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Mid-to-high frequency vibro-acoustic modelling has always been a challenging topic. The
previous study shows the promise of a piecewise calculation scheme based on the
Condensed Transfer Function (CTF) approach in a frequency range where the modal overlap
factor roughly exceeds one. The piecewise scheme has shown its capability in terms of bal-
ancing the accuracy, efficiency and the wealth of information for the modeling of lightly
coupled vibroacoustic systems. This paper extends the method beyond the weak-
coupling assumption. A coupling strength factor is first proposed to quantify and adjust
the coupling strength between two sub-systems. Two mutually connected sub-cavities
are then used as an example to validate the piecewise scheme in relation to the changes
in the coupling strength level, as well as the variations in the coupling strength factor itself.
The effect of the coupling strength on the computational error of the piecewise scheme is
systematically studied. Finally, the applicability of the piecewise calculation scheme is
experimentally validated.

� 2019 Published by Elsevier Ltd.
1. Introduction

Numerical methods for predicting the acoustic responses of structures have been attracting intensive research interests
for decades. In the low frequency range, Finite Element Method (FEM) and Boundary Element Method (BEM) are the two
most powerful and popular tools [1,2]. However, they become cumbersome when the target frequency increases to reach
the so-called mid-to-high frequency range because of the significant increase in the required Degrees of Freedom (DoF),
roughly linearly for the FEM and quadratically for the BEM. This motivated the long-lasting effort in the acoustic community
to explore more efficient modelling approaches, as reviewed in Ref. [3].

Among existing methods, a typical one is the hybrid deterministic-statistical approach [4–7], which partitions the whole
system into two types of components/sub-systems based on their deformation wavelengths, with long wavelength ones
modelled deterministically by FEM or Wave Based Method (WBM) and the short ones by the Statistical Energy Analysis
(SEA). However, confined by the underlying assumptions of the SEA, detailed descriptions of the statistical sub-systems
responses are unavailable. Another type of approach can be categorized as sub-structuring methods, exemplified by the
model reduction methods [8–10] and mobility methods [11–13]. Sub-structuring methods enable a more detailed descrip-
tion of the short wavelength sub-systems than hybrid methods do. One of the representative mobility methods is the Patch
Transfer Function (PTF) method, applicable to either structural-acoustic problems [12] and pure acoustic problems [13]. The
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PTF method was further generalized to the so-called Condensed Transfer Function (CTF) method which allows the transfer
functions, also named condensation functions (CF), over the interface to be any orthonormal set like complex exponential
functions or Chebyshev polynomials. Using the full set of CFs, the effectiveness of the CTF method has been shown by inves-
tigating a submerged shell structure with internal line-coupled non-axisymmetric substructures [14].

One of the developments on the CTF-based method is the previous attempt to increase its upper frequency limit without
compromising its computational efficiency and its ability in providing a detailed description of the physical system. Using a
plate-cavity configuration, a piecewise calculation scheme was proposed for the mid-to-high frequency modelling [3]. By
capitalizing on the wavy feature of the complex exponential functions as CFs, the piecewise calculation scheme allows
the description of the dynamic behavior of the coupling interface by using a truncated sub-set of the full CF series for any
given frequency band in the mid-to-high frequency range (starting from a frequency with a modal overlap factor roughly
equal to one). As a consequence, the size of the system matrix to be solved becomes smaller, leading to a reduction of
the computational cost and an increase in the frequency outreach. The computational efficiency of the method was demon-
strated using a plate-cavity system in air. Despite the relevance of the configuration for many engineering applications [15–
19], the system is considered as a typical weak coupling case [11]. The so-called weak coupling assumption applies to either
a structural-acoustic system or a pure acoustic system composed of multiple sub-cavities. For the former, the fluid-loading
effect on a mechanically excited structure is considered to be weak and negligible; for the latter, the acoustic response of an
acoustically excited sub-cavity remains essentially the same no matter whether the connecting interface with its adjacent
acoustic neighbor is open or closed as a rigid wall.

