the radiation mode shapes are observed around the cut-on

frequency and each of its multiples/harmonics. Finally, analyses are extended to a coupled panel-duct system. It is

observed that, contrary to the free-space case, lower-order radiation modes exhibit predominant variations along the

duct length direction, suggesting a possible simplification of the 3D configuration into a 2D one.
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I. INTRODUCTION

Sound radiation from vibrating structures into an acous-

tic medium is the key issue in structural acoustics and is rel-

evant to a wide variety of engineering problems. After early

attempts to solve the acoustic radiation output via indepen-

dently radiating surface velocity distributions,1–3 the con-

cept of “radiation modes”4,5 was proposed, which triggered

extensive investigations into sound radiation from vibrating

flexible structures into a free space, as well as the explora-

tion of its use in various applications such as active control.6

Radiation modes can be derived through the eigen-functions

or singular value decomposition of the radiation resistance

matrix, and their radiation efficiencies are proportional to

the corresponding eigenvalues of the radiation resistance

matrix.7 Such modal construction represents particular

velocity distribution patterns on the radiator surface, which

radiate sound independently and are decoupled from each

other. The spatial shape and the radiation efficiencies of

such radiation modes only depend on the geometry, size,

and shape of the radiator, but not its material properties or

boundary conditions. Owing to these appealing features,

only a few low-order radiation modes need to be considered

to achieve an effective estimation or the control of the sound

radiation of a structure.4 Since its establishment, the concept

has been widely used, mainly for sound radiation problems

in free fields. For example, Currey and Cunefare8 examined

the bounding and convergence behavior of radiation effi-

ciencies of the exterior acoustic modes of a finite baffled

beam and found that the acoustic radiation modes of an arbi-

trary 3D structure exhibit the same frequency grouping as

those for spheres.9 Bai further employed the radiation modes

for estimating the sound power and the far-field pressure

radiated by a complex source, without requiring any special

measuring environment.10 Mapped radiation modes were

also used by Wu et al.11,12 to achieve efficient and accurate

prediction of the sound radiation power. Marburg et al.13

exploited the radiation modes to identify the surface area of

a vibrating structure that contributes to the total radiated

sound power. Meanwhile, the concept of the radiation

modes has also been used in various active noise control

applications. The aim of existing studies varies from achiev-

ing efficient weighting schemes for sensors to reducing the

controller dimensionality to getting reduced order modeling/

design of radiation filters.14–16

From the aforementioned works, the benefit of using

radiation modes has been thoroughly demonstrated for vari-

ous problems of sound radiation in a free space. In contrast,

a less investigated problem is the one involving sound radia-

tion/transmission from flexible structures into a confined

space—a situation frequently encountered in practice17–20—

where the sound wave reflection and interaction pose

additional challenges. Some useful attempts include the exten-

sion of the concept of radiation modes to a vibro-acoustic
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coupling system comprising a flexible structure and a

completely enclosed cavity.21 Subsequent research efforts

have been devoted to the use of such interior radiation modes

for developing various structural error sensing systems to

attenuate the total acoustic potential energy in acoustical

cavities.22–26

Another type of problem, different from the free space

and the completely enclosed configurations, is the sound

radiation into a duct by its flexible wall. The configuration is

relevant to a wide spectrum of problems encountered in

ducts, such as air conditioning and ventilation systems,

which have been attracting persistent attention in the noise

control community. The problem of the vibro-acoustic inter-

action of flush-mounted flexible structures and the sound

propagation inside the duct has long been taken as a bench-

mark problem in the open literature, with potential applica-

tions such as break in/out noise problems in ducts,

transmission loss analyses, and flow-through plate silencer

designs.27–34 To the best of our knowledge, radiation modes

in a duct environment have not been investigated. As a

result, how radiation modes in a duct behave as compared

with their well-known free-field counterparts still remains

unclear. Therefore, it is believed that such an analysis would

shed light on the vibro-acoustic interaction mechanisms to

help conceive efficient duct active/passive noise control

devices.

