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Abstract
The third harmonic shear horizontal (SH) waves in a weakly nonlinear plate provide new
possibilities for incipient damage detections. The understanding of their generation mechanism,
however, is limited to the intuitive process of cubic self-interaction of the primary SH waves. By
considering both the third order and fourth order elastic constants, this paper reports the discovery of
a new generation mechanism, referred to as mixed generation, which results from the mutual
interaction between the primary SH waves and their induced second harmonic Lamb waves.
Compared with linearly cumulative third harmonic SH waves induced by the cubic self-interaction of
the primary SH waves, the mixed third harmonic SH wave amplitude also increases with the wave
propagating distance but in a wavering manner according to the phase velocity matching condition.
Upon establishing a complex-domain superposition method which allows a precise extraction of the
third harmonic responses, the significance and the propagating characteristics of the mixed third
harmonic SH waves are numerically investigated through finite element simulations. Experiments
are then conducted with a dedicated subtraction scheme to highlight the material nonlinearity of
interest. A gel test is designed and carried out to identify the two types of third harmonic SH wave
components from the measured time-domain signals. Both numerical and experimental results
confirm the existence and the significance of the mixed third harmonic SH generation mechanism,
which may impact on further applications, especially underwater damage inspections.

Keywords: mixed third harmonic SH waves, cumulative effect, complex-domain superposition
method, subtraction scheme

(Some figures may appear in colour only in the online journal)

Introduction

Higher-order harmonic ultrasonic guided waves, usually
resulting from the microstructural defects in a waveguide,
provide a promising and feasible means for incipient damage
detections [1, 2]. Most existing efforts focus on the second
harmonic Lamb waves (2nd Lamb waves) in weakly

nonlinear plates in both theoretical and applied perspectives
[3–10]. Theoretical studies prove that the 2nd Lamb waves
can be generated if only the power flux from the primary
mode to the second harmonic mode is nonzero [5, 6]. This
suggests that, whatever the primary wave mode is (symmetric
or antisymmetric Lamb waves or symmetric or antisymmetric
SH waves), the second harmonic wave filed should only be
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the symmetric Lamb waves [3, 6]. Furthermore, if the phase
velocities of the primary and second wave modes (approxi-
mately) match, the generated second harmonic Lamb waves
are cumulative with respect to the propagating distance,
which can be further explored for damage detection applica-
tions [5, 6, 11]. Restricted by these two conditions, however,
only a limited number of frequency-dependent mode pairs can
be used for damage detection applications [6, 11]. Based on
these predetermined mode pairs, the second harmonic Lamb
waves have been applied for the detection of various types of
structural or material detect such as fatigue [8], thermal aged
damage [9], plastic deformation [7] and so forth.

Recently, Liu et al studied the generation and propaga-
tion characteristics of the third harmonic SH waves (3rd SH
waves), pointing at new possibilities for damage detection
applications [12–14]. In contrast to the 2nd Lamb waves, the
3rd SH waves are shown to be holo-internal-resonant with the
primary SH waves (1st SH waves) at all frequencies so that
their amplitudes will always be cumulative [12]. This fre-
quency-independent feature offers tremendous flexibility for
the choice of the excitation frequency for damage detection
applications. In addition, it was experimentally demonstrated
that the 3rd SH waves are more sensitive to incipient plastic
damage than the 2nd Lamb waves are [13], which can sig-
nificantly shift the damage detection limit to the earlier stage.

As compared to the 2nd Lamb waves, however, relevant
research on the 3rd SH waves is still in its infancy and rela-
tively scarce. The lack of understanding of some major issues,
at both fundamental and applied levels, bottlenecks the
damage detection applications of 3rd SH waves. Up to now,
the generation of the 3rd SH waves has been solely attributed
to the self-interaction of the 1st SH waves [12], although there
are indications that the influence of the secondary wave fields
generated by the primary waves should be also considered
[15]. Generally speaking, a full understanding of the under-
lying mechanism of the third harmonic SH wave generation is
still lacking. The exploration of the topic is technically
challenging, hampered by the obvious deficiencies in the
existing tools, either numerical or experimental. For example,
in the numerical perspective, the fourth order elastic constants
(FOECs) are usually neglected which might be crucial for the
3rd SH wave generation [14, 16]. In the experimental per-
spective, the influence of various nonlinear components in a
system may easily overwhelm the small amplitude of the 3rd
SH waves induced by the material nonlinearity.