Therefore, examining the applicability of the piecewise calculation scheme in the context of increasing coupling strength
is required. This, however, brings up two challenging issues that the present work attempts to address and contribute to the
existing knowledge. The first one, which is of general relevance, is to establish a metric to quantify the coupling strength
level in a coupled system. Along the same line of thinking, a very useful coupling strength quantification method was pro-
posed earlier [11], which applies to two coupled single DoF sub-systems. For two continuous sub-systems, the coupling coef-
ficient used in the traditional modal theory can quantify the spatial matching level between two modes of the uncoupled
sub-systems [20]. However, it does not reflect the frequency matching between these modes, which is known to be an
important factor affecting the energy exchanges between two coupled units (either two modes or subsystems). Therefore,
a more general assessment method, able to embedding other physical and frequency parameters, is needed, especially under
the context of the mid-to-high frequency. The second one, more specific to the CTF method itself, concerns the assessment of
its applicability and the accuracy in dealing with cases when the coupling becomes stronger. It is well accepted that the
energy flow between a weakly coupled system is substantially less than the energy dissipated within each subsystem
[21], so that the assumptions and simplifications made under the weak coupling conditions might become invalid in the
strong coupling cases. More specifically, the underlying assumption of the piecewise calculation scheme is that the energy
is only concentrated in a few dominated terms, which deserves a re-examination and assessment when energy exchange
between sub-systems becomes more complex with an increasing coupling strength. Therefore, whether and to what extent
the piecewise scheme is still applicable under various coupling strength levels remains unknown. This forms the main moti-
vation of the present work.

In this paper, the piecewise scheme is systematically scrutinized under different coupling strength levels. In Section 2, the
CTF method and the piecewise scheme are briefly recalled, based on which a coupling strength factor is defined to quantify
the coupling strength between two sub-systems. A cavity composed of two mutually-connected chambers is then selected to
conduct the analyses, whose coupling strength is tactically adjusted through tuning the geometrical parameters based on the
proposed coupling strength factor. The piecewise calculation scheme is then examined in Section 3. Computational errors are
analyzed with respect to different coupling strength levels, leading to the establishment of a relationship between them.
Finally, experimental validations are carried out in Section 4 before conclusions are summarized in Section 5. Similar anal-
yses on a structure-acoustic system are briefly presented in Appendix for reference.
2. Theoretical analyses

For the sake of completeness, this section briefly recalls the CTF method and the piecewise calculation scheme. Then, a
coupling strength factor is defined to quantify the coupling strength level between two sub-systems under the CTF frame-
work. As an example, the theory is built upon an acoustic cavity system, although a structure-cavity system can also be trea-
ted in a similar way, as briefed in Appendix. Finally, the correlation between the coupling strength and the proposed
coupling strength factor is validated.
2.1. CTF method and piecewise calculation scheme

2.1.1. CTF method
Consider a system composed of two sub-systems coupled over an interface C as shown in Fig. 1, in which the left one is

either structural or acoustical, being excited and noted as the main sub-system, and the right one is acoustical, noted as the
attached sub-system.



Fig. 1. 2D illustration of a system composed of two sub-systems that are coupled through an interface.
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To illustrate the method, the case involving two acoustically coupled sub-cavities are used. To simplify the analyses pro-
cess, the whole system is assumed to be coordinate separable so that the physical quantities, such as velocities or forces, on
C can be described as f ðx; yÞ. Then, a set of Nx � Ny orthonormal functions ursf g1�r�Nx ;1�s�Ny

, referred to as Condensation Func-

tions (CFs), is employed to approximate the velocities and the forces on C. For each acoustic sub-system, the condensed
impedance Zkl;rs is defined by imposing a prescribed velocity U x; yð Þ ¼ urðxÞusðyÞ on C as:
Zkl;rs ¼ hPrs;ukli
hU;ursi

¼ hPrs;ukli; ð1Þ
where Prs is the blocked pressure on C when the subsystem is subjected to U x; yð Þ and hf , gi is a scalar product defined asR
X f ðx; yÞg�ðx; yÞdS with g� being the complex conjugate of g. Then the normal velocity Ua and the normal pressure distribu-
tion Pa on C for each subsystem can be decomposed as:
Uaðx; yÞ ¼ P
r;su

a
rsurðxÞusðyÞ

Paðx; yÞ ¼ P
r;sp

a
rsurðxÞusðyÞ

;

(
ð2Þ
where uars and pars are the amplitudes of the normal velocity and the normal pressure distribution with respect to the conden-
sation functionurs for each uncoupled subsystem, with a = 1 and a = 2 referring to the main sub-cavity and the attached sub-
cavity, respectively. On the other hand, the velocity continuity and force equilibrium over C between the two sub-systems
give
U1 ¼ U2

P1 ¼ �P2 :

