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a b s t r a c t

The Acoustic Black Hole (ABH) phenomenon can be exploited to manipulate and mitigate

flexural wave propagation in thin-walled structures. ABH structures feature unique space-

dependent wavenumber variation and wave celerity reduction in the tapered ABH area,

thus posing challenges to the existing modelling techniques. In this work, the Partition of

Unity Finite Element Method (PUFEM) is revamped to simulate the structural response of an

ABH wedge subject to a harmonic loading. This method allows the incorporation of auxil-

iary enrichment functions into the finite element framework in order to cope with the ABH-

induced wave oscillating behaviour, exemplified by the varying wavenumber and amplitude

in space. The PUFEM tapered Timoshenko beam elements are constructed by employing wave

enrichment functions with the Wentzel-Kramers-Brillouin (WKB) approximation method. A

wavelet enrichment is also investigated as hierarchic refinement. Using these enriched ele-

ments, the frequency responses of an ABH wedge and the convergence of numerical solutions

are computed and compared with the classical linear FEM and the elements enriched with

‘local’ wave solutions. An adaptive meshing scheme is designed and implemented to further

accelerate the solution convergence. It is shown that the PUFEM offers a good computational

accuracy and drastic reduction of degrees of freedom for solving the broadband ABH prob-

lems, outperforming the classical FEM.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The Acoustic Black Hole (ABH) phenomenon shows good prospects for the manipulation and mitigation of the flexural bend-

ing waves in mechanical structures like beams and plates. An ABH-featured structure is tailored with a smoothly decreasing

thickness profile according to a power-law function h(x) = cx𝜈,where 𝜈 ≥ 2 and c is a constant [1]. As the flexural waves

travel towards the thin ABH section, the incident wave undulates with a continuous increase of wavenumbers and a gradual

reduction of wave celerity, alongside an amplification of the wave amplitude. In an ideal scenario where the thickness goes to

zero, waves would spend infinitely long time to travel inside the ABH area, thus resulting in no wave reflections. Meanwhile,

the vibrational energy is focused and accumulated in the thin tapered region due to the wave modulations and compression

induced by the structural inhomogeneity. In practical cases where the zero thickness is non-achievable, applying surface damp-

ing treatment over the tapered region can significantly reduce the wave reflections and enhance the energy absorption [2].
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Various models have been exploited to characterize the ABH phenomena. The Wentzel-Kramers-Brillouin (WKB) method

was first used to analyse the dispersion properties of flexural wave propagation in a tapered wedge [1]. Preliminary ABH studies

based on the WKB approach mainly focused on the wavenumber analysis of the travelling waves in a semi-infinite wedge-like

beam [1,2]. Other models, not limited by the sufficient smoothness hypothesis of the WKB approach, were also used to deal with

ABH structures with more realistic geometrical configurations and boundary conditions. Typical examples include finite differ-

ence approaches [3], impedance matrix methods [4], transfer matrix methods [5], wavelet-decomposed Rayleigh-Ritz models

[6] and Finite Element Method (FEM) [7,8] etc. ABH-profiled structures feature unique space-dependent wavenumber variation

and wave celerity reduction over a broad frequency range. Therefore, most methods require a refined discretization scheme

with high resolution in order to capture the strongly localized and highly oscillatory ABH behaviours, especially when the local

wavelengths in ABH cells become shorter. For example, a dense mesh grid should be adopted by the finite difference method [3]

and conventional FEM [8], while the wavelet series with refined scales or short support length should be chosen as the global

expansion functions in Rayleigh-Ritz methods [6]. This, inevitably, leads to a drastic increase in the computational cost, which

may become crucial when dealing with more complicated ABH problems such as structures with multiple embedded ABH cells

or auxiliary ABH absorbers [9,10], parameter optimizations of ABH tapers [11,12], interactions of ABH structures with surround-

ing medium, and so on. Therefore, there is a need to develop more efficient simulation tools capable of better capturing the

shortened local wavelengths as well as the amplified oscillating behaviours along the ABH taper in a broad frequency band.