Motivated by this, this paper explores the mechanism of
the 3rd SH wave generation. Through encompassing the full set
of material parameters (third- and fourth-order elastic constants,
TOECs and FOECs), the mechanism behind the third harmonic
wave generation is systematically investigated. In addition to
the well-known pure third harmonic generation, resulting from
the direct cubic self-interaction of the 1st SH waves due to the
FOECs for cubic material nonlinearity, a so-called mixed third
harmonic SH wave generation mechanism is revealed and
highlighted as the quadratic interaction between the 1st SH
waves and their generated 2nd Lamb waves induced by
TOECs for the quadratic material nonlinearity. Through finite
element (FE) simulations, the significance and the propagating

characteristics of the mixed 3rd SH waves are quantified.
Specifically, a complex-domain superposition method is pro-
posed, which allows the separation and characterization of the
third harmonic responses. Then, experiments are conducted
with a specially designed subtraction scheme to extract the
material nonlinearity of interest. A gel test is then designed and
carried out to confirm the existence as well as the influence of
the mixed 3rd SH waves. The discovered mixed third harmonic
generation mechanism, through the involvement of the second
harmonic Lamb wave field, should have a significant impact on
further underwater applications from the wave energy leakage
perspective.

Theoretical analyses

The mechanism of the third harmonic generation by the pri-
mary SH waves is first investigated from a qualitative per-
spective. For the sake of simplicity in the equation derivation,
SH0 waves are considered. First, the material nonlinear elastic
behaviors are discussed, paving the way for subsequent
analyses. Then, the second harmonic generation by the 1st SH
waves is briefly recalled. Finally, with the knowledge of the
generated second harmonic wave field, the 3rd SH waves are
studied, highlighting their generation mechanism and char-
acteristics, with special emphasis put on the mixed 3rd SH
waves.

Material nonlinear stress–strain relationship

The material nonlinear stress–strain relationship considering
the fourth order expansion of the strain energy can be
expressed with the extended Landau–Lifshitz model [12], as
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where λ and μ are Lamé constants; A , B , C are the Landau
TOECs while E , F , G , H are the Landau FOECs of an iso-
tropic material. The operation tr() denotes the trace of a matrix.
In the equation, T is the second Piola-Kirchhoff stress tensor
and E the Lagrangian strain tensor. Upon omitting the geo-
metric nonlinearity (GN), which will be further proven to be
negligible in our cases, the Lagrangian strain retreats to Cau-
chy’s strain ε and the Cauchy stress σ can be used instead of
the second Piola-Kirchhoff stress. Details on individual com-
ponents of the stress–strain relation can be found in appendix A.

For a weakly nonlinear wave generation problem, the
amplitude of the higher harmonic waves is usually much
smaller than that of the primary waves. Therefore, the per-
turbation theory can be applied to decompose the stress into
linear and nonlinear parts, as

( )s s s= + a2L NL

[ ] ( )s e el m= + btr 2 2L
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in which superscript L and NL denote the linear and nonlinear
terms, respectively.

The second harmonic generation

Consider plane SH0 waves propagating along the x direction
in a weakly nonlinear plate, as shown in figure 1. The parti-
cles of the SH0 waves move along the z direction. The SH0
wave field can be described in terms of the strains and only
the component eL

13 exists [17], as

( ) ( )e e= =
i

A y k e
i

A k e
2 2

, 3L L L
SH
L ik x L

SH
L ik x

13 13
SH
L

SH
L

where the superscript L denotes the linear wave components.
( )e yL

13 is the normalized strain distribution across the plate
thickness. For SH0 waves, the strain is uniformly distributed,
as ( )e =y 1.L

13 AL is the modal participation factor which is
also called modal amplitude. kSH

L denotes the wave number of
the linear SH0 waves while x represents the wave propagating
distance.

When SH waves propagate in a weakly nonlinear plate,
higher harmonic waves are generated. First, the second har-
monic generation is considered. According to the perturbation
theory, the linear wave strains of the 1st SH waves should be
substituted into equation (2c) to calculate the nonlinear
stresses which correspond to the higher harmonic generation.
As only the strain component eL

13 exists in the primary wave
field, those nonlinear stress terms with an order higher than
( )eL

13
2 can be omitted. Therefore, the remaining non-zero

stress terms write
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where the superscript Q stands for the quadratic nonlinear
terms. It can be seen that only three normal nonlinear stresses
exist, indicating that only the second harmonic Lamb waves
can be generated, consistent with the existing theories [5, 6].