(
ð3Þ
Then multiplying both sides of Eq. (2) by uars for the first equation and pars for the second equation, and integrating over C,
the orthogonality of the condensation functions alongside Eq. (3) gives:
u1
rs ¼ u2

rs

p1
rs ¼ �p2

rs

(
: ð4Þ
Substituting Eq. (1) into Eq. (4) and assembling all equations into a matrix form give:
� Z1
C þ Z2

C

h i
Uc ¼ Pe; ð5Þ
where ZC is the matrix of the condensed impedance of an acoustic sub-system over the interface; Uc and Pe are the velocity
and the blocked pressure induced by the sound source. Detailed derivation procedure can be found in [3]. The coupled veloc-
ity on C can be finally resolved as
Uc ¼ � Z1
C þ Z2

C

h i�1
Pe: ð6Þ
2.1.2. The piecewise calculation scheme
To warrant the convergence of the method, Nx and Ny should be selected in such a way that a sufficient number of CF

functions are used per wavelength to cover the maximum frequency of interest. However, for the mid-to-high frequency
modelling, the computational time would significantly increase as the matrix size becomes larger. It was shown recently that
the convergence rule can be further relaxed if the CFs can match the oscillating wave feature over the coupling interface,
exemplified by the complex exponential:
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urs x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
LxLy

p exp i
2rpx
Lx

� �
exp i

2spy
Ly

� �
; ð7Þ
in which r 2 [0, �1, �2, . . ., �Nx], s 2 [0, �1, �2, . . ., �Ny]. The function wavelength of each urs x; yð Þ is defined as:
kc;rs x; yð Þ ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rp
Lx

� �2
þ 2sp

Ly

� �2
r : ð8Þ
For a targeted frequency band [f l; f h], corresponding to a wavelength range [kh; kl], it has been shown that, for a plate-
cavity system, the condensed velocity Uc would converge by only including those dominating terms urs which satisfy
kh<kc;rs<bkl, with b = 1.5 [3]. The truncated series is also shown to dominate the condensed impedance matrix and the con-
densed mobility matrix. As a result, the piecewise scheme can reduce the size of the matrix to be inversed on the right-hand
side of Eq. (6) so that the computational time can be significantly shortened. In this paper, we will investigate the validity of
this criterion in the cases of coupled cavities with different coupling strengths. In principle, similar ideas can also be applied
to structural coupling cases, but probably with different quantitative creteria. Note that CTF without piece-wise scheme has
already be validated and applied to different mechanical structures [14]. One can expect that the piecewise sscheme remains
valids for the coupling of homogeneous structures (for instance, for coupled panels with constant thicknesses). For hetero-
geneous structures exhibiting different types of waves that can be coupled together, the criterion related to the piecewise
scheme should certainly be adapted. This requires further investigations which are beyond the scope of the present paper.

2.2. Coupling strength

2.2.1. Quantification of the coupling strength
Based on the physical implication of the coupling, as described in Introduction, the coupling strength is quantified by

evaluating the acoustic pressure differences over the coupling interface before and after the attached sub-cavity is added:
e.g. PC � Pej j where PC and Pe are the acoustic pressure over the interface before and after the coupling. In light of Eq. (6),
one has
Pc ¼ �Z2
C Z1

C þ Z2
C

h i�1
Pe: ð9Þ
when PC � Pe, the coupling is considered to be weak.
To quantify the coupling strength, a coupling strength factor X is defined, also to be further used to assist the validations

of the piecewise scheme under different coupling strength conditions. Define the coupling strength matrix

S ¼ �Z2
C½Z1

C þ Z2
C�

�1
from Eq. (9). From an eigen-decomposition, S can be rewritten as S ¼ K�1KK where the columns of K

are the eigenvectors of S and K is a diagonal matrix containing the corresponding eigenvalues of S. For two weakly coupled
acoustic sub-systems (i.e. PC � Pe), all the eigenvalues should be close to one. On the contrary, for strongly coupled ones (i.e.
PC – Pe), the eigenvalues should be different from one Thus, we define a coupling strength parameter as
X ¼ 1�
P

NkN
N

����
���� ð10Þ
where N is the dimension of S (i.e. N ¼ NxNy) and kN is the Nth eigenvalue of S. The summation of the eigenvalues can be
replaced by the trace of S that avoids the explicit calculation of the eigenvalues. X should increase as the coupling strength
becomes stronger. For instance,X equals to zero when there is no coupling and equals to one when the attached sub-system
is equivalent to a pressure release boundary. Additionally, X is independent of the type and number of the selected conden-
sation functions, so long as the convergence rules are satisfied.

