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The acoustic black hole (ABH) effect is realized in thin plate structures with a decreasing thickness

according to a power-law function, and offers potential applications for structure vibration damping

enhancement and free-field noise radiation suppression. In this paper, a wavenumber domain

method (WNDM) is proposed for the analysis of vibro-acoustic coupling and internal noise reduc-

tion mechanism of a pentahedral cavity enclosed by a flexible plate with a two-dimensional ABH

indentation, subject to a point force excitation. The system response of the ABH plate-cavity is

computed by a validated finite element model. The relationship between the space-averaged sound

energy inside the cavity and the spectra of the structural displacement and the acoustic mode of the

cavity is established. This allows revealing a dual physical mechanism behind the observed noise

reduction: amplitude reduction and mismatching between the wavenumber spectra of the plate dis-

placement and the acoustic field, which results in a weakened vibro-acoustic coupling. An addi-

tional configuration with an ABH embedded in an irregular pentagonal wall of the cavity is

examined. Despite the increasing complexity in the geometry of the coupling interface and its cou-

pling with the cavity, numerical analyses confirm the generality of the observed physical phenom-

ena and the applicability of the proposed WNDM to more complex system configurations.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5114821
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I. INTRODUCTION

The study of acoustic black holes (ABHs) has received

increasing attention in recent years.1–5 Taking a one-

dimensional ABH beam as an example, its local thickness

reduces according to a power-law profile [in the form

hðxÞ ¼ exm, m� 2] to enable a reduction in the local phase

velocity of incident flexural waves, eventually to zero, as they

approach the tapered edge. As a result, flexural waves are

trapped at the tip area with no reflections in the ideal scenario.

2-D plates can also be tailored to produce similar phenomena,

forming a kind of lens, which focuses the flexural vibration

energy to the pit region. The resulting high energy concentra-

tion is conducive to various applications such as passive vibra-

tion control, energy harvesting, and sound radiation control.

A wide range of studies focusing on different aspects of

ABH structures have been reported. One-dimensional ABH was

machined on the trailing edges of turbo-fan blades to suppress

their vibration.6,7 A circular pit placed in one of the foci of an

elliptical plate was investigated.8 Ensembles of circular ABH

indentations were used to damp the vibration of rectangular

plates.9 ABHs have also been explored for noise control applica-

tions. A representative work is the one using a plate containing

six ABHs, which shows an obvious reduction in the sound radi-

ation into a free space.10 Up to now, most of previous work

dealt with the free-field problems.11–14 It is well accepted that

the reduction of the radiation efficiency of ABH plates is the

dominant mechanism behind the sound radiation reduction into

free field. The ABH effect spreads the vibration energy out into

higher wavenumber components, thus redistributing supersonic

vibration energy into the subsonic region with a lower radiation

capability.

As a different type of problem, cavity noise control is rele-

vant to many practical problems.15–17 The problem is challeng-

ing because of the complex coupling between the structural

vibration and the enclosed acoustic field, as evidenced by the

fact that the mere suppression of the structural vibration may

not systematically lead to a sound reduction. The problem is

different from the free-field problem in terms of physics

because of the structure-acoustic coupling and the existence of

a significantly large number of acoustic modes.18

The interaction between the structure and the enclosure

plays a vital role in the sound generation inside a cavity. The

usually weak acoustic damping inside the cavity promotes

strong acoustic modal responses. The potential benefit of

using ABH design for interior noise reduction was investi-

gated in our previous work using a four ABH grid configura-

tion.19 The cavity configuration, however, was limited to a

regular rectangular cavity in which modal coupling takes

place in a very selective manner. In fact, in a cavity with

simple regular geometry, both the structural modes and the

acoustic modes take regular shapes at the interface, and theira)Electronic mail: qiu@nuaa.edu.cn

72 J. Acoust. Soc. Am. 146 (1), July 2019 VC 2019 Acoustical Society of America0001-4966/2019/146(1)/72/13/$30.00

https://doi.org/10.1121/1.5114821
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5114821&domain=pdf&date_stamp=2019-07-09
mailto:qiu@nuaa.edu.cn


coupling shows relatively simple patterns. Therefore, the con-

clusions drawn using simple geometries need to be further

examined and assessed in a more general context. Meanwhile,

the increasing complexity in the system coupling due to the

increased system geometry calls for a more systematic analysis

approach. This forms the basic motivation for the present work.