The generated nonlinear wave field can be described with
the combination of the complex reciprocity relation and the
normal mode expansion method with the following equations
[18]:
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where d is the half thickness of the plate. ( )yvn and ( )s yn are
the velocity and stress across the thickness of the nth wave
mode. The overtilde represents the complex conjugate. xn is
the wave number and an(x) is the modal amplitude of a
specific wave mode; s ,surf ve and Fvol are the external exci-
tations expressed as the surface traction, velocity excitation,
and volume force, respectively. In this case, the excitations to
generate the nonlinear waves can be obtained from the non-
linear stresses in terms of the surface traction and volume
force as

· ˆ ( )s s= - ay 6surf NL

· ( )s=  bF . 6vol NL

Substituting equations (6a) and (6b) into equation (5a),
the modal amplitude of the generated second harmonic
symmetric Lamb waves can be obtained as [5, 6]
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where AQ is a coefficient related to the power flux from the
primary waves to the second harmonic waves. It is worth
noting that this coefficient is only related to the material
nonlinearity through TOECs. This feature is crucial to further
analyses.

Equation (7) shows that if the phase velocity of the 1st
SH0 wave matches with that of the 2nd Lamb waves, the
generated second harmonic amplitude will be linearly
cumulative. Otherwise, it will be bounded with respect to the
wave propagating distance. Unfortunately, due to the dis-
persion characteristic of Lamb waves, very few 1st SH wave-
2nd Lamb wave mode pairs can satisfy the condition of phase
velocity matching [6]. Therefore, except these mode pairs at
some specific frequencies, in most cases where the phase
velocities of the 1st SH waves and 2nd Lamb waves do not
match, the strain components of the generated 2nd Lamb
waves can be generally written as

( )( ) ( )e w= -
~

A y e e a, 8Q Q i k x ik x
11 1

2 SH
L

Lamb
Q

Figure 1. Sketch of the plate and the coordinate system.
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where ( )wA y, ,Q
1 ( )wA y,Q

2 and ( )wA y,Q
3 are the generalized

amplitudes which encompass the Lamb wave structure (the
wave field distribution across the plate thickness). From the
material perspective, these second harmonic amplitudes
are only related to the TOECs. It is worth noting the strain
term eQ

12 is generated by the propagating second harmonic
Lamb waves although the nonlinear stress term sQ

12 does
not exist.

The third harmonic generation

Following the same procedure, the third harmonic wave field
generated by the 1st SH0 wave is investigated. First, the
nonlinear stresses are calculated. For the third harmonic
generation problem, all the terms in the order of ( )eL

13
3 will be

kept. Due to the existence of the second harmonic Lamb
waves, their corresponding strain components e ,Q

11 eQ
22 and eQ

12

in the order of ( )eL
13

2 should also be considered in the cal-
culations. Based on this, the following terms corresponding to
the third harmonic generation remain, as

( ) ( )
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13 13 11 22 13 11 13 13

3

( )s s e e= = A b, 9NL C Q L
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where terms with a superscript C stand for the cubic nonlinear
terms. The above equations show that only third harmonic
shear stresses can exist, which means the third harmonic wave
field generated by 1st SH waves should also be SH wave
modes, which is also consistent with the existing under-
standing [12].

The nonlinear stress terms in equations (9a) and (9b) can
be classified into two categories, to be associated with two
different wave generation mechanisms. The first group only
involves FOECs-induced term (the third term in the right-
hand side of equation (9a)) where only the primary strain is
involved. As the FOECs are intuitively responsible for the
third harmonic generation which has been widely accepted in
the open literature, the corresponding 3rd SH waves compo-
nents are therefore referred to as the pure 3rd SH waves.
Meanwhile, equations (9a) and (9b) also show the presence of
the second group of nonlinear stress terms which contains the
TOECs-induced terms, appearing in the form of a product of
the primary shear strain and second harmonic normal strains
in the equations. The corresponding 3rd SH waves compo-
nents, which have not been spotted in the literature up to now,
are thus named as the mixed 3rd SH waves, which will be
further scrutinized in the following analyses.