2.2.2. Numerical validations and discussions on the coupling strength factor
In this section, the relationship between the proposedX and the acoustic response differences over the coupling interface

before and after coupling will be validated using an acoustic cavity shown in Fig. 2. The system contains two sub-cavities
connected through an opening, which is commonly used in vibro-acoustic analyses [22,23]. The main sub-cavity has a fixed
dimension (x � y � z) 2.5 � 2 � 1.5 (m).

The uncoupled acoustic pressure p within the cavity satisfies the wave equation and the associated boundary condition:
r2p r; tð Þ � 1
c20

@2p
@t2

r; tð Þ ¼ �q0
_Q tð Þd r � r0ð Þ; ð11Þ

@p
@n

¼ 0 on the boundary; ð12Þ
where r0 is the location of the sound source, Q is the volume velocity strength of the sound source, q0 and c0 are the equi-
librium air density and the acoustic velocity within the cavity, respectively. Because the two cavities can be modelled fol-



Fig. 2. Configurations of the coupled acoustic system, excited by an internal sound source in the main sub-cavity.
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lowing the same procedure, the superscript a representing the sub-system number is omitted for convenience. In the har-
monic regime, one can solve Eqs. (11) and (12) using modal expansion as:
p rð Þ ¼ ixq0c
2
0Q

V

X
m

/m rð Þ/m r0ð Þ
Km x2

m �x2 þ 2inxmx
� 	 ; ð13Þ
where /m is the mth acoustic mode of the rigid-walled cavity; xm is the mth natural frequency; n is the damping ratio and
assumed to be equal for all cavity modes; V is the volume of the cavity, and Kn ¼ R

/2
ndV=V . Analytical expressions of the

acoustic modes for th rectangular cavities will be considered in the following. Note that for the practical cases with cavities
with more complex geometries, FEM can be used to obtain the modal information as well. Substituting Eq. (13) into Eq. (2),
one obtains the free condensed pressure prs as:
p
~

rs ¼
ixq0c

2
0Q

V

X
m

/mðr0ÞCrs;m

Kmðx2
m �x2 þ 2inxmxÞ ; ð14Þ
where Crs;m ¼ R
urs/mdS is the modal matching coefficient between the rsth CF and the mth acoustic mode. Similarly, using

Eq. (1), the condensed impedance zkl;rs, is given by:
zkl;rs ¼ ixq0c
2
0

V

X
m

Ckl;mC
�
rs;m

Kmðx2
m �x2 þ 2inxmxÞ : ð15Þ
Eqs. (14) and (15) give respectively, the blocked condensed pressure vector Pe and the condensed impedance matrix Z1
C

and Z2
C. These quantities can be introduced into Eq. (6). The velocity over the interface between the two sub-cavities can then

be solved either in a full or piecewise manner. In order to highlight the parameters influencing the coupling strength matrix
S, one can rewrite
S ¼ ½Iþ Z1
CðZ2

CÞ
�1�

�1
: ð16Þ
in which Z1
C Z2

C

� ��1
can be further expanded as:
Z1
C Z2

C

� ��1
¼ V2

V1

	 	 	
..
. . .

. ..
.

	 	 	 P
m

Ckl;mC�
rs;m

Km x2
m�x2þ2inxmxð Þ

2
664

3
775

	 	 	
..
. . .

. ..
.

	 	 	 P
n

Ckl;nC
�
rs;n

Kn x2
n�x2þ2inxnxð Þ

2
664

3
775

�1

; ð17Þ
where m is the modal order of the main sub-cavity and n is the modal order of the attached sub-cavity. It can be seen from
Eq. (17) that there are three factors that influence the coupling strength: volume ratio of the two sub-cavities, frequency
dependent terms, and the spatial modal matching terms. For the volume ratio, the weak coupling occurs when
V2=V1 
 1. For a given main sub-cavity volume V1, the coupling strength increases with V2. One should notice that the
volume ratio is only valid for the current double-sub-cavity configuration. The second factor is the modal matching term
Ckl;mC

�
rs;m, which is non-dimensional and determined by the spatial matching level between the CFs and the mode shapes

of the two sub-systems. As for the frequency-dependent part, one would intuitively guess the strong coupling happens at
resonances. Particularly when the two cavities share the same resonance frequency in low frequency range, the coupling
process can be referred to the working mechanism of an acoustic resonator within an enclosure. However, in the mid-to-
high frequency range, it is less relevant to focus on a single frequency but more reasonable to average it within a frequency
band as 1

Df

R
f Xdf .