Motivated by this, the sound radiation characteristics of

a flexible structure flush-mounted in a duct and the interior

sound radiation modes inside the duct are investigated in

this paper through the establishment of a coupled vibro-

acoustic model in conjunction with Rayleigh-Ritz proce-

dure. In the model, the radiated sound pressure from the

wall oscillation is calculated via the surface velocity inte-

gral,29 subsequently giving the radiated sound power.

Radiation modes in the duct, in both 2D and 3D configura-

tions, are obtained through eigen-decompositions of the

radiation resistance matrix. The objective of this paper is

twofold: the study of structural radiation characteristics of a

practical vibrating structure used as a duct noise mitigation

measure, and the exploration of radiation modes inside an

acoustic duct in both 2D and 3D configurations. Finally,

some concluding remarks are summarized.

II. THEORETICAL FORMULATION

A. Vibro-acoustic modeling of a structure-duct
system

A 2D beam-duct model comprising a flexible beam cou-

pled to a straight duct is considered first and will later be

extended to a 3D panel-duct configuration. As illustrated in

Fig. 1, the flexible beam, flush-mounted along the inner wall

of the duct, is excited by a harmonic force F(xs), radiating

sound into the duct with anechoic terminations. The length

of the flexible beam L and the duct height h are also shown

in the figure, along with the coordinate system used for the

modelling, in which the origin O is located at the left end of

the flexible beam.

The transverse displacement of the flexible beam can be

expressed through modal expansion as

uðxÞ ¼
X1
mx¼1

amx
/mx
ðxÞ; (1)

where amx
represents the complex modal amplitude and

/mx
ðxÞ the mode shape function of the beam.

The sound pressure radiated from the beam into the

duct can be estimated through surface velocity integral,29

written as

Pradðx; yÞ ¼
q0

2h

X1
m¼0

x
km

wmðyÞ
ðL

0

wmðysÞ
���
ys¼0

v

� Gðx; x0Þdx0; (2)

where q0 is the air density; ys the y axis coordinate on the

beam; wm(y) the duct acoustic mode shape function;

v¼ ixu; and G(x, x0) and km are Green’s function and modal

wavenumber, respectively, defined as

G ¼ Hðx� x0Þe�ikmðx�x0Þ þ Hðx0 � xÞeþikmðx�x0Þ; (3a)

km ¼
x
ic0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmp=k0hÞ2 � 1

q
; (3b)

here, H is the Heaviside function, and c0 the sound speed in

air. Zero-order plane waves correspond to m¼ 0, while

higher-order modes correspond to m> 1.

An energy formulation is adopted, which allows a more

flexible inclusion of any vibration or acoustic devices in a

unified manner through their energy description. For the

transverse vibration of the flexible beam, the corresponding

Lagrangian system is expressed as

Lbeam ¼ Ubeam � Tbeam þWP þWF; (4)

where Ubeam and Tbeam are the total potential and kinetic

energies associated with the vibration of the beam, respec-

tively; WP means the work done by the sound pressure over

the upper surface of the beam; WF represents the work done

by the excitation force, namely,

Ubeam ¼
1

2
EI

ðL

0

@2wðxÞ
@x2

� �2

dx; (5a)

FIG. 1. (Color online) Schematic of the coupled beam-duct vibro-acoustic

system.
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Tbeam ¼
1

2
x2qs

ðL

0

u2ðxÞdx; (5b)

and

Wp ¼
ðL

0

Pradudx; (6a)

WF ¼
ðL

0

Fudðx� xsÞdx; (6b)

in which q, EI, and s are the mass density, bending stiffness,

and the cross-sectional area of the beam, respectively.