Upon substituting the strain terms corresponding to the
1st SH wave field and 2nd Lamb wave field into
equations (9a) and (9b), the nonlinear stresses can be further

expressed as
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where ( )wA y,C
1 and ( )wA y,C

2 are related to TOECs and
( )wA y,C

3 to FOECs.
Then, by combining the reciprocity theory and the modal

expansion method, equation (5a) can be again used to cal-
culate the amplitude of the 3rd SH waves. Considering the
nonlinear stresses in equation (10), the third harmonic
amplitude takes the following form:
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where A C
4 and A C

5 are related to TOECs and A C
6 to FOECs.

Therefore, the first two terms represent the modal amplitude
of the mixed 3rd SH waves. It can be seen that the first term
exhibits a linearly cumulative amplitude with respect to the
propagating distance while the second one shows a bounded
amplitude. The combined effect of these two terms is a
waveringly cumulative behavior of the mixed 3rd SH wave
amplitude. On the contrary, the last term in equation (11)
represents the pure 3rd SH waves whose amplitude is linearly
cumulative.

To sum up, when the 1st SH waves propagate in a
weakly nonlinear plate, the 3rd SH waves are generated
through both TOECs and FOECs, as sketched in figure 2. The
pure 3rd SH waves related to the FOECs are generated by the
cubic self-interaction of the 1st SH waves. They are linearly
cumulative due to their phase velocity matching with the 1st
SH waves. By comparison, the mixed 3rd SH waves induced
by the TOECs are generated through the quadratic mutual
interaction between the 1st SH waves and their generated 2nd
Lamb waves. Due to the mismatch of their phase velocities at
most frequencies, the mixed 3rd SH waves show a waveringly
cumulative character. Compared to the pure 3rd SH waves,
the newly discovered mixed 3rd SH wave generation mech-
anism is less intuitive with unknown propagating character-
istics up to now. Moreover, the mixed 3rd SH waves may
impact some SH-wave-based applications. For example, in
those underwater inspection cases, the community shares the
common belief that SH waves are immune to energy leakage
into the surrounding liquid media, exemplified by the

Figure 2. Mechanism of the third harmonic SH wave generation.
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inspections of various underwater structures. The mixed 3rd
harmonic SH waves, through the implication of the second
Lamb waves in their generation, may challenge this belief and
call for a meticulous reexamination of the problem. Another
possible consequence is that the waveringly cumulative fea-
ture of the mixed 3rd SH waves may pose challenges to the
cumulative-guided-wave-based damage detection methods
which examine the slope of a line fitted from the nonlinear
wave amplitude-wave propagating distance curve for damage
characterization [11]. When using the 3rd SH waves, the
waveringly cumulative feature may, in principle, affect the
line fitting accuracy for damage detection. Therefore, this
newly discovered mechanism deserves deeper analyses and
validations, which will be addressed hereafter.

Numerical studies

Numerical studies are carried out to investigate the char-
acteristics of the mixed 3rd SH waves, in comparison with
those of the pure 3rd SH waves. First, an FE model is briefly
described with the justification on the FOECs of the material.
After that, a complex-domain superposition method is pro-
posed to extract the third harmonic responses. Finally, the
properties of the mixed 3rd SH waves in terms of their
influence and wave propagation characteristics are
investigated.

Model description

An FE model is established in Abaqus/Explicit as shown in
figure 3. An aluminum plate, 300 mm long and 2 mm thick, is
investigated. Periodic boundary conditions are applied in the z
direction so that plane waves can be simulated [19]. The
excitation is a prescribed displacement in the z direction with
an 8-cycle tone burst time-domain signal at 500 kHz. The
amplitude of the displacement is set to 2 μm. Uniformly
distributed displacement across the plate thickness is imposed
to match the wave structure of the expectedly generated SH0
wave. The mesh size is set to 0.1 mm, which ensures more
than 20 elements per smallest wavelength of interest as
recommended in the literature [20, 21]. This results in a total
of 240 000 elements and 945 315 degrees of freedom in the
model. Convergence test has been conducted before sub-
sequent analyses (not shown here). The material nonlinear
elastic behaviors are introduced through the VUMAT mod-
ule. The Landau TOECs of isotropic aluminum can be found
in existing literature [22] while its Landau FOECs are not

available to the best of our knowledge. Nevertheless, a related
work provided FOECs of an aluminum crystal in terms of 11
Brugger constants [23]. Therefore, a conversion between the
Brugger constants and Landau constants is conducted,
through which the Landau FOECs for the isotropic aluminum
are estimated. Details of the conversion and parameter esti-
mation can be found in appendix B. Although the obtained
FOECs may not be perfectly precise, they are believed to be
in the realistic range. The material parameters used in the FE
models are listed in table 1.