In recent decades, enriched numerical methods have been developed to improve the computational efficiency and accuracy

for the short-wave modelling, which usually involves a large number of wavelengths in the problem domain. These simulation

techniques allow the incorporation of auxiliary functions with good approximation properties for the concerned problems in the

formulation stage. As one of these enriched methods, the Partition of Unity Finite Element Method (PUFEM) [13,14] offers the

advantage of sharing high similarities with the conventional FEM, thus allowing easy implementation by using existing finite

element meshes and codes. The PUFEM has been applied to acoustic and elastic wave propagation problems in homogeneous

media with a uniform wave speed [15–18]. It has been shown that the enriched elements can achieve accurate predictions

with a significant reduction of the degrees of freedom in comparison with the conventional FEM. Applications of the PUFEM

to problems with location-dependent wave celerity or wavenumber are mainly limited to acoustic problems up to now. Typi-

cally, Lagrange multipliers were used to enforce the element continuity between domains with an abrupt jump of sound speed

[19–21]. Special short-wave elements are constructed for modelling acoustic and water wave propagation in media with con-

tinuous variations of wave speeds in space [22–26]. The local wave solutions for the equation of motion in the vicinity of a node

(or plane-wave basis) are chosen as the auxiliary enrichment functions [22,24]. These elements are mainly applicable for cases

where the change in wavenumbers within a single element is not significant.

In this work, the PUFEM is adapted to simulate the structural vibrations of a wedge-like ABH beam. Different formulations

are proposed to deal with the broadband ABH-specific problems, aiming at improving the computational accuracy and efficiency

of the PUFEM. The tapered Timoshenko beam elements are first constructed by using wave enrichment functions with the WKB

approximation method. These enriched elements are crafted with the information of solutions obtained from the governing

differential equations of the tapered beam. Wavelet functions, which possess localized compact support properties conducive

to representing the ABH oscillations, are also taken as the enrichment functions of the PUFEM. Comparisons are made with the

element enriched with the ‘local’ wave solutions for the tapered beams as well as the classical linear FEM. The performance

of these elements is evaluated in terms of computational accuracy and data reduction. Numerical analyses are carried out on a

quadratic ABH wedge, so the applicability of the WKB-based enrichment can be checked against the enrichment using analytical

wave solutions, which only exist for a quadratic wedge.

The outline of the paper is as follows. In section 2, after recalling the basic theory of the tapered beam vibration, the WKB

wave solutions by the Euler-Bernoulli and Timoshenko beam models are given and these wave functions are to be employed

to build the PUFEM Timoshenko beam elements. Formulations of the element enriched with wavelet functions and the other

enriched elements are also presented in this section. In section 3, the performance of different PUFEM elements and that of

the classical linear FEM is shown and compared. Convergence curves, obtained using the mesh refinement by reducing the

uniform element length or the hierarchic refinement by increasing the wavelet scaling parameters, are presented and analyzed.

An adaptive mesh scheme is proposed to further reduce the calculation errors and enhance the solution convergence. The

applicability of the WKB approximate solution as enrichment functions for PUFEM is then discussed. Finally, conclusions are

drawn in the last section.

2. Formulation

2.1. Statement of the problem

Consider the flexural vibration of a beam with a variable thickness h(x) and a constant width t in Fig. 1(a). We are interested

in the structural response of the tapered beam subject to a harmonically oscillating loading at a circular frequency �̄� so that the

time-dependent term e−i�̄�t̄ is omitted hereafter (i =
√
−1). There are two main theories dedicated to beams: Euler-Bernoulli

and Timoshenko theories. For the former, the axial displacement of the beam, at a distance z from the neutral layer, is written as

u(x, z) = −zw′, where w(x, z) = w(x) is the lateral displacement of mid-surface in z direction and the prime donates the spatial

derivative with respect to the coordinate x. For the latter, the beam axial displacement is replaced by u(x, z) = z𝛽(x), where 𝛽(x)
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Fig. 1. (a) Schematics of the ABH wedge and (b) four possible free waves associated with one node.

is the rotation angle of the cross section. The equation of motion of a tapered Euler-Bernoulli beam is given by

[EI(x)w″]″ − �̄�2𝜌A(x)w − fz = 0, (1)

and those of a tapered Timoshenko beams write

[𝜅GA(x)(𝛽 + w′)]′ + �̄�2𝜌A(x)w + fz = 0, (2)

𝜅GA(x)(𝛽 + w′) − [EI(x)𝛽′]′ − �̄�2𝜌I(x)𝛽 = 0, (3)

where fz is the distributed oscillating loading. For a transverse point force located at x = xf on the beam, the loading term can

be expressed as fz = F0𝛿
(

x − xf

)
, where 𝛿(·) is the Dirac delta function. Geometrical parameters involved in the above equations

are the area moment of inertia I(x) = t h3(x)∕12, the cross section area A(x) = t h(x) and the shear correction factor 𝜅 = 5∕6

for a rectangular cross-sectional beam [27]. Material parameters are the Young’s modulus E, the shear modulus G and the density

𝜌. The Euler-Bernoulli beam model, as a special case of a Timoshenko beam, neglects the effects of the shear deformation and

rotary inertia. This simplified model is widely used in the existing literature on various aspects of ABH phenomena.

2.2. Wave solutions

The closed-form solutions for Eq. (1) or Eqs. (2) and (3) in terms of elementary functions are difficult to be found, so that we

have to resort to using approximate solutions. The WKB method provides appropriate approximate solutions to the differential

equations whose coefficients are slowly varying function in space [28,29]. For a tapered Euler-Bernoulli beam, the WKB constant-

frequency solutions to Eq. (1) can be sought as a set of four waves:

wn(x) = ŵn(x)eiSn(x), n = 1, 2, 3, 4, (4)

where Sn(x) is the eikonal of the quasi-plane wave (or the generalized phase) and ŵn(x) is the varying amplitude function. The

spatial derivative of the eikonal kn(x) = S ′
n

can be solved from the so-called ‘eikonal equation’ [2,29]. The expression of kn(x)
writes

kn(x) = (i)n

[
𝜌A(x)
EI(x)

�̄�2

]1∕4

. (5)

Here, the two real-valued solutions (n = 2, 4) correspond to the two oscillatory waves travelling in two opposite directions

and the other two imaginary solutions (n = 1, 3) correspond to the near-field evanescent waves. The local wavenumber along

the beam is given by k̄(x) = |kn(x)|. The eikonal Sn(x) can be found by integrating kn(x) over space. The wave amplitude function

ŵn(x) is determined from the energy-conservation theorem or the corresponding ‘transport equation’ as [29–31]

ŵn(x) = C[𝜌A(x)]−3∕8[EI(x)]−1∕8, (6)

where C is a constant and ŵn(x) is the same for the four types of waves. The applicability of the WKB method relies on the

sufficient smoothness condition of the beam thickness variation. The spatial change of the local wavenumbers should be small

over a distance of wavelength order [1]. This condition yields the inequality:

k̄ ′(x)
k̄2(x)

≪ 1 (7)

The left-hand side term of condition (7) is referred to as the ‘Normalized Wavenumber Variation’ (NWV) [7], which gives an

estimation on the applicability range of the WKB approximation. The NWV depends on both the position along the beam and

the vibration frequency.

The WKB solutions for the displacement and rotation of a tapered Timoshenko beam take the form

wn(x) = ŵn(x)eiSn(x) , 𝛽n(x) = 𝛽n(x)eiSn(x). (8)
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Fig. 2. The wavenumber and phase velocity of propagating flexural wave in a quadratic AHB wedge (calculated using the parameters in Table 1).

The expressions of kn(x) = S ′
n

corresponding to the four types of waves are given by

k1,2,3,4 = ±
⎡⎢⎢⎣1

2

(
1

𝜅G
+ 1

E

)
𝜌�̄�2 ±

√
1

4

(
1

𝜅G
− 1

E

)2

𝜌2�̄�4 + 𝜌A(x)
EI(x)

�̄�2

⎤⎥⎥⎦
1∕2

. (9)

where the index n = 1, 2, 3, 4 refers to one of the four combinations in (9). The displacement amplitude function is written as

[29]

ŵn(x) = C

[
kn(x)
𝜌A(x)

]1∕2[
1 + I(x)

2A(x)

(
E

𝜅G
− 1

)(
𝜌�̄�2

𝜅G
− k2

n(x)
)]−1∕2

. (10)

The amplitude function for the cross-section rotation angle can be determined by using the relation 𝛽n(x) =
iŵn(x)[𝜌�̄�2∕𝜅Gkn(x) − kn(x)]. The ABH effects can be revealed by analyzing the WKB solutions for the tapered wedge whose

thickness follows h(x) = cx𝜈 . Fig. 2 depicts the dependence of the local wavenumbers and the wave celerity on the location

and frequency of the propagating flexural waves in a quadratic ABH wedge (𝜈 = 2), which is calculated from the Timoshenko

model.

For a specific Euler-Bernoulli ABH beam with a quadratic thickness variation h(x) = cx2, analytical wave solutions in terms

of the power functions can be derived [32]. The analytical solution to Eq. (1) is sought by

w(x) = Cxpn , (11)

where

p1,2,3,4 = −3

2
±

[
17

4
±
√

4 + 12
𝜌�̄�2

Ec2

]1∕2

. (12)

This analytical solution is not limited by the sufficient smoothness condition (7) and is more accurate than the corresponding

WKB Euler-Bernoulli solution, especially in the low frequency range.

2.3. PUFEM tapered Timoshenko beam elements

As compared with Euler-Bernoulli beams, Timoshenko beams offer an easier platform for the implementation of the PUFEM

[18]. For a free-free tapered Timoshenko beam, the associated variational formulation to Eqs. (2) and (3) writes:

∫
L

0

[
𝛿𝛽′EI(x)𝛽′ +

(
𝛿𝛽 + 𝛿w′)𝜅GA(x)

(
𝛽 + w′) − �̄�2𝛿w𝜌A(x)w − �̄�2𝛿𝛽𝜌I(x)𝛽 − 𝛿wfz

]
dx = 0, (13)

where 𝛿(·) donates the virtual quantity and x = 0, L are the positions of two beam ends. Lagrange multipliers can be used

to enforce the essential boundary conditions with PUFEM and the coupling conditions between two domains with different

characteristics (see for instance Refs. [19–21]).

Similar as in classical FEM, the tapered beam is discretized by a set of nodes into a number of non-overlapping elements

and each node is associated with a given number of degrees of freedom (DoFs). The translational and rotational displacements

within each element are expressed by a set of piecewise basis functions in terms of nodal unknowns. The key ingredient of the

PUFEM relies on the choice of an appropriate enrichment for the conventional finite element approximation by including special

auxiliary functions with good approximation properties for the solutions of the concerned problems. Each PUFEM beam element

of length le = x2 − x1 is given by the geometric mapping x(𝜉) = N1x1 + N2x2, where x1 and x2 are the nodal positions and
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𝜉 ∈ [−1, 1] is the local coordinate. Here, N1 = (1 − 𝜉)∕2 and N2 = (1 + 𝜉)∕2 are the classical linear shape functions. In each

element, the lateral displacement and rotation are expanded, respectively, as:

w =
2∑

m=1

Nm(𝜉)
∑

n

am,n Φm,n, (14)

𝛽 =
2∑

m=1

Nm(𝜉)
∑

n

bm,n Ψm,n. (15)

The computational performance of the PUFEM is dependent upon the choice of the enrichment functions Φm,n and Ψm,n. These

functions are not necessarily the exact solutions to the governing differential equations of the tapered Timoshenko beam (see

Ref. [14]). Therefore, the PUFEM allows flexible choice of enrichment. Several types of enrichment methods are tested and

assessed in the following sections, aiming at improving the computational performance of the PUFEM.

For the wave enrichment, the WKB approximate solutions for tapered Euler-Bernoulli beams (Eq. (4)) and tapered Timo-

shenko beams (Eq. (8)) can be taken as enrichment functions Φm,n and Ψm,n. The Euler-Bernoulli solutions for the rotation are

sought by using the relation 𝛽 = −w′. The WKB wave enrichment functions write

Φm,n ∈
{

1, ŵ1(x)eiSm,1 , ŵ2(x)eiSm,2 , ŵ3(x)eiSm,3 , ŵ4(x)eiSm,4
}
, (16)

Ψm,n ∈
{

1, 𝛽1(x)eiSm,1 , 𝛽2(x)eiSm,2 , 𝛽3(x)eiSm,3 , 𝛽4(x)eiSm,4

}
, (17)

where the subscript donates four possible free wave solutions associated with a node xm (Fig. 1(b)) and the eikonal term is

defined as Sm,n(x) = ∫ x

xm
kn(s)ds. The wave enrichment functions in Eqs. (16) and (17) are expressed in terms of the unmapped

physical coordinate x. In addition to the four free waves, a constant term is also added to the enrichment basis in order to capture

the contribution of the loading and to enhance the convergence of the numerical solutions [18]. For an ABH thickness variation

h(x) = cx𝜈 , the WKB Euler-Bernoulli wavenumber k̄(x) has a simple expression so that the analytical expression of Sm,n can

be found. The eikonal term Sm,n of a tapered Timoshenko beam can be evaluated using numerical integration, while the WKB

Timoshenko enrichment is believed to lead to better convergence at higher frequencies.

For the sake of comparisons, an enrichment based on the analytical solutions for quadratic Euler-Bernoulli wedges and an

enrichment based on ‘local’ wave solutions for tapered Timoshenko beams are also studied. The former can be carried out in a

similar manner as the WKB wave enrichment, through using the equivalent exponential expression of Eq. (11) in Ref. [32]. For

the latter, the enrichment functions are given by

Φm,n,Ψm,n ∈
{

1, eikm,1(x−xm), eikm,2 (x−xm), eikm,3(x−xm), eikm,4(x−xm)
}
, (18)

where km,n is evaluated at the node xm by Eq. (9). Other conventional enrichment methods for PUFEM, such as the polyno-

mial enrichment used in Ref. [18], can also be taken for comparison purposes. The polynomial-enriched elements usually show

advantages over high-order enhanced Timoshenko beam elements [18,33]. It was also found that the local wave enrichment

offers slightly better computational performance than polynomial enrichment with the same number of enrichment terms at

each node. Therefore, only the results from the former are shown in the following analyses to facilitate the discussion.

The PUFEM with wavelet enrichment is then developed and investigated in this work. The wavelet functions have compact-

supported or fast-decaying oscillating shapes [34,35] and possess the superior capability to represent the solutions with strongly

localized variation pattern, which is conducive to capturing the ABH-induced wave compression phenomenon [6,36]. The spline

scaling functions [34,35,37] used in the wavelet analysis are chosen as the enrichment functions:

Φm,n,Ψm,n ∈
{

1,… , 2j∕2𝜑r(2j𝜂m − n),… ., for n ∈ ℤ
}
, (19)

where 𝜂m = (x − xm)∕le, 𝜑r is cardinal B-spline function of order r, j ∈ ℤ is the scaling parameter and n is the translation

parameter. The constant term is added to the above PUFEM basis to ensure a good approximation of the solution in the present

case. In addition, it is also helpful when imposing essential boundary conditions of the beam as well as the coupling conditions to

consider the pressure loading on each side of the beam in typical vibroacoustic problems. It can be observed that 𝜑r(2j𝜂m − n)
is generated from one single function 𝜑r(𝜂m) by using particular scale and translation values. The approximation resolution of

the enrichment functions is controlled by the scale and the hierarchic refinement can be implemented by adjusting the value of

j [35]. Better resolutions can be obtained by using enrichment functions with a larger scaling parameter j or a shorter support

length, as shown in Fig. 3(a) and (b). The wavelet enrichment should be applied with an ordinary mesh and a sufficient high

resolution [18,34,38]. To avoid the singularity in the numerical calculation, the range of n should be truncated and selected so

that the wavelet enrichment functions have non-zero values within the bounded interval of 𝜂m, which is illustrated in Fig. 3(a).

The advantage of using B-spline wavelets is that its scaling functions are analytically expressible, thus conducive to numerical

implementation [35]. Meanwhile, B-spline scaling function exhibits smoother oscillations within its support than other types of

wavelets, like Daubechies wavelet [38]. As a result, the resultant system matrix is better conditioned and can be evaluated with

much reduced Gauss points. A systematic hierarchic refinement can then be conducted without much numerical difficulties. The

quintic B-spline function𝜑6 [39] is chosen as wavelet enrichment in this work to show that the wavelet enrichment can improve

the computational performance of the PUFEM when applied to ABH vibration problems, rather than focusing on comparisons

among different types of wavelets.
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Fig. 3. (a) Quintic spline scaling functions with j = 1 and (b) quintic spline scaling functions with j = 2.

Table 1

Geometrical and material parameters used in our computations.

Wedge thickness h(x) = 0.01(x + 0.02)2∕(0.2 + 0.02)2, 0 ≤ x ≤ L

Length and width L = 0.2 m, t = 0.01 m

Material properties E = 70 GPa, G = 27 GPa, 𝜌 = 2790 kg/m3

3. Numerical analyses and discussions

A quadratic wedge-like ABH beam with a variable rectangular cross section is taken as the test configuration in this section

(Fig. 1(a)). Geometrical and material parameters of the tested ABH wedge are given in Table 1. Both ends of the beam are free

of constraints. A unit harmonic point loading is imposed at the right end xf = L to activate the ABH taper, corresponding to a

node of the mesh.

3.1. PUFEM computational performance

The performance of PUFEM with different enrichment functions is first investigated. To this end, cross Frequency Response

Functions (FRF) are calculated and compared with the reference solution obtained from the classical linear FEM, as shown in

Fig. 4. The point response is evaluated at 0.3L from the left end of the beam (x = 0.06 m). The reference FEM solution is

obtained using 10,000 classical Timoshenko beam elements with linear shape functions and the reduced Gauss integration

scheme is adopted for calculating the stiffness matrix to avoid shear locking [18,33]. The FRF curves of the PUFEM with WKB

wave enrichment and local wave enrichment are calculated with 16 elements of equal length and 5 enrichment functions. The

corresponding number of DoFs is 17 × 5 × 2 = 170. The calculation of the wavelet enrichment is carried out with 4 elements

of same length. The scaling parameter j is set to be 3 so that the total number of DoFs, here 188, is comparable with that of the

wave enrichment.

Comparative results using the WKB wave enrichment are given in Fig. 4(a) and (b). It can be seen that the structure under

investigation exhibits rather complex dynamics, evidenced by multiple structural resonances. Generally speaking, a good agree-

ment between the WKB wave-enriched elements and the reference solution can be observed within the entire frequency band.

Therefore, the WKB Euler-Bernoulli and Timoshenko enrichment provide similar performance in terms of accuracy. The point

response of the enrichment using analytical Euler-Bernoulli solutions is similar to that based on WKB solutions, which is not

shown here for simplicity.

Two other types of enrichment, using wavelet and local wave functions, are also compared with reference FEM solution in

Fig. 4(c) and (d), respectively. It can be seen that both can offer accurate predictions up to a certain frequency limit, above which

the PUFEM curves start to deviate from the reference solution. More specifically, the wavelet enrichment (Fig. 4(d)) can ensure

the accuracy up to around 23 kHz, outperforming the local wave enrichment, which can roughly reach 10 kHz with reasonably

good accuracy. It should be stressed that the above comparisons involve formulations with roughly the same number of DoFs.

As will be illustrated later by convergence studies, the working frequency band of the PUFEM can be extended by using mesh

refinement or by increasing the wavelet resolution.

To examine the ability of the PUFEM in characterizing typical ABH-specific features, Fig. 5(a)–(c) show the structural response

along the ABH wedge near the upper working frequency range in Fig. 4 using different enrichment methods. Results from the

classical linear FEM with 100 elements (202 DoFs) are also shown in Fig. 5(d) for comparison purposes. One can observe the

typical ABH phenomena from plotted deformation shapes: gradually shortened local wavelengths and increased oscillating

amplitudes along the reduced structural thickness. Comparisons in Fig. 5 also illustrate that, by using the similar number of

DoFs, the element enriched with WKB wave functions can cope with more spatial oscillations than other types of elements.

Meanwhile, the wavelet enrichment can also provide a good approximation over the whole problem domain. On the contrary,
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Fig. 4. FRF curves w∕F0 (at 0.3L from left end) calculated by the PUFEM with: (a) WKB Euler-Bernoulli enrichment, (b) WKB Timoshenko enrichment, (c)

local wave enrichment, (d) wavelet enrichment. reference solution with classical FEM.

the enrichment with the local wave solution, whose wavenumber is evaluated at each node and holds a constant value over

the element (Eq. (18)), shows less accurate results in terms of depicting the strong variation of wavenumbers and amplitudes

within the element at higher frequencies. It is also found that all PUFEM elements perform better than the linear FEM (Fig. 5(d)).

Deviations and mismatch of calculated shapes with the reference solution at the thin wedge part can be observed for the PUFEM

with wavelet and local wave functions and the linear FEM. The zoom-in sub-figure in Fig. 5(a) shows the detailed structural

displacement within the 1st element from the left end (thin part of the ABH wedge). One can observe that a single enriched

element can capture multiple wavelengths (more than 2 for the present case), which is a typical feature of wave enrichment, as

well as the ABH-induced wave modulation effects.

Fig. 6 presents the comparison of the convergence of different formulations at two selected frequencies, 20 kHz and 40 kHz.

In the present case, the wedge is meshed by the elements with equal length. All convergence curves, except for the PUFEM with

wavelet enrichment, are obtained by using the mesh refinement, i.e. reducing element spacing from a coarse mesh. The wavelet

enrichment is refined by increasing the scaling parameter j, with the element number kept at 4. The L2 errors are plotted against

the number of DoFs. The relative errors are estimated via L2-norm as

𝜀 =

√
∫ L

0
|wcomputed − wref |2dx√

∫ L

0
|wref |2dx

× 100%, (20)

where wref is the reference solution. The reference FEM solution for convergence studies is obtained by using 200,000 elements

with linear shape functions and reduced Gauss integration. According to Fig. 6, the PUFEM with WKB Euler-Bernoulli and Tim-

oshenko enrichment and the analytical Euler-Bernoulli enrichment all converge to the reference solution faster than the other

formulations and can achieve reasonably good accuracy with a relatively small number of DoFs. Typically, the errors of all these

wave-enriched elements drop below 1% when the DoF number is larger than 80 and reach 10−4% level when further increased

to 500. It should be noted that the error estimation here is limited by the resolution of the reference solution, which explains

the sudden change of the curve shape around a very low error percentage O(10−4). The difference in terms of convergence

between the PUFEM elements, enriched with WKB approximate solutions and with the analytical wave solution, is not signif-

icant. At the higher frequency of 40 kHz, the advantage of the analytical wave enrichment becomes less obvious and the WKB

Timoshenko enrichment works slightly better than WKB Euler-Bernoulli enrichment. Note that a quadratic wedge is taken as
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Fig. 5. The deformed shapes along the ABH wedge calculated by the PUFEM with (a) WKB Timoshenko enrichment at 40 kHz, (b) local wave enrichment at

10 kHz, (c) wavelet enrichment at 23 kHz, and by (d) the linear FEM (100 elements) at 7 kHz. the corresponding reference solution with classical FEM.

the tested configuration in this work so that analytical wave enrichment functions exist, while the WKB approximation can

be used for tapered wedge with general profiles. Therefore, the WKB methods can provide good approximation functions for

the PUFEM tapered Timoshenko beam element. It can also be found from Fig. 6 that the wavelet-enriched elements and those

by local wave functions have higher convergence rates than the classical linear element and can reach high accuracy with a

much smaller number of DoFs. The convergence results indicate their relative errors behaving like 𝜀%𝜇 le
𝜏 in which 𝜏 ≈ 7 (le

is the element length and is inversely proportional to the total number of DoFs). Compared with the local wave enrichment,

the wavelet enrichment has smaller values for the constant 𝜇 and thus better computational efficiency. The results show that

all types of PUFEM formulations outperform classical linear FEM and the classical linear element has the expected convergence

rate of 2.

3.2. PUFEM with adaptive mesh

To reduce the calculation errors and enhance the convergence of the numerical solutions, an adaptive mesh scheme is pro-

posed and implemented for the formulations discussed previously. The mesh design is based on the characteristics of wave

propagation in an ABH wedge.

According to Eq. (5), the local wavenumber k̄(x) is inversely proportional to the square root of the local thickness
√

h(x),
so the local wavelength in the quadratic ABH taper will increase linearly along x-coordinate. In the proposed discretization

scheme, the mesh spacing is therefore adapted with a linear increase along the wedge length coordinate and the difference in

lengths between the two neighbouring elements is set to be constant. This non-uniform mesh allows a finer resolution at the

thin portion of the wedge, where the wave amplitude undergoes severer variations. Carrying out the same refinement used

in Figs. 6 and 7 shows the comparison between the convergence curves of the PUFEM with WKB Timoshenko enrichment and

wavelet enrichment using uniform mesh and adaptive mesh, at two selected frequencies, respectively. It can be seen that the

non-uniform adaptive mesh can effectively reduce the numerical error for all enrichments. More specifically, with the number

of DoFs above 150, the adaptive mesh reduces the error by roughly two orders of magnitude as compared to the uniform mesh.
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Fig. 6. Comparison of convergence at (a) 20 kHz and (b) 40 kHz. classical linear FEM, PUFEM with WKB Euler-Bernoulli enrichment, PUFEM with WKB

Timoshenko enrichment, PUFEM with analytical Euler-Bernoulli enrichment, PUFEM with wavelet enrichment, PUFEM with local wave enrichment.

Fig. 7. Comparison of convergence at (a) 20 kHz and (b) 40 kHz. WKB Timoshenko enrichment using uniform mesh, WKB Timoshenko enrichment using

adaptive mesh, wavelet enrichment using uniform mesh, wavelet enrichment using adaptive mesh.

Comparing different formulations using adaptive mesh (results not shown here), it was observed that conclusions obtained from

the uniform mesh still apply: the wave enrichment based on the WKB and analytical solutions shows the best performance and

the wavelet enrichment outperforms the local wave enrichment and the classical linear element. Fig. 8 compares the conver-

gence properties among various wave enrichment with different solutions using adaptive mesh at 40 kHz. It can be observed

that the WKB Timoshenko enrichment shows superiority over both WKB and analytical Euler-Bernoulli enrichment at 40 kHz

when using the adaptive mesh refinement, suggesting a greater contribution of the shear and rotation inertia effects.

3.3. Applicability of WKB approach

As mentioned above, the applicability of the WKB approximation method relies on the condition of sufficient smoothness

of the beam thickness variation: the change in the local wavenumbers along the tapered beam should be small over a distance

comparable to one wavelength. The NWV, i.e. the left-hand side term of Eq. (7), provides an estimation of the validity of the

WKB method. For a given quadratic Euler-Bernoulli wedge, NWV is only dependent on the frequency but not the position [1].

Therefore, at higher frequencies, the NWV is smaller and the WKB approximation is more accurate. It is opined that, in the low

frequency range, the NWV should be kept below 0.3 to satisfy the sufficient smoothness condition [7]. Previous works on the

validity of the WKB method for ABH problems were conducted based on the reflection coefficients of propagating waves [7,40].

The applicability of the WKB method under the PUFEM framework can be evaluated in terms of vibrational response using the

element enriched with WKB wave functions. Results suggest that the WKB approach can still provide appropriate approximation

functions with good accuracy for the PUFEM in the low frequency range even with NWV values which are considered to be high

from the view point of wave reflection. For the test case used in the present study, the NWV value is 0.4 at 300 Hz, which is

between the 1st and 2nd resonance frequencies of the beam. By using one single element, the relative error using the element
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Fig. 8. Convergence curves of wave enrichment at 40 kHz using adaptive mesh WKB Euler-Bernoulli enrichment, WKB Timoshenko enrichment, ana-

lytical Euler-Bernoulli enrichment.

enriched with WKB Euler-Bernoulli or Timoshenko solutions is around 0.01% while the one with analytical Euler-Bernoulli

enrichment is near 10−4%. At other low frequencies with a large NWV, similar observations can be made using a small number

of elements: the WKB wave-enriched elements can provide reasonably accurate results, albeit not as accurate as the analytical

Euler-Bernoulli enrichment.

4. Conclusions

In this work, the PUFEM tapered Timoshenko beam elements are developed to solve the forced vibration response of an

ABH wedge. Several types of PUFEM elements are constructed using different enrichment functions, namely wave enrichment

based on WKB approximate solutions for the tapered Euler-Bernoulli and Timoshenko beams and the one based on wavelets.

The computational performance of different formulations is evaluated in terms of structural response and solution convergence.

By capitalizing on the ABH-specific wavelength variation, an adaptive mesh scheme is also proposed.

The prevailing conclusions are given below:

1) Through numerical simulations and analyses, it was shown that, upon a proper selection of the enrichment scheme, the

PUFEM is capable of predicting and reproducing the typical ABH-induced wave phenomena in a broad frequency band, by

using a relatively small number of DoFs. This reduction of DoFs is achieved by the enrichment enabling one single element

to capture multiple wavelengths and local wavelength variation.

2) The performance of the PUFEM shows strong dependence on the matching between the approximation properties of the

enrichment functions and the physical nature of the ABH phenomena. The WKB wave enrichment, crafted with the inherent

wave propagation information of the tapered beam, offers the best performance in terms of computational accuracy and data

reduction. The wavelet enrichment functions can also provide an efficient and accurate approximation for the ABH-induced

wave behaviour. The wavelet-enriched element shows its versatility and flexibility in dealing with the strongly localized and

highly oscillatory system behaviour owing to its compact support, flexible scaling and translation features.

3) The PUFEM with the WKB wave solutions and the wavelet functions show superiority over the enrichment with the nodal-

defined local wave solutions and the classical linear FEM. The proposed adaptive mesh scheme is shown to further increase

the computational efficiency of the PUFEM.

4) Through comparisons with analytical wave enrichment, the WKB wave solutions are found to be good approximation func-

tions for PUFEM, applicable at relatively low frequencies where the sufficient smoothness hypothesis may not be strictly

satisfied.

As a final remark, an overall strategy based on different PUFEM formulations has been established for solving the structural

vibration problem of an ABH tapered wedge. The PUFEM allows easy inter-element connections. In a broader perspective, the

proposed PUFEM framework can also be applied to other beams with a thickness variation going beyond the scope of ABH

beams, and eventually be extended to other physical problems with spatially varying wave speeds. Future effort is needed to

apply the present numerical approach for solving more practical problems, such as ABH wedges with surface damping treatment

or vibroacoustic coupling systems.
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