Substituting Eqs. (1) and (2) into Eq. (4) and extremizing

the Lagrangian system with respect to the modal amplitude

coefficients amx
yield a set of linear equations. For numerical

implementation, the decomposition series is truncated into

finite terms to form the following system equations in a

matrix form:

ðK� x2Mþ ixKpÞa ¼ �F; (7)

in which K and M are the stiffness and mass matrices of the

in vacuo flexible beam, respectively; Kp is the coupling

matrix characterizing the beam-duct interaction; a is a vec-

tor containing all the unknown coefficients a1,…,amx
; and F

is the load vector due to the external excitation applied on

the flexible beam. The solution of Eq. (7) gives the modal

amplitude vector a, thus allowing the calculation of all other

vibro-acoustic response metrics. It is noted that the

Lagrangian system is used for the description of the struc-

tural dynamics, through which the vibro-acoustic coupling

is considered via the work done by the sound pressure over

the interface.

B. Modal radiation efficiency of the beam and
radiation modes in the duct

The total radiated sound power generated by the vibrat-

ing beam in the duct can be calculated by35

Wrad ¼
1

2

ðL

0

Re v�ðx; yÞPradðx; yÞ½ �dx; (8)

where Prad(x, y) is the sound pressure over the beam surface;

v(x, y) is its normal velocity and Re [] and * denote the real

part and the complex conjugate of a complex variable,

respectively. Substituting Eqs. (1) and (2) into the above

equation yields

Wrad ¼ Re
ðixÞ2q0

4h

X1
m¼0

x
km

wmðysÞ2

�
ðL

0

ðL

0

X1
mx¼1

amx
/ðx0Þ � Gðx; x0Þdx0

�
X1
m0x¼1

am0x/ðxÞdx ¼ aHQa; (9)

in which the superscript H denotes the Hermitian transpose

operation; Q is a real and symmetric matrix in which the

diagonal and the off-diagonal terms represent the self-

interaction and mutual-interaction, respectively, expressed

as

Qmxm0x¼
ðixÞ2q0

4h
Re

X1
m¼0

X1
n¼0

x
km

wmðysÞ2
(

�
ðL

0

/mx
ðxÞ
ðL

0

/mx0
ðx0Þ�Gmðx;x0Þdx0dx

)
: (10)

In the subsequent equations, the notation Re{} is omit-

ted for simplicity. Considering a beam with simply sup-

ported boundaries, /mx
ðxÞ ¼ sinðmxpx=L), Q can then be

expressed as

Qmxm0x ¼
ðixÞ2L2q0

4h

X1
m¼0

x
km

wmðysÞ2

� m0xpmxpðcos mxp� e�ikmLÞðcos mxpþ cos m0xpÞ
ðm0x2p2 � k2

mL2Þðm2
xp

2 � k2
mL2Þ

 

þ
ikmdmxm0x

ðm2
xp

2 � k2
mL2Þ

!
; (11)

where d is the Kronecker delta function.

The radiation efficiency of the vibrating beam is defined

as35

r ¼ Wrad=q0c0STh _u2ðtÞi; (12)

where ST is the total area of the radiator and h�_u2i is the

mean-square velocity averaged over both time and space,

namely,

h _u2ðtÞi ¼ 1

ST

ðST

0

_uðsÞ _uðsÞds ¼ ðixÞ2 1

ST

X1
n¼1

ST

2
a2

n: (13)

For a single structural mode, the radiated acoustic

power can be expressed as a special case of Eq. (9), namely

Wrad¼ jaij2Qmxmx0. The modal radiation efficiency of struc-

ture modes is defined as

rif ¼ 1=ðixÞ2 � Qif = q0c0ST=2
� �

; (14)

in which Qij is the (i, j) term in matrix Q, which is associ-

ated with the ith and jth structural mode shape /i(x) and

/j(x). For i¼ j, rii can be seen as the self-radiation effi-

ciency of the ith structural mode, and i 6¼ j represents the

normalized mutual-interaction terms with respect to the off-

diagonal elements. Upon dividing the structure surface into

pieces with sufficiently small size compared to the wave-

length, the vector of complex linear velocities of each of

these elemental sources is denoted _u. The vector of complex

acoustic pressure in front of each source can be determined

through the acoustic impedance Z, expressed as
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p ¼ Z _u: (15)

Then the sound power radiated by an array of elements can

be estimated by4

W ¼ S

2
ReðvHpÞ ¼ S

2
ReðvHZvÞ ¼ vHRv ¼ vHYHKYv;

(16)

where the radiation resistance matrix for elemental radia-

tors, R, is real and symmetric, so that it allows for an eigen-

value/eigenvector decomposition in the form of R¼YHKY.