Complex-domain superposition method for signal separation
and extraction

In order to characterize the third harmonic wave field, a
complex-domain superposition method is proposed to extract
the third harmonic responses in the time domain. The method
takes the following steps:

1. Excite the plate with a tone burst signal ( )f t and get the
system response which should contain both the linear
and third harmonic components as

( ( )) ( ( ( )) ) ( )= +R g f t g f t . 12L C
1

3

2. Excite the plate again with the imaginary part of the
previous excitation ( )if t which can be obtained with the
Hilbert transform. The corresponding response can be
expressed as

( ( )) (( ( )) ) ( ( )) ( ( ( )) )
( )

= - = -R g if t ig if t ig f t ig f t .
13

L C L C
2

3 3

3. Multiply i to R2 and superpose R1 and iR2. The linear
responses can be eliminated and the third harmonic
response can be obtained as

( ( ( )) ) ( )=
+

g f t
R iR

2
. 14C 3 1 2

This procedure, named as the complex-domain super-
position method, is analogous to the superposition method we
proposed for the second harmonic extraction [24].

In order to validate the proposed method, a baseline
method is used as the benchmark for which the nonlinear
response is obtained by calculating the difference between the
response of a system with material nonlinearity and that of its
pure linear counterpart. It is worth noting that the difference
signal contains both primary and third harmonic wave com-
ponents since the third harmonic energy comes from the
primary waves. A typical numerical example is examined for
validation purposes. For the nonlinear system, only FOECs
are involved. Displacement in the z direction for the SH
waves is captured at 120 mm away from the excitation posi-
tion. The overall response for the nonlinear system, domi-
nated by the primary SH0 component, is shown in figure 4(a).
The non-dispersive nature of the SH0 wave can be clearly
observed as the number of cycles of the received wave

Figure 3. FE model description.
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package is identical to that of the excitation. Then, the non-
linear response is calculated with both the baseline method
and the complex-domain superposition method, with their
comparisons shown in figure 4(b). After carrying out the fast
Fourier Transform (FFT) on the windowed signals, the
corresponding spectra are obtained and illustrated in figure 4(c).
It can be seen that the third harmonic components obtained from
the two methods match well. Moreover, the primary wave
component is completely eliminated by the complex-domain
superposition method, demonstrating the effectiveness of the

proposed method in extracting and characterizing the third har-
monic responses.

Characteristics of the mixed 3rd SH waves

With the proposed complex-domain superposition method,
the influence of the GN, TOECs, and FOECs on the third
harmonic generation is first evaluated. Through tactically
introducing GN/TOECs/FOECs to the FE models, their
corresponding third harmonic responses at 120 mm from the

Figure 4. FE results for the validation of the third harmonic extraction method: (a) the overall y-displacement response for the nonlinear
system; (b) the third harmonic responses extracted with the baseline method and the proposed complex-domain superposition method; (c) the
spectra of the third harmonic responses extracted with the two methods.

Table 1. Elastic constants of the aluminum plate in the FE model (Unit: GPa).

λ μ A B C E F G H

55.27 25.95 −351.2 −140.4 −102.8 400 −406 347 72

6

Smart Mater. Struct. 28 (2019) 085042 S Shan and L Cheng



excitation position are extracted and compared in figure 5. It
can be seen that the influence of GN is negligible compared
with the other two cases associated with the material non-
linearity. This verifies the previous assumption of neglecting
GN in the theoretical analyses. In addition, the third harmonic
responses induced by TOECs and FOECs are in the same
order of magnitude. This confirms the existence of both
mixed and pure third harmonic SH waves and further indi-
cates that the newly-discovered mixed third harmonic
component is as important as the pure one in terms of energy
level.

The propagating characteristics of the mixed 3rd SH
waves are then investigated through comparisons with the
pure ones. Note the theoretical analyses show the existence of
a bounding term in the mixed 3rd SH waves (the second term
on the right-hand side of equation (11)). As an example, this
term is calculated for the 500 kHz excitation case and its
variation with respect to the propagating distance is plotted in
figure 6. A bounding period is defined as the distance between

the two dips as shown in figure 6. In this specific case, the
bounding period is 9.1 mm.