For the present cavity configuration, the coupling strength is quantified based on the pressure differences over the inter-
face with and without the attached sub-cavity, defined as:



Fig. 3.
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D ¼ 1
S

Z
S

Pe � PCj j
Pej j dS: ð18Þ
D can be averaged in a frequency band as 1
Df

R
f Ddf as well. To eliminate the influence of the sound source location, Pe is not

obtained by setting a particular sound source but assumed to be unit on all basis functions as
Pe ¼
u11

	 	 	
urs

2
64

3
75: ð19Þ
With such definition, X should reflect the variation trend of D when the dimension/volume of the attached sub-cavity
changes, as shown in Fig. 3, as a function of volume ratio by setting DLy = 0 and varying Lz2. Both D and X are averaged
in two selected frequency bands with a 200 Hz bandwidth, centered at 1100 Hz and 1500 Hz, respectively. X obtained from
the truncated series using piecewise scheme criterion is also shown for reference. It can be seen that X is only slightly
affected by the truncated series so long as the solution converges. Therefore, X will be calculated using the truncated series
in the piecewise scheme in the following analyses. It can be observed in Fig. 3 that D andX undergo the same variation trend
as a function of V2=V1 and both, albeit not monotonously, exhibit an overall increasing trend with V2=V1. Fluctuations can be
attributed to the resonances of the coupled system. Both D andX reach a local maximum value of 0.5 when V2=V1 = 1. It can
be surmised that D and X will not be larger than 0.5 until V2 � V1, where V2 can be approximately considered as infinitely
larger than V1. Since we only aim at modelling the coupling process between two sub-systems with comparable sizes, the
case of V2 � V1 will be the main focus of analyses in this paper. To better show the consistent variation trend between D and
X, D is plotted as a function ofX in Fig. 4a and b, averaged in the same two frequency bands. It can be seen thatX is approx-
imately proportional to D, i.e. the proposed coupling strength factor could effectively reflect the response differences over
the interface as well as the coupling strength, in agreement with our intuitive understanding.

It should be noticed that all the above analyses can be repeated in a vibro-acoustic system as well. Similar theoretical
model and numerical validation for a plate-cavity system are presented in Appendix.
Interface pressure response differences D and the coupling strength factorX as functions of the volume ratio, averaged in frequency bands of 200 Hz
ntered at: (a) 1100 Hz; (b) 1500 Hz.



Fig. 4. Relationship between the interface pressure response differences D and the coupling strength factor X, averaged in frequency bands of 200 Hz wide
centered at: (a) 1100 Hz; (b) 1500 Hz.
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3. Numerical analyses

All numerical analyses are implemented based on the configuration shown in Fig. 2. Before going into error analyses,
some validations are presented by comparing the piecewise calculation results and the analytical solutions obtained by set-
ting DLy = 0 and Lz2 = Lz1. Notice that this configuration has the strongest coupling strength (X = 0.5) among the considered
cases. Then, the computational error of the piecewise scheme will be examined under different coupling strength levels.

3.1. Validation of the piecewise scheme in the strong coupling case

By setting DLy = 0, the main sub-cavity and the attached sub-cavity form a rigid rectangular cavity so that the analytical
solution can be obtained as the reference result. The CTF-based piecewise calculation scheme treats the cavity as two sub-
systems. b is selected to be 1.5 in the present case because the tendency of the error convergence is found to be similar to
that reported in our previous work [3]. Comparisons in terms of the sound pressure level (SPL) are made at two arbitrarily
receiving points, located in the sub-cavities 1 and 2 respectively. The results are shown in Fig. 5, in which only the results in
mid-to-high frequency bands are presented. The dotted line, obtained from the piecewise scheme, includes 4 individual
piecewise calculations, each with a 200 Hz bandwidth. Note a broader band will reduce the computational efficiency and
dilute the advantage of the method. Nevertheless, a broader computational band could increase the accuracy of the method
due to the inclusion of more CF terms using a larger b. The results obtained from the full CTF calculation are also shown as a
reference. It can be observed that the piecewise calculation can well capture the SPL especially for those resonance peaks.
Although errors exist at some anti-resonance frequencies, they are not the major concern of the mid-to-high frequency prob-
lem. Fig. 6a shows the sound pressure distribution, obtained from the piecewise scheme, over the coupling interface at
1100 Hz. The result is consistent with that obtained from the analytical solution in Fig. 6b. Similar accuracy was also found
to exist at other receiving points and cut surfaces (not shown here). Fig. 7 shows the volume-averaged SPL within each
200 Hz bandwidth. It can be observed that the errors are capped at around 2 dB. Notice these errors can be reduced by
enlarging the computational bands. The errors are found to be less than 1 dB when the same calculations are conducted
within the one third octave bands centered at 1250 Hz and 1600 Hz.

The above results numerically validate the piecewise scheme in a strongly coupled system. The method well balances the
efficiency and accuracy within mid-to-high frequency ranges. In addition, it can provide a detailed prediction of the acoustic
field in both sub-systems, which is the most appealing advantage over the SEA.

3.2. Error analyses of the piecewise scheme with variable coupling strength

In this section, the influence of the coupling strength on the accuracy of the piecewise calculation scheme will be inves-
tigated. As discussed in Section 2.2.2, the coupling strength is mainly determined by the volume ratio and the modal match-
ing matrix in the mid-to-high frequency range. Therefore, firstly these two factors are separately investigated and then a
general conclusion is drawn at the end of this section to conclude the relationship between the coupling strength and the



(a)

(b) 

Fig. 5. SPL at: (a) (1.7, 1.3, 1.2) m in the main cavity; (b) (2.1, 0.6, 0.9) m in the attached cavity.

Fig. 6. SPL distribution over the coupling interface: (a) Piecewise scheme; (b) Analytical solution.
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performance of the piecewise scheme. For analyses purposes, the error of the piecewise calculation scheme is defined within
a given frequency band Df as:
Fig. 8.
(b) 150
Ec ¼ 1
SDf

Z
Df

Z
S

Ppw � Pc

�� ��dSdf ; ð20Þ
where Ppw is the piecewise solution and Pc the full CTF calculation or analytical solution whenever available.

3.2.1. Effect of the volume ratio
This subsection discusses the effect of the volume ratio on the performance of the piecewise calculation scheme. The vol-

ume ratio is adjusted by enlarging Lz2 from 0.15 m to 1.5 m. As a reference, the coupling strength factors of the analyzed con-
figurations are shown in Fig. 8a. As stated, only V2 < V1 is considered here. Fig. 8b shows the errors of the piecewise scheme
for two frequency bands of 200 Hz wide, centered at 1100 Hz and 1500 Hz, respectively. It can be observed in Fig. 8b that Ec

becomes larger as the volume ratio V2=V1 increases. Comparisons between Fig. 8a and b show that Ec increases as the cou-
pling strength gets stronger. The maximum value of Ec is between 1.6 and 1.8 dB when V2 ¼ V1, which is still within the gen-
eral tolerance level for the mid-to-high frequency modeling. For the detailed performance analysis at the maximum error,
one can refer to Section 3.1.
Fig. 7. Volume-averaged SPL within frequency bands of 200 Hz wide: analytical solution and piecewise scheme.

Surface velocity error of the piecewise scheme with respect to different volume ratios in frequency bands of 200 Hz wide centered at: (a) 1100 Hz;
0 Hz.
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It is worth noticing that the relatively large Ec only arises when the volume ratio V2=V1 is close to one, when the two cav-
ities are identical. In this case, neither cavity is more deterministic nor statistical than the other. This shows the capability of
the piecewise calculation scheme in solving strongly coupled systems where deterministic-statistical methods are no longer
applicable to provide detailed system responses of the whole system.

3.2.2. Effect of the interface modal matching
The effect of the interface modal matching on the performance of the piecewise scheme is investigated in this subsection.

Different from the volume ratio, appearing as an amplification coefficient in Eq. (17), the modal matching matrix is directly
determined by the piecewise scheme. The variation of the interface modal matching is achieved by increasing DLy from 0 to
0.5 m, as shown in Fig. 2. When DLy = 0.5 m, the interface area becomes half of its largest value. To keep the volume ratio
constant at one, the depth of the attached cavity Lz2 is automatically adjusted. All analyzed quantities are frequency aver-
aged within the two frequency bands which are the same as in Fig. 8.

Firstly, the coupling strength factors are plotted for different DLy in Fig. 9a. It can be observed that the coupling strength
generally decreases as DLy gets larger, corresponding to a smaller interface area, in line with one’s intuition. However, this is
not simply due to the smaller interface area because Ckl;mC

�
rs;m is not only determined by the area but also depends on the

wave matching level over the interface, which is very complex in the mid-to-high frequency range. For the present case,
the variation trend of X indicates that the modal matching level becomes smaller as DLy decreases since the influences
of the volume ratio and frequency are excluded in the simulations.

The computational errors for different DLy are shown in Fig. 9b. Again, one observes the similar variation trends as the
coupling strengths have. As DLy increases, the computational errors quickly drop at the beginning and converge to a small
value around 0.2 dB. The same conclusion as in Section 3.2.1 can be drawn in that the computational error is larger when the
two cavities are similar. This verifies the capability of the piecewise scheme in strong coupled cases where the modal match-
ing levels are different.

3.2.3. Effect of the coupling strength as quantified by X
To summarize the above analyses results, the computational data used in Figs. 3, 8 and 9 are rearranged and regrouped to

plot the computational error Ec as a function of the coupling strength X, obtained from different volume ratios and modal
matching matrix and averaged in [1000, 1200] Hz and [1400, 1600] Hz, respectively. These results in a total of four sets are
shown in Fig. 10 with different types of marker. It can be observed that, irrespective of the way in which the coupling
strength is obtained, the errors at any givenX are rather consistent in trend and close in values. For relatively weak coupling
strength, when X is smaller than 0.2, the error of the piecewise scheme is rather stable and dwells around 0.2 dB. When X
becomes larger than 0.2, the error undergoes fast increases before gradually stabilizing when X is larger than 0.4. It should
be noted that, between 0.2 and 0.4, the increasing speed of the error is not exactly the same because the piecewise scheme
has different sensitivities to volume ratio, modal matching level, and frequency bands. It is also relevant to note that a higher
frequency band exhibits a larger error. One of the plausible reasons is the wave motion over the interface is more complex in
a higher frequency band so that a wider calculation bandwidth Df compared to its center frequency would be needed to war-
Fig. 9. Surface velocity error of the piecewise scheme with respect to different modal matching in frequency bands of 200 Hz wide centered at: (a) 1100 Hz;
(b) 1500 Hz.



Fig. 10. Computational error E as a function of the coupling strength varied with volume ratio or modal matching matrix, averaged within [1000, 1200] Hz
and [1400, 1600] Hz.
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rant a more accurate prediction. However, this can be avoided by considering the one-third octave or octave bands as people
usually do in mid-to-high frequency modelling problems.
4. Experimental validations

Experimental validations were carried out using the configuration shown in Fig. 11a and b. The cavity walls were made of
acrylic of 30 mm thickness which can be considered as acoustically rigid. A loudspeaker was used to generate an acoustic
excitation through a hole drilled at (0.075, 0.05, 0) m over the sidewall. Microphones 1 and 2 were installed at (0.075,
0.05, 0.01) mm and (0.25, 0.15, 0.83) m, respectively, to measure the transfer function between them and eliminate the
sound source error at the same time [24]. Limited by the experimental conditions, the cavity dimensions are smaller than
Fig. 11. The cavity where the experiments conducted: (a) Cavity configuration; (b) Photo of the cavity.



Fig. 12. Predicted transfer function between two points, compared to the experimental result: (a) Full CTF calculation; (b) Piecewise scheme.
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those used in the previous simulations. However, a higher frequency band up to 3200 Hz was selected instead. For reference,
the volume ratio V2=V1 is 0.94.

The experiment was conducted within a wide frequency band of [40, 3200] Hz, with results shown in Fig. 12a and b,
respectively. It was shown in the previous work [3] that the piecewise scheme starts to be applicable when the modal over-
lap factor is larger than one. In the present test structure, the unit modal overlap factor is approximately at 1200 Hz. There-
fore, the full CTF calculation is used within [40, 1200] Hz and the piecewise scheme is used within [1200, 3200]. To obtain
more accurate peak values at resonance frequencies, the damping ratio of the first four peaks are obtained from the exper-
imental result while the others are all set to 0.001. It can be observed in Fig. 12a that the full CTF calculation result agrees
well with the experimental one, in terms of both resonance and anti-resonance frequencies as well as the overall trend. The
piecewise calculation (Fig. 12b) was conducted within ten frequency bands within a 200 Hz bandwidth and added up to
[1200, 3200] Hz. It can be seen that the piecewise scheme can accurately capture the variation trend and most of the reso-
nance peaks. The few missing peaks in the experimental curve can be attributed to the machining tolerance of the cavity and
some unavoidable uncertainties. All in all, the validity of the piecewise calculation scheme is considered to be verified in
such a highly dynamic and strongly coupled system.
5. Conclusions

This paper extends the application range of a previously proposed piecewise calculation scheme to strong coupling cases.
The coupling strength is defined by examining the acoustic response differences over the coupling interface before and after
the attached sub-system is added. A coupling strength factorX is established to quantify the coupling strength in the context
of a multi-degree-of-freedom system andmid-to-high frequency range. With the assistance ofX, the computational errors of
the piecewise scheme are investigated through tactically adjusting the coupling strength level, including the strongly cou-
pled systems. Generally, the proposed piecewise calculation scheme is shown to be applicable in strongly coupled cases, by
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showing a good agreement with the analytical solutions and the experiment results. Main conclusions are summarized as
follows.

1. The proposed coupling strength factor X can well reflect the variation trend of the coupling strength between two cou-
pled sub-systems, as reflected by the acoustic response differences over the coupling interface. Three factors are found to
affect the coupling strength between two acoustic sub-cavities: volume ratio, interface modal matching level and the fre-
quency. Similar quantification can also be achieved for the structural-acoustic coupled system as detailed in Appendix. By
comparing the value ofX, the coupling strength in an acoustically coupled system is shown to be generally much stronger
than that of the structure-cavity system.

2. The piecewise calculation scheme is shown to be effective and accurate enough in the modelling of a strongly coupled
acoustic cavity. Without losing the efficiency and compromising its accuracy, the proposed scheme allows a detailed
sound field description of each sub-system.

3. The computational error increases when the coupling strength becomes stronger, which, nevertheless, is still within the
normal tolerance level in terms of the mid-to-high frequency modelling. For a given system and a prescribed frequency
band, the computational error of the piecewise calculation scheme can be approximately evaluated from X.
Appendix

A similar analysis is conducted for a structure-acoustic coupled system, exemplified by a plate-cavity system. Referring to
Fig. 1, the main sub-system is set to be a plate while the attached sub-system is still an acoustic cavity and only structural
excitation exists.

For a structural sub-system, the mobility is preferred instead of the impedance to avoid the singularity problem. In such
cases, the condensed mobility Ykl;rs can be similarly defined by imposing a prescribed pressure P x; yð Þ ¼ urðxÞusðyÞ on C as:
Ykl;rs ¼ hUrs;ukli
hP;ursi

¼ hUrs;ukli; ðA1Þ
where Urs is the uncoupled free velocity on Cwhen the subsystem is subjected to P x; yð Þ. Then, the condensed mobility of the
plate writes:
Ys
pq;kl ¼

ix
qsh

X
m

Cpq;mC
�
kl;m

Kmðx2
m �x2 þ 2insxmxÞ ; ðA2Þ
where qs is the density of the plate; h the plate thickness; ns the damping ratio of the plate assumed to be equal for all the
modes; xm the natural frequency of the mth plate mode. Km ¼ R

/2
mdV and Cpq;m ¼ R

upq/mdS where /m is the mth mode
shape. Similar to Eq. (6), the velocity over the interface can be expressed as
Uc ¼ � Y1
C

� ��1
þ Z2

C


 ��1

Pe; ðA3Þ
where Pe is the external excitation in CF coordinate rather than the blocked pressure as in Section 2. The weak coupling
strength can be identified by rearranging Eq. (A3) into
Uc ¼ � ðY1
CÞ

�1 þ Z2
C

h i�1
ðY1

CÞ
�1
Uf � Uf ðA4Þ
where Uf is the free velocity of the structure when structurally excited. The coupling strength can be quantified as in Eq. (9):
S ¼ � Iþ Y1
C

� �
Z2
C

� �h i�1
; ðA5Þ
Then X can be obtained from the matrix trace of S. The difference between Eq. (A5) and Eq. (16), as mentioned in Sec-
tion 2.2, is that the volume ratio becomes the ratio between the acoustic bulkling stiffness Ka ¼ q0c

2
0S

2=V and the plate mass.
The same conclusion was also shown in Ref. [11].

Fig. A1 shows X and D as functions of the depth of the cavity (in z-direction, also the out-of-plane direction of the plate).
The comparison is made at a non-resonance frequency 60Hz. Should a resonance frequency be considered, the coupling
strength would be larger. Notice D is obtained from the plate velocity as in Eq. (18). The plate is simply supported and made
of aluminum, with a dimension of 2.5 � 2 � 0.018 (m). It can be observed that the coupling strength undergoes fast decrease
as the cavity depth increases, which is consistent with many previous researches [20,25,26]. Nevertheless, the coupling
strength is much weaker than that of an acoustic-acoustic system (typically one order of magnitude lower) even if the cavity
is very shallow.



Fig. A1. Effect of the cavity depth on the coupling strength of a plate-cavity system.
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