In this way, the radiation mode shapes can be obtained

directly from the columns of matrix Y, which correspond to

the eigenvectors of the radiation matrix R.

Assuming that the beam vibration is described by a set

of N structural modes of known mode shape, with complex

amplitudes given by the elements of the vector a, the veloc-

ity vector at I points on the structure, v, can then be written

as

v ¼ Ua; (17)

where the elements of the I�N matrix U depend only on

the known mode shapes.

Combining the Eqs. (9) and (17), one gets4

W ¼ vHRv ¼ aHUTRUa ¼ aHQa: (18)

In this formulation, the radiation resistance matrix R

can be obtained once the modal shape matrix U and the inte-

gral matrix Q in Eq. (9) are determined. The advantage of

expressing the radiated power in the form of W¼ vHYTKYv

is that the radiation mode amplitudes are expressed directly

in terms of the motion of an array of elements over the sur-

face of the radiating body, instead of structural modal

amplitudes.

C. Extension to 3-D rectangular panel-duct interaction
model

The above modeling framework can be extended to 3D

configuration by replacing the beam by a rectangular plate.

Similarly, the flexural displacement function of the panel

can be rewritten as

uðx; yÞ ¼
X1
mx¼1

X1
my¼1

amxmy
umxmy

ðx; yÞ; (19)

where Lx and Ly are the panel length and width, respectively,

and umxmy
is the mode shape function.

The corresponding Lagrangian system for the panel is

expressed as

Lpanel ¼ Upanel � Tpanel þWP þWF; (20)

where Upanel and Tpanel are the total potential and kinetic

energies of the vibrating panel, respectively, namely,

Upanel¼
B

2

ðLx

0

ðLy

0

@2u

@x2

� 	2

þ @2u

@y2

 !2
8<
:

þ2l
@2u

@x2

@2u

@y2
þ2ð1�lÞ @2u

@x@y

 !2
9=
;dxdy ; (21)

Tpanel ¼
1

2

ðLx

0

ðLy

0

qsr
@u

@t

� 	2

dxdy

¼ 1

2
qsrx2

ðLx

0

ðLy

0

u2dxdy; (22)

in which qs and r are the mass density and the thickness of

the panel, respectively. B¼Eph3/12(1�l2) is the bending

stiffness with l being the Poisson’s ratio and Ep the

Young’s modulus.

The radiated sound pressure can be expressed as

pradðx; y; zÞ ¼
q0

2Lyh

X1
m¼0

X1
n¼0

x
kmn

wmnðy; zÞ

�
ðLx

0

ðLy

0

wmnðy0; z0Þvðx0; y0; tÞ

� Gmnðx; x0Þdy0dx0 (23)

where wmn(y, z) is the duct acoustic modal function; v¼ ixu;

and G(x, x0), and kmn are modal Green’s function and wave-

number, respectively, expressed as

Gmnðx;x0Þ ¼ Hðx� x0Þe�ikmnðx�x0Þ þHðx0 �xÞeþikmnðx�x0Þ
h i

(24)

and

kmn ¼
x
ic0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np=k0hð Þ2 þ mp=k0Ly

� �2 � 1

q
: (25)

Using Eq. (8), the radiated sound power can be deter-

mined. For the 3D model, the elements in matrix Q can be

expressed as

Qmxm0xmym0y ¼Re
X1
m¼0

X1
n¼0

T

ðLy

0

ðLx

0

wmnðy;0Þumxmy

�ðx;yÞ
ðLy

0

ðLx

0

wmnðy0;0Þumx0my0
ðx0;y0Þ

�Gmnðx;x0Þdx0dy0dxdy; (26)

in which

T ¼ ðixÞ
2q0

4Lyh

x
kmn

: (27)

III. NUMERICAL RESULTS AND DISCUSSIONS

Although the main focus of this paper is put on the radi-

ation modes, the study of sound radiation from a vibrating
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wall in a duct is also of great importance from the viewpoint

of duct noise control. Therefore, the structural properties

should be taken into account, accordingly. Before we

explore discussions on numerical results, it is essential to

clarify some technical terminologies relating to “modes”

and “radiation efficiency” that will be used in the subsequent

analyses. A structural mode refers to a mode of the flexible

structure in vacuo, whilst a duct mode refers to an acoustic

mode of the duct with rigid walls. For the structural-acoustic

model studied in this work, the modal frequencies of the

coupled system are extracted from the resonant peaks of

sound pressure response curves. A radiation mode (RM)

represents the characteristic velocity distribution, which

independently contributes to the sound radiation. It is

obtained directly from the eigenvectors of the radiation

resistance matrix R. The modal radiation efficiency (MRE)

studied in Sec. III A refers to that of a structural mode rather

than a radiation mode.

A. Structural mode radiation characterization

The established 2D model duct-beam is first studied

with consideration of the coupling characteristics and modal

radiation efficiency of the vibrating beam. In this work, sim-

ply supported boundary conditions are considered for the

beam and subsequent panel structures. The beam and the

duct bear the following parameters, namely air density

q0¼ 1.255 kg/m3, sound speed in air c0¼ 340 m/s, duct

height h¼ 0.2 m, beam length L¼ 2h, the unit mass density

qs¼ 4 hq0, and bending stiffness EI¼ 0.015 q0c2
0h3. A point

force excitation is applied to the beam at x¼ 3/5L. To avoid

the infinite response at system resonances, damping is intro-

duced in the simulations via a complex Young’s modulus

for the beam and via a complex sound speed for the duct,

respectively, with a nominal loss factor of 0.03. The correct-

ness and the accuracy of current models have been verified

through comparisons with the finite element results (not

shown here), in which the same damping loss factor was

used.

Figure 2 presents the calculated sound pressure

response at (3/4 L,1/2h) inside the duct. The system under

investigation involves structural-acoustic coupling between

the vibrating beam and the acoustic duct. As such, the cou-

pled modal frequencies are extracted from the resonant

peaks of the sound pressure response curve, which are found

to be very close to either the structural modes of the beam in
vacuo or the acoustic modes of the duct with rigid walls.

Therefore, these modes are categorized into the so-called

beam-controlled modes (B-mode) and duct-controlled

modes (D-mode), which are labelled and marked accord-

ingly in this figure. The corresponding peak frequencies are

tabulated in Table I. Coupling in the duct-beam system can

be clearly observed from the shift of the coupled resonance

peaks as compared with those natural frequencies before

coupling.

Plotted in Fig. 3(a) is the variation of the MREs of the

first three beam modes r11, r22, and r33 with respect to fre-

quency. The normalized mutual-interaction term r13 is also

plotted, showing a drastically reducing level as the fre-

quency increases. Since there exists no interaction between

the radiation of the odd and even modes of the beam, the

corresponding mutual interaction terms (e.g., r12) are zero.

Obviously, when the frequency increases and exceeds the

first cut-on frequency of the duct, c0/2h, obvious oscillation

can be observed, with peaks actually coinciding with the

duct-controlled modes.

To further quantify the contributions of the higher-order

duct modes to this oscillating behavior, the modal radiation

efficiencies of the first two beam modes are calculated by

only including the plane wave effect and ignoring the

higher-order waves radiated from the vibrating structure,

namely mduct¼ 0, with the corresponding results presented

in Fig. 3(b). It can be seen that the oscillating phenomenon

is caused by the higher-order waves. Moreover, the above

two figures show that the MREs for the symmetric modes

are dominant and nearly constant in the low frequency range

before the cut-on. This can also be deduced from Eqs. (10)

and (11). In fact, when mxþm0x is an odd number, Q is zero,

leading to zero rodd-even, as mentioned above. Taking m¼ 0

(plane wave), m0x¼ mx¼ 1, L¼ 0.4 m, the equation in the

bracket of Eq. (10) can be simplified as

FIG. 2. (Color online) Sound pressure response at certain points inside the

duct.

TABLE I. Comparison of the coupled and uncoupled resonant frequencies (Hz). Duct-controlled mode (D-mode) and beam-controlled mode (B-mode).

B-mode D-mode B-mode D-mode B-mode

Uncoupled 40.1 163.7 368.1 654.2 850 1022.1 1471.6 1700 2002.9

Coupled 41 154.2 358.4 640.6 850.9 1005 1449 1702 1984
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Re

ðL

0

sin
1p
L

x

� 	ðL

0

sin
1p
L

x0
� 	

�Gðx;x0Þdx0dx

" #

¼ 2p2L2ð1þcosk0LÞ
ðp2�k2

0L2Þðp2�k2
0L2Þ; (28)

which suggests that it is approximately equal to a constant

0.064 as k0L holds a relatively small value (k0L< 0.5).

The influence of the duct height on structural modal

radiation efficiency is also shown in Fig. 4. It can be seen

that, with the increase of the duct height, oscillations begin

at a lower frequency but with flattened magnitudes.

B. 1D radiation modes in the duct

The 1D radiation modes (RM) (corresponding to a flexi-

ble beam) are analyzed hereafter. The RMs are sorted

according to the eigenvalue order of the radiation resistance

matrix R, following a decreasing importance order in terms

of sound radiation. The first five eigenvectors of R, which

correspond to the 1 D shapes of the first five radiation modes

in the duct, are plotted in Fig. 5 and compared with their

counterparts in free space at three different frequencies:

kL¼ 0.5, 3, and 5, respectively. Note the three frequencies

are tactically chosen to be below, around, and above the cut-

frequency of the duct with L¼ h ¼0.1 m in the present case.

In the figure, the solid and dashed lines correspond to the

RMs in free space and within the duct, respectively. It can

be seen that, at low frequencies, typically before the duct

cut-on (first row in Fig. 5), the duct seems to have negligible

effects on the RMs. In particular, the first two radiation pat-

terns feature a piston-like and a rocking pattern in both free-

space and duct cases, in agreement with those calculated by

Elliott.4 With the increase of frequency, the effects of the

duct start to appear, more obviously on the lower-order

RMs, exemplified by the first three RMs. Nevertheless,

higher-order RMs, like the fourth and fifth ones, though

exhibiting more complex spatial variations, still hold similar

shapes in both the duct and free-space cases.

In order to better illustrate the spatial variation of the

lower-order RMs with respect to frequency, the waveforms

of the first RM, in both free space and the duct, are plotted

in Figs. 6(a) and 6(b), respectively. It can be seen that, as kL
increases, the RM shapes gradually evolve from a piston-

like to a quadratic variation in free space. A very similar

trend can be observed for the RMs in the duct until kL
reaches a certain value, after which a drastic change takes

place, to such an extent that even the symmetry of the RM

shape is altered.

To better describe and understand the phenomenon, a

new parameter, vdn, is defined to quantify the spatial varia-

tion of RM shapes. For a given RM, of order n, the corre-

sponding mode shape is compared with its counterpart

(RMnref) at kL¼ 0.1 as a measure to quantify its spatial vari-

ation degree as

FIG. 3. (Color online) Modal radiation characteristic analysis: (a) MRE for the first three beam modes (solid lines) and the normalized mutual-interaction

term r13 (dashed line); (b) MRE of mode 1 and 2 calculated using the duct mode numbers mduct¼ 0 (plane wave only) and 40 (including higher-order duct

modes), respectively.

FIG. 4. (Color online) Modal radiation efficiency of the first and second

structural modes with different duct heights.
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vdn ¼ kRMn � RMnrefk2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i

jRMnðxiÞ � RMnrefðxiÞj2
vuut ; (29)

in which RMn is the nth radiation mode shape with respect

to different frequencies/wavenumbers, and I is the number

of elements along the beam length, taken as 23 in the pre-

sent case. For the first RM, vd1 in the duct (solid curve with

circles) and in the free space (dashed line) are both plotted

in Fig. 7(a). It can be seen that, at low frequencies, vd1 in

both cases exhibits an increasing trend with the frequency,

consistent with the observations obtained from Figs. 6(a)

and 6(b). For the duct RM, however, a sudden drop occurs

around some particular kL values, producing a valley with a

drastically reduced vd1. A close examination shows that the

observed valleys actually start from some particular wave-

numbers (i.e., kL¼ p, 2p, and 3p), which actually corre-

spond to the cut-on frequency of the duct and its multiples/

FIG. 5. (Color online) The first five radiation mode shapes of a flexible beam in duct (solid lines) and in free field (dashed line) at three frequencies. Upper

row: kL¼ 0.5; medium row: kL¼ 3; bottom row: kL¼ 5. Note, L¼ h in this simulation case.

FIG. 6. (Color online) Spatial variation of the first radiation mode shape with kL. (a) in free space and (b) in duct.
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harmonics. Compared with their free-space counterparts,

radiation modes in the duct involve the participation of

acoustic modes in sound radiated power estimation, particu-

larly when the excitation frequency exceeds the cut-on fre-

quency where higher-order acoustic modes appear.

Moreover, the sub-plots in Fig. 7(a), taken at kL¼ 6.14 and

6.3, show that before and after these critical kL values

(kL¼ 2p in the present case), a drastic change in the RM

shape occurs, whilst the RM shape remains more or less the

same between these critical kL values. It can be further seen

that the radiation abilities of different RM shapes are altered

around the duct cut-on frequency. To examine the generality

of the above statement, similar analysis is performed for the

second RM using vd2, with results depicted in Fig. 7(b)

showing similar phenomena. The jumping phenomena are

attributed to the effect of higher-order radiated sound waves,

in terms of either plane waves or higher-order waves. More

specifically, higher-order waves have no contribution to

sound radiation when kL is small than the cut-on frequency

of the duct, but start to manifest after the cut-on, thus caus-

ing the jumps observed in vd1. Obviously, when the duct

height increases, the corresponding cut-on frequency

reduces, thus causing the jumping phenomena in vd1 at a

lower frequency. Note the radiation efficiencies of the radia-

tion modes are proportional to the eigenvalues of matrix R,

and there are no mutually dependent terms. The influencing

trend of the duct height on them are similar to Fig. 4.

Therefore, it can be concluded that, when frequency

increases, the duct exerts a more significant impact on the

lower-order radiation modes, which can be drastically dif-

ferent from their free-space counterparts. The impact starts

to appear when reaching the cut-on frequency of the duct.

At this frequency and each of its multiples/harmonics, a

drastic RM sharp change is observed.

C. 2D radiation modes in the duct

The above analysis is extended to a duct-plate system to

investigate the 2D radiation modes (corresponding to a

plate) mounted in the duct with its height h¼ Lx. In the fol-

lowing numerical examples, the plate aspect ratio is taken as

Lx/Ly¼ 1/0.57, for a radiator with 28 and 16 segments along

its length and width, respectively, as used by Elliott and

Johnson.4

Figure 8 presents the 2D RM shapes in free space and

within the duct, respectively, at kLx¼ 0.1, below the cut-on

frequency of the duct. Obviously, the first three RMs in both

cases show very similar patterns. The first radiation mode

follows an in-phase monopole-like distribution, followed by

two dipole-like rocking modes. Two Quadrupole-like modes

4 (longitudinal) and 5 (lateral) in the duct resemble the

modes 5 and 4 in the free space. This matching in a reversed

order is most likely due to the differences in the relative

importance of their radiation efficiency in the two cases.

Nevertheless, the ensemble of the first five RMs as a whole

is very similar in both cases. The first four radiation modes

of the plate in duct and in free space for a higher frequency

kLx¼ 5, which is above the cut-on frequency of the duct, are

shown in Fig. 9. Obvious differences in the mode shapes

can be observed. In addition, RMs in the duct seem to

exhibit dominant spatial variation mainly in the stream-wise

direction (length direction) of the duct. Due to the increasing

complexity in the distribution patterns as the wavenumber

increases, a parameter, referred to as a “shape change rate

factor rr,” is defined and used to quantify the spatial varia-

tion of the radiation modes, expressed for each radiation

mode in each direction as

rr ¼ jmaxðRmrÞ �minðRmrÞj=jmaxðRmrÞj; r ¼ x; y;

(30)

in which Rmr denotes the value of a radiation mode in r-

direction (either x or y). Using the above defined rr, RMs

can be loosely classified as follows: If rr < 10%, then the

radiation mode is regarded as basically having no variation

in the corresponding r-direction. Using this classification

criterion, the first four radiation modes of the plate in free

FIG. 7. (Color online) Quantification of the spatial variation degree for the first and second radiation modes for different wavenumbers. (a) vd1 and (b) vd2.

Note, L¼ h in the present case.
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FIG. 8. The first five 2D radiation modes in free space (upper) and in duct (bottom), respectively, at kLx¼ 0.1.

FIG. 9. The first four 2D radiation modes in free space (upper) and in duct (bottom), respectively, at kLx¼ 5.

FIG. 10. (Color online) Distribution patterns of radiation modes in (a) free space and (b) duct.
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space and in the duct are regrouped into different categories

in Fig. 10. Radiation modes are labeled by x and y according

to the dominance level of their spatial deformation.

Therefore, the x or y category designates RMs, which are

mainly 1 D patterns, whilst the x-y category represents 2D

patterns. Note the piston-like radiation modes are separated

and also shown on the top row of the two figures. It is clear

that the RMs in free space exhibit dominant 2D behavior as

the frequency increases (those RMs labeled by x-y). In the

duct, however, these low-order RMs involve more dominant

deformation along duct length direction. Those pure 1 D

span-wise direction (y-direction) RMs in free space (the

third RM at low frequency) are completely suppressed due

to the presence of the duct. In particular, in the bandwidth

kLx¼ 3.14–5.5 for the present case, all four RMs behave

like 1 D patterns along the x axis. In this case, the 3D plate-

duct system can be simplified as a 2D system.

IV. CONCLUSIONS

The sound radiation of a vibrating structure (beam/

plate) mounted in a semi-enclosed space (duct) is analyzed

in this paper. The problem is formulated via an energy-

based formulation in conjunction with the near-field integra-

tion technique. The model allows the calculation of the

radiation resistance matrix in the duct, from which the inte-

rior radiation modes of the structure are computed via eigen-

value decompositions. Major conclusions are summarized

as follows.

(1) Above the cut-on frequency of the duct, the modal radia-

tion efficiency of the beam in the duct exhibits obvious

oscillations with respect to frequency, modulated by the

higher-order duct modes. Different from the free-space

case, duct modes are involved in the structural radiation

of the beam, especially for large wavenumbers.

Compared with the antisymmetric modes of the beam,

symmetric modes dominate the radiation process with a

gentle variation in their radiation efficiencies at small

acoustic wavenumbers.

(2) Numerical investigations on the radiation modes show

that the radiation modes in a duct basically behave like

in free space below the cut-on frequency of the duct.

Above it, the lower-order radiation modes are more sen-

sitive and prone to be affected by the duct modes.

Significant changes in the radiation mode shapes are

observed before and after the cut-on frequency and each

of its multiples/harmonics.

(3) Extension of the analysis to 3D plate-duct configuration

shows that the duct impairs the radiation modes with a

shape variation in the span-wide direction. As such, con-

trary to the free-space case, lower-order radiation modes

in the duct exhibit predominant deformation along the

streamwise direction. This alludes to the possibility of

approximating a 3D system by a 2D configuration

within certain frequency ranges.

As a final remark, this work is expected to shed new

light onto the sound radiation mechanism of a vibrating

structure in a partially closed acoustic duct, which hopefully

can provide further guidance on the design of acoustics

devices as well as active/passive noise controls in ducts with

flexible walls.
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