In the FE simulations, the corresponding mixed and pure
3rd SH wave responses at different locations from 20 to
40 mm stepped by 2 mm, are calculated. As there are 11 time-
domain third harmonic signals in each case, instead of pre-
senting the time-domain signals, their amplitudes are extrac-
ted with the complex wavelet transform, detailed in our
previous work [24], and plotted with respect to the wave
propagating distance. Both the pure and mixed 3rd SH wave
cases are studied with results compared in figure 7. It can be
seen that the pure 3rd SH waves exhibit a clear linearly
cumulative characteristic (figure 7(a)) while the mixed 3rd SH
waves are waveringly cumulative (figure 7(b)) in amplitude
with respect to the propagating distance. By further sub-
tracting the fitted line from the third harmonic amplitudes
from the FE simulations in figure 7(b), the difference is
obtained in figure 8, showing a bounding behavior of the
mixed 3rd SH wave amplitude, with a bounding period of
around 9 mm, in agreement with the theoretical prediction in
figure 6.

To sum up, FE studies confirm the existence of the mixed
3rd SH waves and establish the fact that they can be as
important as the intuitive pure ones in terms of wave ampl-
itude. Besides, the waveringly cumulative characteristic of the
mixed 3rd SH waves is also well validated.

Experimental validations

Experiments are finally carried out to further ascertain the
existence and the significance of the mixed 3rd SH waves. A
direct scheme is first tested. After that, a specifically designed
subtraction test scheme is proposed to mitigate the influence
of undesired nonlinear sources in the measurement system.

Experimental design

Experiments are carried out on a 2 mm thick aluminum
(2024-T3) plate. Magnetostrictive Transducers (MsTs) are
used for the SH wave excitation and reception with the
dynamic magnetic field perpendicular to the static bias
magnetic field. The spacing of the coil elements is 5.4 mm
for the actuator and 1.8 mm for the receiver, which corre-
spond to the half wavelengths of the 300 and 900 kHz SH0
waves in an aluminum plate respectively. A RITEC RAM
5000 SNAP system is used to excite the MsT actuators with
100% output level. Meanwhile, 1024 signals captured
by the MsT sensor are averaged and recorded by the
oscilloscope.

The design of the experiments follows the following
logic. In the experiments, both 3rd SH wave generation
mechanism should affect the wave generation. Specifically, to
identify the mixed mechanism, a gel test is performed by
placing a layer of gel on the SH wave propagating path. The
gel allows an effective dissipation of the Lamb waves (out-of-
plane particle motion) without, in principle, affecting the SH
waves (in-plane particle motion) [25]. If the mixed 3rd

Figure 5. Influence of the GN, TOECs and FOECs on the third
harmonic signals.

Figure 6. Characteristics of the theoretically calculated bounding
term in the mixed 3rd SH waves.
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harmonic SH waves (due to the mutual interaction between
the 1st SH waves and their generated 2nd Lamb waves) do
exist in the system, the overall third harmonic response of the
system is expected to be changed by the presence of the gel.
Otherwise, it should remain the same.

Direct test scheme

First, a direct test scheme is adopted with one pair of MsTs
serving as the actuator and sensor respectively, as shown in
figure 9. The plate, without gel, is excited with a 10-cycle
tone burst signal at 300 kHz windowed by a Hann function
and the received signal is shown in figure 10(a). Then, fol-
lowing the proposed complex-domain superposition method,
the imaginary counterpart of the original excitation obtained
with the Hilbert transform is applied to the actuator again. The
third harmonic responses are further extracted, with the
results displayed in figure 10(b). Through the FFT analysis on
the windowed signals in both figures 10(a) and (b), their
respective spectra are obtained and compared in figure 10(c).
Results show that the third harmonic amplitude obtained with

these two methods matches well. Again, this demonstrates the
proposed complex-domain superposition method can effec-
tively extract the third harmonic responses.

Upon the deployment of the gel on the plate, the third
harmonic response is measured again following the same
process and compared with the previous result without
gel in figure 11. It can be seen that the third harmonic
response remain almost the same after placing the gel. It
is obvious that such a testing procedure fails to demon-
strate the existence of the mixed 3rd SH waves. This is
because the nonlinearity from the transducers and instru-
ments overwhelms that of the aluminum plate, which will
be addressed in the next section. Although the mixed
third harmonic generation mechanism cannot be validated
by this experimental scenario, results demonstrate two
important points which are important to the further ana-
lyses. First, the signals received by the MsT are mainly the
SH waves. Second, the gel indeed does not affect the SH
wave field.

Subtraction test scheme

To mitigate the influence of the nonlinearities from the MsTs
and the measurement system, a subtraction test scheme is
designed as illustrated in figure 12. The idea is inspired by
[25] which addresses a counter-propagating SH wave mixing
problem. Two MsT actuators are used to either simulta-
neously or independently generate SH waves in the plate
through two independent channels of the RITEC RAM 5000
SNAP system. It is important to point out that although the
angles of the MsT transducers are slightly twisted, the signals
received will still be mainly associated with the SH waves.
This is determined by the nature of the MsTs that only shear
deformations can be generated or sensed when the dynamic
magnetic field is perpendicular to the dynamic field in such
devices [26, 27]. The subtraction test scheme is performed in
two steps. First, both actuators 1 and 2 are simultaneously
activated to excite SH waves at 300 kHz waves which mix in
the plate. The corresponding received signal is denoted as T

Figure 7. Propagating characteristics of (a) pure and (b) mixed 3rd SH waves.

Figure 8. Bounding characteristics of the mixed 3rd SH waves from
the FE results.
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Figure 9. Direct scheme to validate the existence of the mixed 3rd SH waves.

Figure 10. Signals captured in the system without gel on the plate: (a) overall response associated with the original excitation; (b) third
harmonic response extracted with the complex-domain superposition method; (c) spectra of the overall response and the extracted third
harmonic response.
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(1+2). Second, the two actuators are separately activated
and the corresponding responses are marked as T(1) and T(2)
respectively. The difference among these signals, T(1+2)-T
(1)-T(2), referred to as the difference signal, is used for ana-
lyses. Since the third harmonic amplitude is proportional to
the cubic of the primary wave amplitude and the primary SH
waves generated by the two actuators superpose in the first
test, the nonlinear responses induced by the material non-
linearity will remain in the difference signal. In addition, with
the two actuators working separately, the influence of the
nonlinearities at the actuating parts can be in principle mini-
mized or eliminated in the difference signal. Therefore, this
subtraction test scheme is expected to mitigate the undesired
nonlinearities in the system.

Following the proposed procedure, experimental results
for a plate without gel are shown in figure 13. The three
original response signals are shown in figure 13(a). The
difference signal is then calculated and illustrated in
figure 13(b), which is very weak and noisy. A Butterworth
low-pass filter is then applied to the difference signal and the
result is shown in figure 13(c), exhibiting a clear wave
package. After taking the FFT to the windowed wave
package in figure 13(c), the spectrum of the difference
signal can be obtained, showing the wave components at the
fundamental, second and third harmonics in figure 13(d). It
is worth noting that the third harmonic amplitude, in this
case, is two orders of magnitude smaller than that in
figure 10(c). This demonstrates that the nonlinearity of the
measurement system was indeed significant in the previous
direct tests, which is now effectively mitigated by the
designed subtraction test scheme.

Then, the gel was placed on the wave propagating path as
shown in figure 12 and the same test procedure is carried out
to obtain the spectrum of the difference signal. Through
comparing the results with and without gel in figure 14(a),
two important observations can be highlighted. First, since the
material-induced second harmonic SH waves cannot theore-
tically exist, the second harmonic component is attributed to

the instrumentation nonlinearity. Second, focusing on the
third harmonic response, a dramatic decrease in its amplitude
can be observed with the deployment of the gel. After
repeating the tests five times with corresponding error bars
plotted in figure 14(b), the decreasing trend (around 30%)
after the introduction of the gel is confirmed to be persistent.
As the gel can only damp the Lamb waves, the experimentally
observed decreasing trend of the third harmonic responses
clearly demonstrates the existence of the mixed 3rd SH waves
and its theoretically predicted generation mechanism, e.g.
through the mutual interaction between the 1st SH waves and
the 2nd Lamb waves. In addition, the approximately 30%
decrease proves its significance as a non-negligible 3rd SH
wave component.

Conclusions

In this work, the mechanism of the third harmonic SH wave
generation in a weakly nonlinear plate is investigated. In
addition to the well-known pure third harmonic generation
mechanism, a mixed mechanism is revealed. This newly
discovered phenomenon, in terms of significance and propa-
gating characteristics, is assessed and confirmed through FE
simulations and experiments. A complex-domain super-
position method is proposed to extract the third harmonic
wave components from the signals. For the identification of
the mixed third harmonic SH waves, a gel test is proposed
along with the establishment of a dedicated subtraction test
scheme to mitigate undesired nonlinear sources in the mea-
surement system.

Theoretical analyses show that, apart from the intuitive
pure third harmonic generation caused by the cubic self-
interaction of the 1st SH waves with FOECs, there exists
another important path through which the so-called mixed
third harmonic SH waves can be generated as a result of the
quadratic mutual interaction between the 1st SH waves and
their generated 2nd Lamb waves associated with only
TOECs. The mixed 3rd SH waves exhibit waveringly
cumulative feature at most frequencies where the phase
velocities of the 1st SH waves and 2nd Lamb waves mis-
match, in contrast to the linearly cumulative pure 3rd SH
waves. The newly discovered mixed 3rd SH wave compo-
nents can be as important as their conventional pure coun-
terparts in terms of amplitude and energy level, which
therefore are a non-negligible nonlinear factor to be con-
sidered in various applications.

The presented findings address the third harmonic gen-
eration mechanism at the fundamental level, paving the way
for further explorations and applications of the 3rd SH-wave-
based damage detection technology. Specifically, the newly
discovered mixed third harmonic generation mechanism may
impact on the further applications and call for a careful sys-
tem design and a meticulous handling of the diagnosis sig-
nals, especially in the underwater cases considering the wave
energy leakage or those cumulative-effect-based damage

Figure 11. Comparison of the third harmonic responses before and
after the placement of gel.
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detection methods. This requires additional efforts to further
explore the phenomena reported in this paper and assess their
impact on future practical applications. In that sense, the
developed finite element tools, the estimated FOECs and the
proposed complex-domain superposition method can offer a

convenient and comprehensive package for further investi-
gations of the issue. Meanwhile, the proposed subtraction test
scheme to mitigate the influence of the undesired nonlinear
sources can be further revamped and applied for engineering
applications.

Figure 12. Subtraction scheme to validate the existence of the mixed third harmonic SH waves.

Figure 13. Signals captured without gel on the plate: (a) responses when the actuators are simultaneously and separately activated; (b)
difference signal; (c) filtered difference signal; (d) spectrum of the difference signal.
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Appendix A

The stress–strain relations for the nonlinear elastic material up
to the third harmonics can be expressed as
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Figure 14. Comparison of the third harmonic responses before and after the placement of gel: (a) spectra of the difference signals; (b)
amplitude of the third harmonic components with error bars.
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Appendix B

Denote the Lagrangian strain tensor as
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The strain energy of the an isotropic material can be
expressed with the Brugger’s model [23, 28], as
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where cij, cijk and the cijkl are the Brugger second, third and
fourth order constants. Meanwhile, the strain energy can be
also expressed with the Murnaghan constants [2, 29], as
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where l, m, n and p1, p2, p3, p4 are the Murnaghan third and
fourth order constants. det() denotes the determinant. Through
comparisons between the coefficients, the relationship
between the Brugger constants and Murnaghan constants can
be established as,
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For isotropic materials, there should be only two inde-
pendent SOECs, three independent TOECs and four inde-
pendent FOECs. Therefore, the inherent relations among the
Brugger constants for isotropic materials can be further cal-
culated from equation (B8), as

The obtained relationship among the Brugger constants
agrees with the ones provided in [26], demonstrating the
correctness of the derivation.

From the existing Brugger FOECs for aluminum crystals,
11 constants are given in [23]. We take four to be the
independent ones ( =c 9916 GPa,1111 =c 3554 GPa,1155

=c 3708 GPa,1122 = -c 1000 GPa1123 ) and use them to
estimate the Murnaghan FOECs for isotropic aluminum
material. Finally, as the Landau–Lifshitz model is used in the
paper, the Landau FOECs can be calculated from the rela-
tionship between the Murnaghan FOECs and Landau FOECs
provided in [29], as
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