In this paper, the vibro-acoustic coupling and the inter-

nal noise reduction mechanism in a pentahedral cavity with

a flexible ABH plate is investigated. The interior sound field

is generated by and fully coupled with the vibration of the

ABH plate subject to a point force excitation. Using two dif-

ferent configurations, system response is computed through

a finite element model, following a procedure which was

validated in a former study.19

A wavenumber domain method (WNDM) is proposed

for the analysis of vibro-acoustic coupling behavior and the

internal noise reduction mechanism, after deriving the rela-

tionship between the space-averaged sound energy inside the

cavity and the spectra of the structural displacement and the

acoustic mode of the cavity. Through Fourier transforms, the

expressions in the spatial domain are transformed into the

wavenumber domain. The wavenumber spectrum can be

computed for an interested frequency range which allows

decomposing the vibration into different wavenumber com-

ponents. Informing on both the direction and the velocity of

the wave propagation, wavenumber components not only

facilitate the analysis and the characterization of complex

systems, but also reflect the wave-field compression charac-

teristics in the ABH structure. A similar technique has been

explored for other applications such as energy harvesting20

and free-field sound radiation.12 In the present case, the

WNDM is used for further revealing the underlying mecha-

nisms of the ABH-induced interior noise reduction under a

fully coupled vibro-acoustic context. Compared with the

method based on the modal coupling coefficients,19 the

WNDM offers the advantage of examining the entire dis-

placement field of the structure coupled with a specific

acoustic mode. Numerical results indicate that the redistribu-

tion of the displacement spectrum in the wavenumber

domain induced by local vibration modes in the ABH struc-

ture is the main reason leading to the noise reduction in the

cavity. It is also shown that the WNDM is effective for the

coupling analysis of an irregular plate-cavity system.

The paper is organized as follows. The basic configura-

tion is introduced in Sec. II. In Sec. III, the proposed WNDM

is presented. A finite element model considering the full

cavity-plate coupling is established in Sec. IV. In Sec. V,

wavenumber domain analysis is carried out based on the

finite element (FE) method simulation results. After showing

some typical phenomena in the wavenumber domain, ABH

effects on the plate-cavity coupling are scrutinized. Finally,

the main work and conclusions are summarized in Sec. VI.

II. VIBRO-ACOUSTIC MODEL

The model under investigation consists of a pentahedral

cavity-plate system as shown in Fig. 1(a). One of the cavity

walls is covered by a flexible plate, while others are being

considered as acoustically rigid. The size and shape of the

system are shown in Fig. 1. For comparison, two types of

FIG. 1. (Color online) The configuration

of the vibro-acoustic cavity system.
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flexible plates, one with two-dimensional (2-D) ABH inden-

tations (called ABH-plate) and the other without ABHs

(called uniform plate) are investigated. Both plates are made

of steel with the same dimension of 600� 400� 5:2 mm,

which are clamped to the edges of the cavity. Considering

the engineering applicability and limited machining preci-

sion, a modified 2-D ABH cell with a profile proposed by

Huang et al.21 is embedded in the middle of the plate. The

ABH indentation consists of a tapered region and a plateau

with a constant thickness at its center, as shown in Fig. 1(b),

whose thickness profile is described as

hðrÞ ¼
0:0002; r� 0:02

0:3472ðr� 0:02Þ2þ 0:0002; 0:02� r� 0:14;

(

(1)

where r is the radial distance from the center of the ABH

indentation in a polar coordinate system. A circular butyl rub-

ber constrained damping layer with a thickness of 0.002 m and

a diameter of 0.07 m is bonded to the central area of the ABH

indentation.

III. WAVENUMBER DOMAIN ANALYSIS THEORY

The discretized vibro-acoustic coupling equation of the

plate-cavity system is cast into a standard form and detailed in

the Appendix. The mean quadratic velocity of the plate defined

in Eq. (A2) and the quadratic space-averaged sound energy

inside the enclosure defined in Eq. (A3) are used to evaluate the

vibration level of the plate and the sound field inside the cavity,

respectively.19 Equations (A11)–(A13) show that the complex

amplitude of the ith acoustic mode depends on the coupling

coefficient, Ci, between this acoustic mode and the displace-

ment field over the plate–cavity interface, which includes the

contribution from all the structural modes. Equation (A15)

shows that the quadratic space-averaged sound pressure in the

cavity is directly determined by the squared modulus of the cou-

pling coefficient, CiC
�
i . It should be noted that the coupling

coefficient Ci, defined in this paper, is different from the modal

coupling coefficient between the acoustic modes and the struc-

tural modes, defined in Ref. 19.

To perform the wavenumber domain analysis, the rela-

tionship between the coupling coefficient and the displace-

ment spectra in the wavenumber domain needs to be

established. According to Eq. (A13), the product of the cou-

pling coefficient and its conjugate can be written as

CiC
�
i ¼

ð ð
~wRe

n ðx; yÞ þ i~wIm
n ðx; yÞ

� �
ŵiðx; yÞ dx dy

�
ð ð

~wRe
n ðx; yÞ � i~wIm

n ðx; yÞ
� �

ŵiðx; yÞ dx dy

¼
ð ð

~wRe
n ðx; yÞŵiðx; yÞ dx dy

� �2

þ
ð ð

~wIm
n ðx; yÞŵiðx; yÞ dx dy

� �2

¼ C2
1 þ C2

2;

(2)

where

C1 ¼
ð ð

~wRe
n ðx; yÞŵiðx; yÞ dx dy;

C2 ¼
ð ð

~wIm
n ðx; yÞŵiðx; yÞ dx dy: (3)

The cross correlation of ~wRe
n ðx; yÞ and ŵiðx; yÞ is defined by

C1ðx; yÞ ¼
ð ð

~wRe
n ðn; gÞŵiðnþ x; gþ yÞ dn dg

¼ ~wRe
n ðx; yÞ � ŵið�x;�yÞ; (4)

where “*” represents the convolution of two functions.

Based on the convolution integral theorem, Eq. (4) can

be expressed in the following form in the wavenumber

domain as

C1ðkx; kyÞ ¼ ~wRe
n ðkx; kyÞŵ

�
i ðkx; kyÞ; (5)

where

~wRe
n ðkx; kyÞ ¼

ð ð
~wRe

n ðx; yÞe�ikxxe�ikyydx dy;

~wiðkx; kyÞ ¼
ð ð

~wiðx; yÞe�ikxxe�ikyydx dy; (6)

where kx and ky are the wavenumbers in the x and y direc-

tions, respectively. It should be noted that the same symbols

are used to denote the same function in both the spatial

domain and wavenumber domain.

The original function C1ðx; yÞ in the spatial domain can

be obtained from C1ðkx; kyÞ in the wavenumber domain by

2-D inverse Fourier transform as

C1ðx; yÞ ¼
1

2pð Þ2
ð ð

C1ðkx; kyÞeiðkxxþkyyÞdkx dky: (7)

Obviously, there exists

C1 ¼ C1ð0; 0Þ ¼
1

2pð Þ2
ð ð

C1ðkx; kyÞ dkx dky

¼ 1

2pð Þ2
ð ð

~wRe
n ðkx; kyÞŵ

�
i ðkx; kyÞ dkx dky: (8)

Similar relationships hold for C2 in Eq. (3). These

results indicate that the spectra ~wRe
n ðkx; kyÞ, ~wIm

n ðkx; kyÞ, and

ŵiðkx; kyÞ in the wavenumber domain can be used to evaluate

the coupling coefficient and explain the changes in the

acoustic field inside the cavity.

When the plate is excited at the resonance frequency of

the ith acoustic mode, the amplitude of normal velocity of

the plate can be expressed as

tn ¼ ixai ~wnðx; yÞ ¼ ixai

X
j

~qsjûj x; yð Þ: (9)

Based on the same principle of wavenumber-domain analysis

used above, the mean quadratic velocity defined in Eq. (A2)

can be calculated from the spectrum of ~wn as
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ht2
ni ¼

x2
ai

8p2S

ð ð
j~wnðkx; kyÞj2dkx dky

� �

¼ x2
ai

8p2S

ð ð
j~wRe

n ðkx; kyÞj2dkx dky

�

þ
ð ð
j~wIm

n ðkx; kyÞj2dkx dky

�
: (10)

The above expression suggests that j~wnðkx; kyÞj is directly

related to the mean quadratic velocity.

The above results also indicate that the reduction in the

quadratic space-averaged sound pressure can be induced by

a reduction of j~wnðkx; kyÞj due to vibration suppression and a

decrease in the degree of matching between ~wnðkx; kyÞ and

ŵiðkx; kyÞ. Obviously, the product of ~wnðkx; kyÞ and ŵiðkx; kyÞ
in Eq. (8) will be small if there is significant mismatching in

wavenumber between these two functions.

IV. FE MODEL AND SIMULATION

A FE numerical model is established, following the

modeling procedure which has been verified by experiments

in an early work.19 The FE model is built based on the three-

dimensional elastic theory in conjunction with the acoustic

field description, with a view to reveal the physical phenom-

ena on one hand, and explore the underlying physical mech-

anism on the other hand. The ABH plate is discretized using

C3D20 solid elements in ABAQUS (dassault SIMULIA

Inc., Providence, RI), which is a second-order element with

20 nodes. The frequency range is from 100 to 5000 Hz. Finer

meshes are used in the central area of the ABHs to ensure

more than ten elements per local wavelength at twice the

maximum frequency of interest, as shown in Fig. 2. The total

number of elements for the ABH-plate is 38032. The visco-

elastic damping layer and the metal part of the plate are con-

nected by a common node technique. A uniform plate

(without ABH) of the same size (coated with the same

amount of damping layer at the same corresponding loca-

tion), used as reference, is also modeled using the same

method. Material parameters of the plate and those of the

damping layers are tabulated in Table I. The mesh grid with

eight nodes is used for acoustic analysis of the cavity. The

mesh generation leads to more than six elements per local

acoustic wavelength to guarantee the computation accuracy.

The interaction between the plate and the acoustic field is

realized by a coupling surface, which establishes data map-

ping without the need of matching between the structural

mesh of the plate and the cavity mesh for the acoustic field.

In addition, a convergence verification is also performed to

ensure the accuracy and reliability of the simulation results.

A transverse harmonic driving force of unit amplitude

(1 N) is applied to both panels at ð�0:24;�0:025; 0:0052Þ as

shown in Fig. 2. In the FE model, a modal loss factor of

0.001 is assigned to all acoustic modes, as used in Eq. (A6).

The modal loss factors of the plates can be gained through

complex modal analysis. Figure 3 shows the modal loss fac-

tors for the ABH plate and uniform reference plate. It can be

seen that the loss factors of the ABH plate are systematically

increased compared with those of the uniform plate as a

result of ABH-induced enhancement of the system damping.

V. RESULTS AND DISCUSSIONS

A. Vibration and noise reduction phenomena

System responses are computed using the FE model

described in Sec. IV with the help of commercial finite ele-

ment code ABAQUS and VIRTUAL.LAB (Siemens PLM

Software, LMS, Belgium).

The mean quadratic velocities of both plates (the rectan-

gular ABH-plate and rectangular uniform plate) under the

same mechanical excitation are shown in Fig. 4(a). The first

resonance frequencies of the ABH-plate and uniform plate

are 252.18 Hz and 212.74 Hz, respectively. The frequency of

the first local resonance mode of the ABH plate is

429.75 Hz, which is below its characteristic frequency,

642 Hz. ABH-induced vibration attenuation of the plate is

similar to the observations reported in the literature.7–9,22,23

FIG. 2. (Color online) The FE model of the vibro-acoustic cavity system.

TABLE I. Material properties of the plate and the damping layer.

Plate Damping layer

Ep ¼ 206 GPa Ed ¼ 0.1 GPa

qp ¼ 7850 kg/m3 qd ¼ 1780 kg/m3

�p ¼ 0.28 �d ¼ 0.45

gp ¼ 0.004 gd ¼ 0.28

FIG. 3. (Color online) Modal loss factor of the ABH plate vs uniform plate.
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The excellent vibration attenuation performance is mainly

attributed to the increase in the overall system damping due

to the superior energy trapping capability of the ABH inden-

tation. The vibration level of the ABH plate is significantly

reduced mainly at frequencies above 430 Hz, compared with

its uniform counterpart. Reductions range from 5 to 30 dB at

the resonance frequencies above 430 Hz. However, no obvi-

ous reductions can be observed in the low frequency range.

The mechanism of vibration reduction in ABH structures

has been revealed in the former studies.11,19 Systematic ABH

effects can only be expected above a cut-on frequency when

local modes appear in the ABH region. Above the cut-on fre-

quency, structural modes are mainly dominated by local

deformation within the ABH indentation except for a few

global vibration modes, and their modal loss factors of local

resonance modes are significantly increased as compared with

the uniform plate as shown in Fig. 3. Therefore, there is no

sharp peak in the high frequency range because the vibration

energy can be effectively dissipated by the damping layer.

Instead, in the low frequency range, the vibration is mainly

contributed by the global modes, where the vibration ampli-

tude is generally higher than that of the uniform plate because

the total mass of the ABH plate is 13.5% less than that of the

uniform plate due to the ABH indentation, which results in

the weakening of the structural stiffness.

The acoustic benefit inside the cavity caused by the

ABH plate is investigated and compared with its uniform

counterpart. The quadratic space-averaged sound pressures

inside the cavity of the ABH-plate and uniform plate are cal-

culated with results shown in Fig. 4(b). It can be seen that

the sound pressure in the cavity is reduced for the ABH plate

in a wide frequency range, compared with the case of the

uniform plate. The reduction is again more obvious and sys-

tematic at the frequency above 430 Hz where the ABH are

apparently more effective. It means that the sound waves

cannot be effectively radiated into the cavity for the ABH

plate when frequency is beyond cut-on frequency. In the low

frequency band, the noise reduction cannot be achieved due

to the weakening of the structural stiffness.

The overall effect of the ABH on the dynamics of the

system in one-third octave bands is shown in Fig. 5, display-

ing a reduction in the plate vibration by 2–10 dB above

400 Hz, except the band centered at 630 Hz. A noise reduc-

tion, ranging from 2 to 20 dB, can be observed in the fre-

quency above 400 Hz in Fig. 5(b). Note that the noise level

reduction exceeds that of the vibration level at some frequen-

cies. This observation confirms the observation made previ-

ously19 that apart from the added damping effect, there exist

other effects on the structural radiation imposed by the ABH

indentation.

FIG. 4. (Color online) Comparisons

between the uniform plate and the ABH

plate in narrow band. (a) Mean quadratic

velocity of the plate. (b) Quadratic space-

average sound pressure level of the cavity.
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B. Analyses of control mechanisms using
wavenumber domain method

Three typical acoustic resonance frequencies, 387 Hz,

1309 Hz, and 4119 Hz as shown in Fig. 4(b), are considered

to explain the observed phenomena. The mean quadratic

velocity, quadratic space-averaged sound pressure of the

ABH plate-cavity, and the uniform plate-cavity at these fre-

quencies are listed in Table II. Meanwhile, differences of

these quantities between the two systems are also listed in

Table II. At a low frequency (387 Hz), mean quadratic veloc-

ity and quadratic space-averaged sound pressure of the ABH

plate-cavity are increased by 6.3 dB and 4.8 dB, respectively.

At the medium frequency (1309 Hz), the vibration of the

ABH plate is similar to that of the uniform plate. However,

ABH presents an obvious beneficial effect in terms of noise

reduction. At the higher frequency (4119 Hz), the vibration

and noise of the system with an ABH are greatly reduced.

The results in Table II indicate obviously different

mechanisms of vibration attenuation and noise reduction. In

the former study,19 the coupling coefficients between a given

acoustic mode and the structural modes were used to explain

the mechanism of noise reduction at the resonance frequency

of the given acoustic mode. However, because each acoustic

mode is excited by multiple structural modes, explanation

based on coupling coefficients was not intuitive. In this

study, the wavenumber domain analysis is used.

As discussed in Sec. III above, the reduction in CiC
�
i

can be attributed to the reduction of j~wnðkx; kyÞj, the decrease

in the degree of matching between ~wnðkx; kyÞ and ŵiðkx; kyÞ,
or both of them. The spectra ~wRe

n ðkx; kyÞ, ~wIm
n ðkx; kyÞ,

ŵiðkx; kyÞ in Eq. (6) and their product defined in Eq. (5) are

calculated and used to explain the mechanism behind the

observed noise reduction.

At the three discrete frequencies tabulated in Table II,

~wRe
n ðkx; kyÞ, ~wIm

n ðkx; kyÞ of both plates, and ŵiðkx; kyÞ of the

cavity are calculated using the discrete Fourier transform

implementation of Eq. (4), and their modulus are plotted in

Figs. 6, 8, and 10, respectively. Considering the relationship

between the wavelength k and the wavenumber k, k ¼ 2p=k,

k decreases, and k increases when frequency increases. The

local vibration modes inside an ABH also have small wave-

length k and large wavenumber k.

Equations (2) and (3) show that the value of CiC
�
i

depends on C1 and C2, which in turn depends on the product

of ~wRe
n ðkx; kyÞ and ŵiðkx; kyÞ and that of ~wIm

n ðkx; kyÞ and

ŵiðkx; kyÞ. These products at the three frequencies in Table II

are calculated and plotted in Figs. 7, 9, and 11 for both the

ABH plate-cavity and uniform plate-cavity. It is obvious that

the products not only depend on the value of ~wRe
n ðkx; kyÞ and

~wIm
n ðkx; kyÞ, but also the degree of their morphological

matching with ŵiðkx; kyÞ in the wavelength domain.

The abovementioned results are further discussed for

the three frequencies. At 387 Hz, which is below the reso-

nance frequency of the first local ABH mode, the plate vibra-

tion is dominated by the global modes and the ABH effect is

not apparent. The real and imaginary parts of the ABH plate

displacement are larger than those of the uniform plate dis-

placement, as shown in Figs. 6(a)–6(d), due to the reduced

mass and stiffness of the former. The degree of morphologi-

cal matching between the real and imaginary parts of the dis-

placement field and the acoustic mode of the ABH-plate,

shown in Fig. 6(e), is slightly higher than that between the

structural mode of the uniform plate and the acoustic mode.

The products of the spectra are shown in Fig. 7 for both the

ABH plate and uniform plate. Because the magnitudes of

~wRe
n ðkx; kyÞ and ~wIm

n ðkx; kyÞ of the ABH plate are larger

than those of the uniform plate, the magnitudes of the

products C1ðkx; kyÞ ¼ ~wRe
n ðkx; kyÞŵ

�
i ðkx; kyÞ and C2ðkx; kyÞ

¼ ~wIm
n ðkx; kyÞŵ

�
i ðkx; kyÞ of the ABH plate-cavity are also

larger than those of the uniform plate-cavity. For quantita-

tive comparison, the numerical integration is performed on

FIG. 5. (Color online) Comparisons between the uniform plate and the ABH plate in one-third octave bands. (a) Mean quadratic velocity of the plate.

(b) Quadratic space average sound pressure level of the cavity.

TABLE II. Vibration and noise reduction at the typical frequencies.

Frequency

(Hz)

Mean quadratic

velocity (dB)

Space-averaged

sound pressure (dB)

ABH Uniform Difference ABH Uniform Difference

387 �78.6 �84.9 þ6.3 92.2 87.4 þ4.8

1309 �76.2 �76.9 þ0.7 81.5 98.1 �16.6

4119 �81.4 �64.7 �16.7 83.8 102.5 �18.7
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FIG. 6. (Color online) The modulus of wavenumber-domain spectra of the displacements and acoustic mode at 387 Hz. (a) and (b) correspond to the real and

imaginary parts of ABH plate displacement, respectively; (c) and (d) correspond to the real and imaginary parts of uniform plate displacement, respectively;

(e) corresponds to the acoustic modal vector at the interface.

FIG. 7. (Color online) The modulus of

wavenumber-domain spectra of the

cross-correlation function at 387 Hz.

(a) and (b) correspond to the real and

imaginary parts, respectively, of ABH

plate displacement with acoustic

modal vector at interface; (c) and (d)

correspond to the real and imaginary

parts, respectively, of uniform plate

displacement with acoustic modal vec-

tor at interface.

TABLE III. The coupling coefficient at the typical frequencies.

Frequency (Hz)

ABH plate Uniform plate

Real (10�7 m3) Imaginary (10�7 m3) Amplitude (10�7 m3) Real (10�7 m3) Imaginary (10�7 m3) Amplitude (10�7 m3)

387 5.32 7.71 9.37 4.81 2.44 5.39

1309 9.32 2.20 9.58 64.07 11.26 65.05

4119 1.83 1.13 2.15 14.64 3.76 15.12
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Eq. (8) and the calculated values of C1, C2, and
ffiffiffiffiffiffiffiffiffi
CC�
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1þC2
2

p
are listed in Table III. Obviously, the value offfiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1þC2

2

p
of the ABH plate-cavity is 1.74 times that of the

uniform plate-cavity.

Following the same logic and examining the modulus of

wavenumber-domain spectra of the displacement of both

plates at 1309 Hz (away from the resonance frequencies of

both plates), Figs. 8(a) and 8(b) show that more low wave-

number energy is spread into high wavenumber components,

exhibiting more complex pattern than the uniform plate. This

is understandable because above the cut-on frequency, flex-

ural waves are compressed alongside a wavelength decrease,

resulting in obvious energy trapping inside the ABH area.

For the uniform plate, the wavenumber components are only

concentrated near the modal wavenumber components as

shown in Figs. 8(c) and 8(d).

The products of the spectra are shown in Fig. 9 for both

the ABH plate and the uniform plate. Although the vibration

amplitude of the ABH plate is slightly larger than that of the

uniform plate at 1309 Hz frequency as shown in Table II, the

distribution of vibration response in the ABH plate undergoes

significant changes due to the compressed and localized fea-

ture of the ABH effect, which in turn reduces the sound pres-

sure inside the cavity as a result of weakened matching

strength between the surface displacement field of the ABH

plate and acoustic modal vector at the interface. This implies

FIG. 8. (Color online) The modulus of wavenumber-domain spectra of the displacements and acoustic mode at 1309 Hz. (a) and (b) correspond to the real and

imaginary parts, respectively, of ABH plate displacement; (c) and (d) correspond to the real and imaginary parts, respectively, of uniform plate displacement;

(e) corresponds to the acoustic modal vector at the interface.

FIG. 9. (Color online) The modulus of

wavenumber-domain spectra of cross-

correlation function at 1309 Hz. (a) and

(b) correspond to the real and imaginary

parts, respectively, of ABH plate dis-

placement with acoustic modal vector at

interface; (c) and (d) correspond to the

real and imaginary parts, respectively, of

uniform plate displacement with acous-

tic modal vector at interface.
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an ABH-induced impairment in the structure-acoustic cou-

pling strength, which also explains why the vibration intensity

of the ABH-plate is almost the same as those of the uniform

plate, but the noise can be significantly reduced. Similarly,

the quantitative coupling coefficients of the ABH plate and

uniform plate calculated based on Eq. (8) are listed in Table

III. The value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1þC2
2

p
of the ABH plate-cavity is

0.15 times that of the uniform plate-cavity, which indicates

that the ABH plate exhibits an attractive vibro-acoustic

decoupling characteristic.

At the higher frequency of 4119 Hz, close to a modal

frequency of the plate, two main effects can be observed in

Figs. 10 and 11. The first effect is a significant reduction in

the vibration amplitude of the ABH plate because of the

FIG. 10. (Color online) The modulus of wavenumber-domain spectra of the displacements and acoustic mode at 4119 Hz. (a) and (b) correspond to the real

and imaginary parts, respectively, of ABH plate displacement; (c) and (d) correspond to the real and imaginary parts, respectively, of uniform plate displace-

ment; (e) corresponds to the acoustic modal vector at the interface.

FIG. 11. (Color online) The modulus

of wavenumber-domain spectra of

cross-correlation function at 4119 Hz.

(a) and (b) correspond to the real and

imaginary parts, respectively, of ABH

plate displacement with acoustic

modal vector at interface; (c) and (d)

correspond to the real and imaginary

parts, respectively, of uniform plate

displacement with acoustic modal vec-

tor at interface.

FIG. 12. (Color online) Vibro-acoustic cavity system with the pentagonal

ABH plate.
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ABH-induced damping enhancement, which is basically

absent in the uniform plate. The second effect is an increase

in the energy at higher wavenumbers, which plays a role in

reducing the degree of morphological matching between the

plate displacement and the acoustic mode (Fig. 11), similar

as at 1309 Hz. Therefore, the ABH effect can not only

change the coupling of the vibro-acoustic in the plate-cavity

system, but also reduce the vibration energy. The quantita-

tive coupling coefficients are also obtained by Eq. (8), as

shown in Table III.

C. Vibro-acoustic decoupling over the irregular
pentagonal interface

The effectiveness of the WNDM, as well as the observed

phenomena, are revisited using a more general configuration.

Using same cavity, the ABH plate is now installed over the

other side of the cavity, as shown in Fig. 12, to form an irreg-

ular pentagonal interface with a force excitation at (�0.3052,

�0.1620,�0.1030).

Figure 13 shows the mean quadratic velocity of the pen-

tagonal plate and the quadratic space-average sound pressure

level inside the cavity. As expected, both the structural

vibration and cavity noise have been effectively reduced

despite the complexity of the interface. Results in Fig. 13

also indicate that a similar mechanism of noise reduction

exists regardless of the complexity of the coupling interface.

One representative example of wavelength-domain anal-

ysis at 2894 Hz is given to illustrate the damping effect and

vibro-acoustic decoupling characteristics of ABH. This fre-

quency, as the resonance frequency of an acoustic mode, is

close to a structural mode of the ABH plate at 2889 Hz and a

mode of the uniform plate at 2908 Hz, respectively. The

mean quadratic velocity is reduced by about 11.3 dB and the

space-average sound pressure by 23.6 dB by replacing the

uniform plate with the ABH plate. As shown in Eq. (A9), the

modal force acting on the considered acoustic mode is pro-

portional to the coupling coefficient, which in turn depends

on the degree of morphological matching between the struc-

tural modal function and acoustic modal function. