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a b s t r a c t 

Introducing a negative-stiffness mechanism (NSM) into a traditional linear resonator to form a high-static-low- 

dynamic-stiffness (HSLDS) resonator is an ideal way to create a low-frequency band gap. However, with the 

decrease in frequencies of the band gap, the band width narrows, which could hinder the application of the 

metamaterials for attenuating ultralow-frequency elastic waves. In this paper, a regulatory mechanism (RM) con- 

stituted by an electrically charged coil and a magnet ring is introduced into an HSLDS resonator to devise a 

semi-active quasi-zero-stiffness (QZS) resonator. With these semi-active resonators attached onto a beam peri- 

odically, a semi-active metamaterial beam (meta-beam) is realized. The expressions of both the restoring force 

and the stiffness of the semi-active resonator are derived firstly, and then the theoretical dispersion relation and 

the band structure are obtained by the transfer matrix method. Finally, by establishing and then numerically 

solving the equation of motion of the semi-active meta-beam, the wave transmissibility is acquired and utilized 

to validate the theoretically predicted band structure. The analytical and numerical results show that the band 

gap can be effectively tuned by the RM, which enables excellent wave manipulation in an ultralow and wide 

frequency range. 
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. Introduction 

Since its discovery in 2000 [1] , the locally resonant phononic crys-
al (metamaterial) has received tremendous attention from researchers
1] . Prohibiting wave propagation in certain frequency ranges, referred
o as stop bands or band gaps, such metamaterials have been widely ap-
lied in the fields of acoustic waveguide [2] , wave manipulation [3] and
ibration/noise control [4–9] . 

In previous investigations, various types of metamaterials, in one-
imension (1D) (including chains, rods, shafts and beams) [5,10–15] ,
D [16–18] and 3D [19,20] , have been designed theoretically, analysed
umerically and validated experimentally. Compared with the Bragg
cattering band gap, the locally resonant band gap usually features a
ower central frequency and a better wave attenuation within the band
ap, conducive to low-frequency wave manipulation. However, most
f the existing resonators, such as spring-mass devices [7,12,21,22] ,
ontinuous beams [23] , circular rubber-coated metal bars [24] , rubber
nd metal rings [25] and piezoelectric patches [26] , can hardly create
ltralow-frequency band gaps since their resonant frequencies are not
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ow enough. In addition, alongside the decrease in frequencies of the
and gap is the decrease in its band width, which also hinders the fur-
her applications of metamaterials. 

Much effort has been devoted to further reducing the band gap based
n locally resonant mechanism. Zhang et al. [27] presented a metamate-
ial plate with periodic spiral resonators and successfully obtained low-
requency band gap (about 50 Hz). The achieved decrease in the band
ap is attributed to the interaction between the local resonances and
he traveling wave modes in the plate. Fang et al. [28] put forward a
onlinear chaotic mechanism to open a low-frequency band gap (about
0 Hz) in both 1D and 2D metamaterials. In the authors’ early works
16,29,30] , a negative-stiffness mechanism was introduced into the de-
ign of the resonator to construct a high-static-low-dynamic-stiffness
HSLDS) resonator with an ultralow resonant frequency. The results in-
icated that introducing the negative-stiffness mechanism is a promising
ay to open a band gap in an ultralowfrequency range (about 10 Hz). 

Effort has also been made to overcome the limitation of the narrow
andwidth of a local resonant band gap. For example, Li et al. [31] pre-
ented a double-resonant phononic resonator; Fang et al. [32,33]
 University, Changsha 410082, PR China. 
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esigned a nonlinear resonator offering strong nonlinearity; Liu et al.
34] proposed resonant hierarchical lattice structures; Liu and Reina
34] designed hierarchical metamaterials and Celli et al. [35] proposed
 rainbow metamaterial. In addition, by designing a unit cell includ-
ng different types of resonators, a locally resonant band gap could also
e broadened due to the coupling of multiple band gaps [36–38] . Cou-
ling two resonant modes [12] , and introducing an inertial amplifica-
ion mechanism [39,40] were also shown to be alternative ways for
roadening a band gap. 

Apart from the passive mechanism, constructing an active or a semi-
ctive resonator is another approach to lower the central frequency or
roaden the bandwidth of a band gap [41] . Among active metamateri-
ls, piezoelectric stacks [42–45] are usually used to realize the active
ontrol for a band gap. In addition, adjusting the mass [46,47] or the
tiffness [48] with a semi-active method is also a promising way to tune
 band gap. 

The motivation of this paper is to propose an alternative method to
vercome the limitation of the ultralow-frequency of the QZS resonator
y introducing a regulatory mechanism (RM) (realized by a coil and
 magnet ring), which opens a tuneable and wide low-frequency band
ap in the ultralow-frequency range. The negative-stiffness mechanism
NSM) of the QZS resonator is composed of a pair of magnet rings to
eutralize the stiffness of the linear resonator. Through periodic attach-
ent of such resonators on a beam, a semi-active metamaterial beam,

eferred to as meta-beam, is devised. Based on the theoretical dispersion
elation determined by the transfer matrix method, the band structures
f both the QZS meta-beam and semi-active meta-beam are obtained,
hich are examined numerically in terms of the wave transmissibility

hrough solving the equation of motion of the meta-beams. 
This paper is organized as follows: In Section 2 , both the physical and

omputational models of the meta-beam and the semi-active resonator
re presented, alongside a static analysis of the resonator. The theoret-
cal dispersion relations and the band structures are obtained through
ransfer matrix method in Section 3 . In Section 4 , numerical simulations
nd analyses of the semi-active meta-beam are conducted. Finally, con-

lusions are summarized in Section 5 . t

ig. 1. (a) Physical model and (b) computational model of the semi-active QZS meta

he semi-active resonator. 
. Modeling and static analysis of the meta-beam 

.1. Conceptual model 

The physical and computational models of the semi-active meta-
eam and the semi-active resonator are depicted in Fig. 1 . As shown in
ig. 1 (c) and (d), the semi-active resonator includes three parts, namely,
 positive stiffness mechanism (PSM), a negative-stiffness mechanism
NSM) and a regulatory mechanism (RM). The PSM is a vertical spring,
hich not only provides a positive stiffness for the resonator, but also

upports the mass of the resonator composed of inner magnetic rings
f both the NSM and the RM. Note that, the mass of the resonator is
nstalled onto a shaft with sliding bearing, which enables the motion of
he resonator only in the vertical direction. The NSM is constituted by
 pair of permanent magnet rings, used to neutralize the stiffness of the
SM. The RM is composed of an electrically charged coil and a perma-
ent magnet ring, which is utilized to actively regulate the stiffness of
he resonator. Attaching semi-active QZS resonators onto a thin beam
y bolted joints, the semi-active meta-beam is constructed, as shown in
ig. 1 (a). 

.2. Static analysis 

The computational model of the RM is presented in Fig. 1 (c). Based
n the principle of magnetic field superposition and Ampere’s cur-
ent law, the permanent magnet ring is equivalent to two thin-walled
olenoids which carry counter-flowing currents on the cylindrical sur-
aces, I I for the inner solenoid and I O for the outer one. Additionally,
he static analysis of the semi-active QZS resonator is carried out with
he aid of the filament method [49] . As presented in Fig. 2 (a), both
quivalent solenoids and the electrically charged coil are divided into
everal segments ( N 1 × N 2 for the coil, N 3 and N 4 for the inner and outer
olenoids, respectively) according to the filament method. In Fig. 2 (b), a
air of divided Maxwell’s coils is highlighted which is utilized to derive
he theoretical expression of the electromagnetic force of the RM. 
-beam, (c) schematic diagram of the static analysis, and (d) physical model of 
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Fig. 2. (a) Division of both the charged 

coil and the permanent magnet ring of the 

RM into different meshes, and (b) a pair of 

Maxwell’s coils. 
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Firstly, the currents of the thin-walled solenoids can be given by
50] 

 𝑖 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝐽𝐻 

𝜇0 𝑁 3 
for 𝑖 = I 

− 

𝐽𝐻 

𝜇0 𝑁 3 
for 𝑖 = O 

(1) 

here J and H denote the polarization and the height of the perma-
ent magnet ring, respectively; 𝜇0 = 4 𝜋 × 10 -7 N/A 

2 is the vacuum per-
eability. For the highlighted Maxwell’s coils shown in Fig. 2 (b), the

adii of the cells of the electrically charged coil and the equivalent outer
olenoid of the permanent magnet ring can be written as 

 𝑛 1 𝑛 2 = 𝑅 𝐶1 + 

(
𝑛 2 − 

1 
2 

)𝑅 𝐶2 − 𝑅 𝐶1 
𝑁 2 

, 0 < 𝑛 1 ≤ 𝑁 2 (2)

 𝑛 3 = 𝑅 𝑀2 (3) 

here R C 1 and R C 2 are the inner and outer radii of the coil; N 2 the total
umber of the cells in the radial direction and R M 1 the inner radii of the
agnet ring. In the axial direction, the location of the Maxwell’s coils

an be given by 

 𝑛 1 𝑛 2 = 

(
𝑛 1 − 

1 
2 

)
𝐻 

𝑁 1 
, 0 < 𝑛 1 ≤ 𝑁 1 (4)

 𝑛 3 = 𝑦 + 

(
𝑛 3 − 

1 
2 

)
𝐻 

𝑁 3 
, 0 < 𝑛 3 ≤ 𝑁 3 (5)

here N 1 is the number of the cells in the axial direction and y the moved
isplacement of the inner magnet ring with respect to the equilibrium
osition when an external excitation is applied on the resonator. Assum-
ng the coil with a control current, the current in the filament writes 

 e = 

𝐼 load ×𝑁 

𝑁 1 ×𝑁 2 
(6) 

here N and I load denote the total turns of the insulating metal wire
yellow part in Fig. 2 ) and the load current, respectively. Note that, two
ssumptions [49,50] , namely, currents of each filament being concen-
rated at the centres of the filaments and currents in charged coils being
niform, are introduced here to derive the current in the filament. With
ll of these parameters given above, the electromagnetic force between
he Maxwell’s coils can be obtained by 

 1 
(
𝑛 1 , 𝑛 2 , 𝑛 3 , 𝑦 

)
= 

𝜇0 𝐼 e 𝐼 O 
(
𝑌 𝑛 3 − 𝑌 𝑛 1 𝑛 2 

)
𝑀 1 

2 
√
𝑅 𝑛 1 𝑛 2 𝑅 𝑛 3 

(
1 − 𝑀 

2 
1 
)[ (

1 − 𝑀 

2 
1 
)
𝐾 

(
𝑀 1 

)
− 

2 − 𝑀 

2 
1 

2 
𝐸 
(
𝑀 1 

)] 

(7) 

Following the same derivation procedure, the electromagnetic force
etween the Maxwell’s coils formed by the filament of the charged coil
nd the filament of the inner solenoid can be expressed as 
 2 
(
𝑛 1 , 𝑛 2 , 𝑛 3 , 𝑦 

)
= 

𝜇0 𝐼 e 𝐼 O 
(
𝑌 𝑛 4 − 𝑌 𝑛 1 𝑛 2 

)
𝑀 2 

2 
√
𝑅 𝑛 1 𝑛 2 𝑅 𝑛 4 

(
1 − 𝑀 

2 
2 
)[ (

1 − 𝑀 

2 
2 
)
𝐾 

(
𝑀 2 

)
− 

2 − 𝑀 

2 
2 

2 
𝐸 
(
𝑀 2 

)] 

(8) 

here Y n 4 carry the same meaning as Y n 3 . Note that, the functions K
nd E denote the second order Elliptic Integrals, which are given by 

 ( 𝑚 ) = ∫
𝜋

2 

0 

d 𝜃√
1 − 𝑚 2 sin 2 𝜃

(9) 

 ( 𝑚 ) = ∫
𝜋

2 

0 

√
1 − 𝑚 2 sin 2 𝜃d 𝜃 (10)

Additionally, M 1 and M 2 are constants which are given by 

 1 = 

√ √ √ √ 

4 𝑅 𝑛 1 𝑛 2 𝑅 𝑛 3 (
𝑅 𝑛 1 𝑛 2 + 𝑅 𝑛 3 

)2 + 

(
𝑌 𝑛 3 − 𝑌 𝑛 1 𝑛 2 

) (11) 

nd 

 2 = 

√ √ √ √ 

4 𝑅 𝑛 1 𝑛 2 𝑅 𝑛 4 (
𝑅 𝑛 1 𝑛 2 + 𝑅 𝑛 4 

)2 + 

(
𝑌 𝑛 4 − 𝑌 𝑛 1 𝑛 2 

) (12) 

Upon superposition of all the electromagnetic forces produced by
axwell’s coils, the electromagnetic force between the electrically

harged coil and the permanent magnet ring can be given by 

 RM 

= 

𝑁 1 ∑
𝑛 1 

𝑁 2 ∑
𝑛 2 

𝑁 3 ∑
𝑛 3 

𝑓 1 
(
𝑛 1 , 𝑛 2 , 𝑛 3 , 𝑦 

)
+ 

𝑁 1 ∑
𝑛 1 

𝑁 2 ∑
𝑛 2 

𝑁 3 ∑
𝑛 3 

𝑓 2 
(
𝑛 1 , 𝑛 2 , 𝑛 3 , 𝑦 

)
(13) 

For the NSM, the magnetic force between the inner and outer per-
anent magnet rings is given by Zhou et al. [51] 

 DM 

= 

𝜎2 ( 2 𝑟 + 2 𝑙 + 𝑔 ) 
𝜇0 

[ 2 ℏ ( 𝑦 ) − ℏ ( 𝑦 + ℎ ) − ℏ ( 𝑦 + ℎ ) ] (14) 

here 𝜎 = J • n is the magnetic pole surface density in which J and
 denote the magnetic polarization vector and the unit normal vector,
espectively; r, l, g and h are the inner radii of the inner magnet ring,
he width of both the inner and outer magnet rings, the air gap between
he inner and outer magnet ring, and the thickness of both the inner and
uter magnet ring, respectively. In addition, the detailed expression of
unction � ( a ) can be given by 

 ( 𝑎 ) = ( 2 𝑙 + 𝑔 ) arctan 
( 

2 𝑙 + 𝑔 

𝑎 

) 

− 2 ( 𝑙 + 𝑔 ) arctan 
( 

𝑙 + 𝑔 

𝑎 

) 

+ 𝑔 arctan 
(
𝑔 

𝑎 

)
− 

𝑎 

2 
{
ln 

[
( 2 𝑙 + 𝑔 ) 2 + 𝑎 2 

]
− 2 ln ( 𝑙 + 𝑔 ) 2 + ln 

(
𝑔 2 + 𝑎 2 

)}
(15) 
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Fig. 3. Effect of (a) the air gap between the inner and outer magnet ring, and (b) the thickness of both the inner and outer magnet ring on the stiffness of the NSM. 
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For the RM and NSM, the directions of the restoring force are iden-
ical to that of the displacement y . Therefore, the restoring force of the
emi-active QZS resonator can be written as 

 SA−QZS = 𝑘 v 𝑦 − 𝑓 RM 

− 𝑓 DM 

(16)

here k v and y denote the stiffness of the vertical spring and the ver-
ical displacement of the inner permanent magnet ring, respectively.
ifferentiating the restoring force F SA- QZS with respect to displacement
 yields the stiffness of the resonator as 

 SA−QZS = 𝑘 v − 𝑘 DM 

( 𝑦 ) − 

d 𝑓 RM 

d 𝑦 
(17)

here 

 DM 

( 𝑦 ) = 

𝜎2 ( 2 𝑟 + 2 𝑙 + 𝑔 ) 
2 𝜇0 

[ 2 𝜆̄( 𝑦 ) − 𝜆̄( 𝑦 + ℎ ) − 𝜆̄( 𝑦 − ℎ ) ] (18)

n which 

̄( 𝑎 ) = − 

2 𝑎 2 

𝑎 2 + ( 𝑙 + 𝑔 ) 2 
− 

1 
2 
ln 

{ [
( 2 𝑙 + 𝑔 ) 2 + 𝑎 2 

](
𝑔 2 + 𝑎 2 

)
( 𝑙 + 𝑔 ) 4 

} 

(19)

Introducing a new variable 𝛾( y ) = k DM 

( y )/ k v , named as stiffness ra-
io to evaluate the effect of the NSM, the stiffness of the semi-active
esonator can be rewritten as 
 SA−QZS = [ 1 − 𝛾( 𝑦 ) ] 𝑘 v − d 𝑓 RM 

∕d 𝑦 (20) 

ig. 4. (a) Restoring force and (b) the stiffness of the semi-active QZS resonator wh

nd 1.2 A (red dotted line), respectively. The green-shaded denotes the area of stiffn

f the references to color in this figure legend, the reader is referred to the web versi
.3. Static characteristics of the semi-active resonator 

With parameters 𝜎 = 1.35T, r = 4mm, g = 5mm, l = 9mm, h = 10mm,
 = 1.35T, H = 10mm, R M 1 = 4mm, R M 2 = 14mm, R C 1 = 14.5mm,
 C 2 = 24mm, N 1 = 22, N 2 = 22 and N 3 = N 4 = 50, the restoring force and

he stiffness of the semi-active QZS resonator can be obtained according
o Eqs. (16) and (17) , as shown in Fig. 3 (a) and (b), respectively. 

The effect of the system parameters, including the air gap between
he inner and outer magnet rings, and the thickness of both the inner
nd outer magnet rings, on the stiffness of the NSM is illustrated firstly
n Fig. 3 . It is evident that, with the decrease of the air gap, the nega-
ive stiffness of the NSM increases obviously, leading to a decrease in
he stiffness of the resonator. Compared with the effect of the air gap,
he thickness of the magnet rings has the opposite effect on the stiff-
ess. As shown in Fig. 3 (b), the stiffness of the NSM decreases obviously
hen the thickness of both the inner and outer magnet rings increases.
herefore, the stiffness of the resonator can be adjusted effectively by
hanging the parameters of the NSM, which provides a feasible way to
esign the resonators with different stiffness features. 

The static features of the semi-active QZS resonator under different
oad currents are shown in Fig. 4 . Firstly, considering a special case
ith no load current applied on the coil, the stiffness of the RM equals

ero, and the semi-active resonator retreats to a traditional HSLDS res-
nator. As depicted by the black solid line in Fig. 4 (b), the stiffness of
he resonator can be neutralized effectively by the NSM. The stiffness of
he QZS resonator equals the designated value at the equilibrium posi-
en the control current is − 1.2 A (blue chain-dotted line), 0 A (black solid line) 

ess that can be controlled by adjusting the control current. (For interpretation 

on of this article.) 
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ion ( y = 0). When the resonator deviates from the equilibrium position
ith a small displacement, its stiffness is close to the designated value.
herefore, if there is no large external excitation applied on the tradi-
ional HSLDS resonator, it is reasonable that the nonlinear stiffness of
he resonator is linearized as [1 − 𝛾(0)] k v , where 𝛾(0) denotes the ratio
f the stiffness of the NSM at the equilibrium position to that of the PSM
52,53] . 

Once a load current is applied on the coil, the traditional HSLDS
esonator becomes a semi-active one. As presented by the blue dotted
ine in Fig. 4 , the stiffness of the semi-active resonator is larger than
hat of the HSLDS resonator at the equilibrium position when the load
urrent is − 1.2 A. Nevertheless, with the increase of the displacement,
he difference between the stiffness of the semi-active resonator and that
f the HSLDS resonator gradually reduces. In contrast, the stiffness of
he semi-active resonator is smaller than that of the HSLDS resonator
hen the load current is 1.2 A. The controllable range of the stiffness
f the semi-active resonator is highlighted by the green shaded area in
ig. 4 (b), within which the stiffness can be tuned easily by adjusting the
alue or the direction of the load current. 

Additionally, as illustrated in Fig. 4 (a) and (b), the stiffness feature
f the semi-active resonator is similar to that of the HSLDS resonator.
herefore, if the excitation amplitude is small enough, the nonlinear
tiffness of the semi-active resonator can be linearized as 

 

A 
SA−QZS = [ 1 − 𝛾( 0 ) ] 𝑘 v − d 𝑓 RM 

∕d 𝑦 |𝑦 =0 (21)

here d f RM 

/d y | y = 0 denotes the stiffness of the RM at the equilibrium
osition. The linearized stiffness will be utilized in the analytical analy-
is of the semi-active meta-beam for band structures. 

. Wave dispersion on meta-beam 

In this section, wave dispersion on the semi-active meta-beam is de-
ived by utilizing the transfer matrix method. According to the disper-
ion relation, band structures of both the passive HSLDS meta-beam and
he semi-active QZS meta-beam are determined. 

.1. Dispersion relation 

In order to obtain the theoretical band structures of the meta-beam
ith semi-active QZS resonators, an infinite beam with an infinite num-
er of resonators is considered firstly. For the host beam, the equation
f motion can be written as [37] 

𝐼 
𝜕 4 𝑤 ( 𝑥, 𝑡 ) 
𝜕 𝑥 4 

+ 𝜌𝑆 
𝜕 2 𝑤 ( 𝑥, 𝑡 ) 
𝜕 𝑡 2 

= 0 (22)

here w ( x, t ) is the transverse deflection of the beam at point x; E, I,

 and 𝜌 the Young’s modulus, the second moment of area, the cross-
ectional area and the density of the host beam, respectively. The con-
entional small displacement assumption is adopted. Upon linearizing
he stiffness of the semi-active QZS resonator at the equilibrium posi-
ion, the equation of motion of the j th semi-active QZS can be given by

 r ̈𝑦 𝑗 ( 𝑡 ) − 

{
𝑘 v [ 1 − 𝛾( 0 ) ] − d 𝑓 RM 

∕d 𝑦 |𝑦 =0 }[𝑤 

(
𝑥 𝑗 , 𝑡 

)
− 𝑦 𝑗 ( 𝑡 ) 

]
= 0 (23)

Assuming that the transverse deflection of the beam at point x as 

 ( 𝑥 ) = 𝑊 ( 𝑥 ) e i 𝜔𝑡 (24)

here W ( x ) = ΔΦ( x ) T denotes the mode shape function of the host beam
n which 
 

𝚫 = 

{
𝐴 𝐵 𝐶 𝐷 

}
Φ( 𝑥 ) = 

{
cos ( 𝜈𝑥 ) sin ( 𝜈𝑥 ) cosh ( 𝜈𝑥 ) sinh ( 𝜈𝑥 ) 

} (25) 

ith A, B, C, D being unknown parameters and 𝜔 the angular fre-
uency. In the j th unit cell where x ′ = x − jl c and jl c ≤ x ≤ ( j − 1) l c ,
he mode function can be written as W j ( x ′ ) = Δj Φ( x ′ ) T where Δ𝑗 =
 𝐴 𝑗 𝐵 𝑗 𝐶 𝑗 𝐷 𝑗 } . 
Note that the parameter 𝜈 = 

4 
√
𝜌𝑆 𝜔 2 ∕ 𝐸𝐼 is the wavenumber. By us-

ng the continuities of displacement, slope, bending moment and shear
orce at the attaching point of the j th resonator, and employing the
loquet-Bloch theorem 𝚫𝑗 = e i 𝑞 𝑙 c 𝚫𝑗−1 and the transfer matrix method
29] , one can easily obtain the dispersion relation of the semi-active
eta-beam as 

𝐆 

−1 𝐇 − e i 𝑞 𝑙 c 𝐈 ||| = 0 (26) 

here I , q, l c denote a 4 × 4 identity matrix, the bending wave vector
nd the lattice constant, respectively, and 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 1 0 
0 𝜈 0 𝜈

− 𝜈2 0 𝜈2 0 

− 

𝐾 A SA−QZS 𝑚 r 𝜔 
2 

𝐾 A SA−QZS − 𝑚 r 𝜔 
2 − 𝐸𝐼 𝜈3 − 

𝐾 A SA−QZS 𝑚 r 𝜔 
2 

𝐾 A SA−QZS − 𝑚 r 𝜔 
2 𝐸𝐼 𝜈3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(27) 

 = 
⎡ ⎢ ⎢ ⎢ ⎣ 

cos 
(
𝜈𝑙 𝑐 

)
sin 

(
𝜈𝑙 𝑐 

)
cosh 

(
𝜈𝑙 𝑐 

)
sinh 

(
𝜈𝑙 𝑐 

)
− 𝛽 sin 

(
𝜈𝑙 𝑐 

)
𝛽 cos 

(
𝜈𝑙 𝑐 

)
𝛽 sinh 

(
𝜈𝑙 𝑐 

)
𝛽 cosh 

(
𝜈𝑙 𝑐 

)
− 𝛽2 cos 

(
𝜈𝑙 𝑐 

)
− 𝛽2 sin 

(
𝜈𝑙 𝑐 

)
𝛽2 cosh 

(
𝜈𝑙 𝑐 

)
𝛽2 sinh 

(
𝜈𝑙 𝑐 

)
𝐸𝐼 𝛽3 sin 

(
𝜈𝑙 𝑐 

)
− 𝐸𝐼 𝛽3 cos 

(
𝜈𝑙 𝑐 

)
𝐸𝐼 𝛽3 sinh 

(
𝜈𝑙 𝑐 

)
𝐸𝐼 𝛽3 cosh 

(
𝜈𝑙 𝑐 

)
⎤ ⎥ ⎥ ⎥ ⎦ 

(28) 

For a given frequency, one can obtain the solution of the wave vector
ccording to the dispersion relation. 

.2. The band structure of the passive HSLDS meta-beam 

In order to emphasize the improvement of the semi-active QZS
esonator over the traditional HSLDS resonator in tuning and broad-
ning the low-frequency band gap, some parameters of the semi-
ctive QZS meta-beam are selected from Ref. [29] . All the geometri-
al and material parameters are listed as: E = 70Gpa, 𝜌 = 2700kg/m 

3 ,
 = 5.968 × 10 -9 m 

4 , S = 1.602 × 10 -4 m 

− 2 , l c = 0.125m, m r = 0.0482kg
nd k v = 7.5 × 10 4 N/m. The effect of the stiffness ratio 𝛾(0) on the band
tructure is illustrated in Fig. 5 when the load current is zero and the
emi-active resonator degenerates into a traditional HSLDS one. In each
ubplot, the left-panel and the right-panel denote the imaginary part
nd real part of ql c / 𝜋, respectively. The shaded areas indicate the band
ap. Clearly, both the imaginary and real parts can predict the width
nd location of the band gap, while the imaginary part also illustrates
he wave attenuation feature within the band gap. 

For the case of 𝛾(0) = 0, as delineated in Fig. 6 (a), the semi-active
ZS resonator degenerates into a linear one and the band gap locates at
 high-frequency range around 200 Hz. By adjusting the parameters of
he NSM to increase the value of 𝛾(0), as shown in Fig. 5 (b)–(d), the band
ap is shifted to low-frequency. For example, the band gap centered at
s 140 Hz when 𝛾(0) = 0.5 is shifted to 19 Hz when 𝛾(0) = 0.99 through
ntroducing the NSM. Actually, the reduction of the central frequency
nduced by the NSM can be explained by the variation of the stiffness of
he HSLDS resonator. With the increase of the stiffness ratio, the stiffness
f the resonator is effectively neutralized by the NSM, causing a lower
esonant frequency and thus the reduction in the central frequency. 

.3. The band structure of the semi-active QZS meta-beam 

When a current is loaded on the coil, the HSLDS resonator becomes
 semi-active one, leading to a semi-active meta-beam empowered with
uning capability. Its corresponding band structure is computed and pre-
ented in Fig. 6 , where different shadowed areas denote different band
aps: the original band gap, extended band gap by load current and the
ntire band gap, respectively. For 𝛾(0) = 0.95, as shown in Fig. 6 (a),
he band gap of the beta-beam is significantly altered. As illustrated in
ig. 6 (a), the band gap moves to a high frequency range for a load cur-
ent − 1.2 A (the maximum allowable current to be loaded). This is plau-
ible since the load current leads to a weakening of the negative stiffness
nd then results in an increase of the resonant frequency. In contrast,
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Fig. 5. Theoretical band gaps of the meta-beam with traditional HSLDS resonators when (a) 𝛾(0) = 0, (b) 𝛾(0) = 0.5, (c) 𝛾(0) = 0.9 and (d) 𝛾(0) = 0.99. The shaded 

areas show the band gap where the flexural wave is suppressed along the meta-beam. 

Fig. 6. Effect of load current on the band gap when (a) 𝛾(0) = 0.95 and (b) 𝛾(0) = 0.5. The bandwidth ratio of the original bandgap to the frequency range of 

(0–300 Hz), and the ratio of the extended bandgap to the frequency range of (0–300 Hz) when (c) 𝛾(0) = 0.95 and (d) 𝛾(0) = 0.5. 
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he band gap moves to a low frequency range when the load current
s 1.2 A. Similarly, the reduction of the central frequency of the band
ap can also be attributed to the enhancement of the negative stiffness
aused by the positive load current. 

When the negative-stiffness ratio is 𝛾(0) = 0.5, the effect of load
urrent on the band gap of the semi-active meta-beam is illustrated in
ig. 6 (b). Clearly, the band gap moves to a high frequency range when a
egative current is applied on the coil, while it shifts to a low frequency
ange for a positive load current. The band gap exhibits the same vari-
tion trend when 𝛾(0) = 0.05. 

To further illustrate the effect of load current on the band gap,
ig. 6 (c) and (d) show the bandwidth ratio of the band gap to the given
requency range (0–300 Hz), when the stiffness ratio is 0.95 and 0.5,
espectively. As shown in Fig. 6 (c), the RM obviously affects the band-
idth when 𝛾(0) = 0.95, leading to a broadening of the band gap from
% to 16% (more than twice) by tuning the load current. However, when
(0) = 0.5, the RM has less effect on the semi-active resonator, resulting
n an slight enlargement of the band gap from 19% to 21%. Therefore,
ntroducing the RM into the HSLDS resonator is an effective approach
o broaden the band gap in the ultralow frequency range. 
The impact of the stiffness ratio on the lower and upper frequen-
ies of the band gap is shown in Fig. 7 (a). It is evident that with the
ncrease of the stiffness ratio, both the lower and upper frequencies are
educed, leading to a lower but narrower band gap for both the HSLDS
nd the semi-active resonators. However, as depicted in Fig. 7 (a), the
and gap created by the latter is broader than that of the former, more
bvious with the increase of the stiffness ratio, which is in line with the
endency observed in Fig. 6 . To quantify this, a parameter 𝜀 named as
mplification coefficient is defined as 

 = 

(
𝜔 EEF − 𝜔 EBF 

)
− 

(
𝜔 OEF − 𝜔 OBF 

)
𝜔 OEF − 𝜔 OBF 

(29)

here subscripts ‘EEF’ and ‘EBF’ denote the upper and lower frequencies
f the extended band gap, and ‘OEF’ and ‘OBF’ denote their counterparts
f the original band gap, respectively As shown in Fig. 7 (b), with the in-
rease of the negative-stiffness ratio, 𝜀 increases firstly gently and then
apidly, evidencing the pivotal role that RM plays in broadening the
andwidth in the low, especially ultralow frequency range, and allevi-
ting the drawbacks of the traditional HSLDS resonator. 
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Fig. 7. (a) Lower and upper frequencies of the band gap for different negative-stiffness ratios. (b) The amplification coefficient of the band gap for different negative- 

stiffness ratios. 
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. Numerical simulations for wave transmissibility 

.1. Numerical simulations 

In this section, the wave transmissibility of a meta-beam with a finite
ength and a free-free boundary condition under an external excitation
pplied on the left-hand side ( y = 0) is investigated with the Galerkin
ethod. This section commences with verifying the effect of the NSM

HSLDS resonator) on the wave transmissibility, and then assesses the
djustment of the band gap by the RM (semi-active resonator). 

The equation of the motion of the coupled meta-beam with HSLDS
esonators is given by 

𝐼 
𝜕 4 𝑤 ( 𝑥, 𝑡 ) 
𝜕 𝑤 

4 + 𝜌𝑆 
𝜕 2 𝑤 ( 𝑥, 𝑡 ) 
𝜕 𝑡 2 

= 𝑓 ( 𝑡 ) 𝛿( 𝑥 − 0 ) + 

𝑛 ∑
𝑗=1 
𝐹 SA−QZS 

(
𝑥 𝑗 , 𝑡 

)
𝛿
(
𝑥 − 𝑥 𝑗 

)
(30) 

here 

 DM 

(
𝑥 𝑗 , 𝑡 

)
= 𝑘 v 

[
𝑧 𝑗 ( 𝑡 ) − 𝑤 

(
𝑥 𝑗 , 𝑡 

)]
− 

𝜎2 ( 2 𝑟 + 2 𝑙 + 𝑔 ) 
2 𝜇0 

[
2 ℏ 

(
𝑧 𝑗 ( 𝑡 ) − 𝑤 

(
𝑥 𝑗 , 𝑡 

))
− ℏ 

(
𝑧 𝑗 ( 𝑡 ) − 𝑤 

(
𝑥 𝑗 , 𝑡 

)
+ ℎ 

)
− ℏ 

(
𝑧 𝑗 ( 𝑡 ) − 𝑤 

(
𝑥 𝑗 , 𝑡 

)
+ ℎ 

)] (31) 

enotes the restoring force of the j th resonator. 
Employing the Galerkin method to discretize the system, the trans-

erse deflection of the host beam is postulated as 

 ( 𝑥, 𝑡 ) = 

𝐾 ∑
𝑘 =1 
𝜙𝑘 ( 𝑥 ) 𝑝 𝑘 ( 𝑡 ) (32)

n which 𝜑 k ( x ) and p k ( t ) denote the trial function and the generalized
isplacement, respectively. The trial function of the beam is given by 

𝑘 ( 𝑥 ) = sin 
(
𝛽𝑘 𝑥 

)
+ sinh 

(
𝛽𝑘 𝑥 

)
+ 

sin 
(
𝛽𝑘 𝑥 

)
− sinh 

(
𝛽𝑘 𝑥 

)
cosh 

(
𝛽𝑘 𝑥 

)
− cos 

(
𝛽𝑘 𝑥 

)[
cosh 

(
𝛽𝑘 𝑥 

)
+ cos 

(
𝛽𝑘 𝑥 

)]
(33) 

here 𝛽k is the wavenumber of the Euler-Bernoulli beam, which can be
cquired by solving the characteristic equation cos ( 𝛽k L )cosh ( 𝛽k L ) = 1.
nserting (32) into the equation of motion of the coupled meta-beam
 Eq. (30) ), one can obtain 

𝐾 

𝑘 

[
𝐸𝐼𝜙

( 4 ) 
𝑘 
( 𝑥 ) 𝑝 𝑘 ( 𝑡 ) + 𝜌𝑆 𝜙𝑘 ( 𝑥 ) ̈𝑝 𝑘 ( 𝑡 ) 

]
= 𝑓 ( 𝑡 ) 𝛿( 𝑥 − 0 ) 

+ 

𝑛 ∑
𝑗=1 
𝐹 SA−QZS 

(
𝑥 𝑗 , 𝑡 

)
𝛿
(
𝑥 − 𝑥 𝑗 

)
(34) 
here 

 SA−QZS 
(
𝑥 𝑗 , 𝑡 

)
= 𝑘 v 

[
𝑧 𝑗 ( 𝑡 ) − 𝑤 

(
𝑥 𝑗 , 𝑡 

)]
− 

𝜎2 ( 2 𝑟 + 2 𝑙 + 𝑔 ) 
2 𝜇0 

[ 

2 ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝 𝑘 ( 𝑡 ) 

) 

− ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝 𝑘 ( 𝑡 ) + ℎ 

) 

− ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝 𝑘 ( 𝑡 ) + ℎ 

) ] 

(35) 

Introducing a weight function 𝜙k ( x ) that is identical to the trial func-
ion, and multiplying Eq. (34) with 𝜙k ( x ) and then integrating along the
hole meta-beam from 0 to L , one can obtain the following equation 

𝐼 

𝐾 ∑
𝑘 

∫
𝐿 

0 
𝜙
( 4 ) 
𝑘 
( 𝑥 ) 𝜑 𝑘 ( 𝑥 ) 𝑝 𝑘 ( 𝑡 ) d 𝑥 + 𝜌𝑆 

𝐾 ∑
𝑘 

∫
𝐿 

0 
𝜙𝑘 ( 𝑥 ) 𝜑 𝑘 ( 𝑥 ) ̈𝑝 𝑘 ( 𝑡 ) d 𝑥 

 ∫
𝐿 

0 
𝑓 ( 𝑡 ) 𝛿( 𝑥 − 0 ) 𝜑 𝑘 ( 𝑥 ) d 𝑥 + 

𝑛 ∑
𝑗=1 

∫
𝐿 

0 
𝜑 𝑘 ( 𝑥 ) 𝐹 SA−QZS 

(
𝑥 𝑗 , 𝑡 

)
𝛿
(
𝑥 − 𝑥 𝑗 

)
d 𝑥 

(36) 

For the j th HSLDS resonator with damping, the equation of motion
an be given by 

 r ̈𝑧 𝑗 + 2 𝜁r 
√
𝑚 r 𝑘 v 

[ 

𝑧̇ ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝̇ 𝑘 ( 𝑡 ) 

] 

+ 𝐹 SA−QZS 
(
𝑥 𝑗 , 𝑡 

)
= 0 (37)

Owing to the orthogonality of the mode functions of the host beam
nd considering the modal damping, Eq. (36) can be rewritten as 

 

𝜌𝑆 ∫
𝐿 

0 
𝜙2 
𝑘 
( 𝑥 ) d 𝑥 

] 
𝑝̈ 𝑘 + 

⎡ ⎢ ⎢ ⎣ 2 𝜁𝑘 
√ 

𝜌𝑆 ∫
𝐿 

0 
𝜙2 
𝑘 
( 𝑥 ) d 𝑥 ⋅ 𝐸𝐼 ∫

𝐿 

0 
𝜙
( 4 ) 
𝑘 
( 𝑥 ) 𝜙𝑘 ( 𝑥 ) d 𝑥 

⎤ ⎥ ⎥ ⎦ 𝑝̇ 𝑘 
+ 

[ 
𝐸𝐼 ∫

𝐿 

0 
𝜙
( 4 ) 
𝑘 
( 𝑥 ) 𝜙𝑘 ( 𝑥 ) d 𝑥 

] 
𝑝 𝑘 

= 𝜙𝑘 ( 0 ) 𝑓 ( 𝑡 ) + 2 𝜁r 
√
𝑚 r 𝑘 v 

𝑛 ∑
𝑗=1 
𝜙𝑘 

(
𝑥 𝑗 

)[ 

𝑧̇ ( 𝑡 ) − 

𝑆 ∑
𝑠 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝̇ 𝑘 ( 𝑡 ) 

] 

+ 

𝑛 ∑
𝑗=1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝐹 SA−QZS 

(
𝑥 𝑗 , 𝑡 

)
(38) 

Note that Eq. (38) is an ordinary differential equation which can be
ritten in the following simple form 

 eq , 𝑘 ̈𝑝 𝑘 + 𝐶 eq , 𝑘 ̇𝑝 𝑘 + 𝐾 eq , 𝑘 𝑝 𝑘 = 𝐹 eq , 𝑘 (39)
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Fig. 8. Comparison between the analytical band structure 

(left-hand axle) and the wave transmissibility (right-hand 

axle) when the external exciting amplitude is F = 1 N. 

(a) Linear system, (b) g = 10 mm, (c) g = 8 mm and (d) 

g = 5 mm. The shaded areas denote the band gap calculated 

by transfer matrix method, and the red lines with arrows 

represent the band gap obtained by numerical simulations. 

(For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this ar- 

ticle.) 
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 eq , 𝑘 = 𝜌𝑆 ∫
𝐿 

0 
𝜙2 
𝑘 
( 𝑥 ) d 𝑥 

 eq , 𝑘 = 2 𝜁𝑘 

√ 

𝜌𝑆 ∫
𝐿 

0 
𝜙2 
𝑘 
( 𝑥 ) d 𝑥 ⋅ 𝐸𝐼 ∫

𝐿 

0 
𝜙
( 4 ) 
𝑘 
( 𝑥 ) 𝜙𝑘 ( 𝑥 ) d 𝑥 

 eq , 𝑘 = 𝐸𝐼 ∫
𝐿 

0 
𝜙
( 4 ) 
𝑘 
( 𝑥 ) 𝜙𝑘 ( 𝑥 ) d 𝑥 

 eq , 𝑘 = 𝜙𝑘 ( 0 ) 𝑓 ( 𝑡 ) + 2 𝜁r 
√
𝑚 r 𝑘 v 

𝑛 ∑
𝑗=1 
𝜙𝑘 

(
𝑥 𝑗 

)[ 

𝑧̇ ( 𝑡 ) − 

𝑁 ∑
𝑗=1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝̇ 𝑘 ( 𝑡 ) 

] 

+ 

𝑛 ∑
𝑗=1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝐹 SA−QZS 

(
𝑥 𝑗 , 𝑡 

)

(40)

For a given frequency, one can obtain the generalized displacement
y solving Eqs. (37) and (39) . Substituting the generalized displace-
ent into Eq. (32) , the wave propagation in the finite-length meta-beam

including 8 unit cells) can be estimated. Additionally, the number of
alerkin trial functions K should be large enough to satisfy the require-
ent on computational accuracy. 

.2. Verification of the band structures 

With parameters 𝜁k = 0.05, 𝜁 r = 0.01, g = 5 × 10 − 3 m and K = 12,
he wave transmissibility in the meta-beam and the real part of ql c / 𝜋
re displayed in Fig. 8 for different air gaps between the inner and
uter magnet rings. In this figure, the wave transmissibility is defined as
he ratio between the left-hand and right-hand displacement response,
amely, 20log || w L ( 𝜔 )/ w R ( 𝜔 )||, which is utilized to estimate the prop-
gation characteristics of the flexural wave alone the meta-beam. The
lue dotted line and green solid line show the wave transmissibility and
he real part of ql c / 𝜋, respectively. The shaded areas represent the nu-
erical band gap, where the flexural wave is suppressed when it propa-
ates along the meta-beam, and the frequency ranges surrounded by the
ed dashed lines show the band gaps obtained by the analytical analysis
y using the linearized stiffness. 

Comparing the numerical with analytical results shows a good agree-
ent between them, which verify the rationality of the linearization on

he nonlinear stiffness. However, since the damping is neglected in the
heoretical analysis, whether the resonator is linear ( Fig. 8 (a)) or HSLDS
 Fig. 8 (b)–(d)), the width of the numerically calculated band gap is al-
ays larger than that of the theoretical one. More importantly, the loca-

ion of the band gap generated by HSLDS resonators is lower than that
y linear ones. Additionally, with the decrease of the air gap between
he inner and outer magnet rings, the central frequency of the band gap
ecreases further, which is in line with the analytical prediction pre-
ented in Fig. 5 . 

.3. Wave transmissibility of the semi-active meta-beam 

For the semi-active meta-beam, a load current is applied on the coil,
nd the neutralization of stiffness is achieved by both the NSM and the
M. However, as shown in Eq. (13) , the expression of the electromag-
etic force between the coil and the permanent magnet ring is com-
licated, and the numerical simulation of wave propagation along the
emi-active meta-beam is difficult. In order to carry out the dynamic
nalysis, the complicated nonlinear expression is approximated as a
olynomial through Taylor expansion. However, with the increase of the
isplacement, the error between the exact expression and the approxi-
ated one increases notably [51] . Therefore, in the current analysis, the
olynomial fitting method is employed to approximate the tedious ex-
ression of the electromagnetic force as a polynomial with components
p to order seven. Then, the restoring force of the j th resonator can be
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Fig. 9. (a) The exact and approximate electromagnetic force, and (b) the fitted error when the load current is 1.2 A. 

Fig. 10. (a) The comparison of the wave transmissibility when the load current is − 1.2 A (red dotted line), 0 A (blue solid line) and 1.2 A (green dashed line). (b) 

The relation between the load current and the central frequency of the band gap. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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ewritten as 

 SA − QZS 

(
𝑥 𝑗 , 𝑡 

)
= 𝑘 v 

[ 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

] 

−Γ1 

[ 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

] 

− Γ2 

[ 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

] 3 

−Γ3 

[ 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

] 5 

− Γ4 

[ 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

] 7 

− 

𝜎2 ( 2 𝑟 + 2 𝑙 + 𝑔 ) 
2 𝜇0 

[ 

2 ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑠 

(
𝑥 𝑗 

)
𝑝 𝑠 ( 𝑡 ) 

) 

− ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝 𝑘 ( 𝑡 ) + ℎ 

) 

− ℏ 

( 

𝑧 𝑗 ( 𝑡 ) − 

𝐾 ∑
𝑘 =1 
𝜙𝑘 

(
𝑥 𝑗 

)
𝑝 𝑘 ( 𝑡 ) + ℎ 

) ] 

(41) 

here Γ1 , Γ2 , Γ3 and Γ4 are fitted coefficients obtained by utilizing MAT-
AB® function lsqcurvefit based on the trust-region-reflective algorithm.

The comparison between the exact electromagnetic force of the RM
nd the approximate one is presented in Fig. 9 (a), when the load cur-
ent is 1.2 A. The error of the fitted electromagnetic force is given in
ig. 9 (b). From Fig. 9 (a) and (b), it is evident that the maximum ab-
olute error between the exact electromagnetic force and the approxi-
ate one is below 0.08 N, which indicates that the approximate expres-

ion matches well with the exact one in the displacement range from
 10 mm to 10 mm. Therefore, the fitted expression can be employed

o conduct the analysis of wave propagations alone the semi-active
eta-beam. 

The wave transmissibility of the semi-active meta-beam is depicted
n Fig. 10 (a) in which the green dashed line, blue solid line and red dot-
ed line correspond to the load current of − 1.2A, 0A and 1.2A, respec-
ively. The air gap between the inner and outer magnet rings is 5 mm. In
he absence of the load current, the RM does not work, and the central
requency of the band gap of the traditional HSLDS resonators is about
0 Hz. Given a positive load current, the semi-active meta-beam can
ttenuate the elastic wave in a much lower frequency range, compared
ith the traditional meta-beam, suggesting that a positive current helps

ower the band gap further. Instead, the elastic wave could be attenuated
n a higher frequency range when the load current is − 1.2 A. Namely,
he band gap is shifted to a high frequency range when a negative load
urrent is applied on the coil. 

From Fig. 10 , one can see that the band gap of the semi-active meta-
eam ranges from 38 Hz to 80 Hz when the load current is limited in
he range [ − 1.2A, 1.2A]. The transmissibility at the central frequency
or different load currents is denoted by a series of asterisks in Fig. 10 (a),
hich form a backbone curve of transmissibility from 39 Hz and 60 Hz

or the semi-active meta-beam. In addition, in the frequency range from
0 Hz to 80 Hz, the transmissibility is determined by the semi-active
eta-beam with load current − 1.2 A, as shown in the red dotted line. In

rder to unravel the effect of the load current on the central frequency
learly, Fig. 10 (b) depicts the variation of the central frequency with
espect to load current. Obviously, with the increase of the load cur-
ent, the central frequency of the band gap decreases almost linearly,
onsistent with the theoretical analysis presented in Fig. 6 . 

.4. Wave characteristics of the semi-active meta-beam 

In order to validate the effect of load current on wave attenuation,
wo excitation frequencies (47 Hz and 60 Hz) are selected to delineate
he displacement response of the meta-beam. At 47 Hz, which is close
o the resonant frequency of the traditional HSLDS resonators, the wave
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Fig. 11. Responses of the semi-active meta-beam at the right-hand side when the external frequency is (a) 47 Hz and (b) 60 Hz. The blue solid line and the orange 

dotted line with circles denote the meta-beam with linear resonators and semi-active QZS resonators, respectively. 

t  

b  

r  

o  

a  

r  

o  

i  

s
 

c  

f  

i  

o  

p  

e  

a  

t  

m  

2  

o  

w
 

o  

b  

F  

t  

r  

s  

p  

U  

b  

i

5

 

o  

H  

s  

t  

m  

t  

i  

s  

c

 

s  

t  

b  

a  

i  

n  

a  

H  

d  

b  

c  

b

D

 

i  

t

C

 

o  

i  

W  

X

A

 

o  

C  

n  

w  

(

R

 

 

 

 

 

ransmissibility of the passive meta-beam and the semi-active meta-
eam are marked by blue and red five-pointed stars with black edge,
espectively, in Fig. 10 (a). The corresponding displacement responses
f the meta-beam are illustrated in Fig. 11 (a), where the blue solid line
nd orange dotted line with circles denote the meta-beam with linear
esonators and HSLDS resonators, respectively. Note that, the linear res-
nator is constructed by removing both the NSM and RM and only keep-
ng a linear spring and a mass, and the passive HSLDS resonator can be
witched to a semi-active one when the load current acts on the coil. 

As shown in Fig. 11 (a), the displacement response of the meta-beam
an be divided into two time segments by a demarcating time t = 2.13 s
or the case of 47 Hz. In the first segment, t < 2.13 s, the load current
s zero, and then the semi-active QZS resonator degrades into a passive
ne. Nevertheless, the displacement amplitude of the meta-beam with
assive HSLDS resonators is smaller than that of the meta-beam with lin-
ar resonators. At t = 2.13 s, a load current of I load = 0.4A is deployed,
nd the meta-beam is switched to a semi-active one. After about 0.3 s,
he transient displacement response fades away. Clearly, the displace-
ent amplitude of the meta-beam with semi-active QZS resonators ( t ≥
.13s) is about a half of that of the meta-beam with passive QZS res-
nators ( t < 2.13s), and also much smaller than that of the meta-beam
ith linear resonators. 

For 60 Hz case (larger than the central frequency of the band gap
f the traditional meta-beam), the wave transmissibility of the meta-
eam is marked by blue and red five-pointed stars with golden edge in
ig. 10 (a). The displacement response of the meta-beam corresponding
o the marked point is shown in Fig. 11 (b). Clearly, the displacement
esponse shows the same trend as the one observed at 47 Hz. In the first
egment of t < 1.67 s, the displacement amplitude of the meta-beam with
assive HSLDS resonators is smaller than that with linear resonators.
pon the deployment of a load current of − 1.2 A at t = 1.67 s, the meta-
eam is switched into a semi-active one, and the displacement amplitude
s substantially reduced. 

. Conclusions 

This paper proposes a semi-active quasi-zero-stiffness (QZS) res-
nator by introducing a regulatory mechanism (RM) into a conventional
SLDS resonator. The HSLDS resonator is formed by combining a linear

pring and a pair of magnet rings (negative-stiffness mechanism), and
he RM is constructed by an electrically charged coil and a permanent
agnet ring. The static analysis of the semi-active resonator shows that

he stiffness of the semi-active QZS resonator can be effectively neutral-
zed by the negative-stiffness mechanism (NSM). More importantly, the
tiffness can be adjusted by the RM, which is a more intriguing feature
ompared with that of the traditional HSLDS resonator. 
Attaching the semi-active resonators onto a beam periodically, a
emi-active meta-beam is realized. Using the transfer matrix method,
he dispersion relation and the band structure of the semi-active meta-
eam are scrutinized. By solving the equation of motion of the semi-
ctive meta-beam and calculating the wave transmissibility, the analyt-
cal band structure is validated numerically. Both the analytical and the
umerical results show that the band gap can be effectively shifted to
 low frequency range due to the NSM. More importantly, the passive
SLDS resonator can be switched into a semi-active one through the
eployment of a load current on the coil. This results in a substantial
roadening of the band gap, thus providing an alternative way to over-
ome the intrinsic limitation of conventional passive local-resonance-
ased methods in terms of achieving broad bandwidth. 
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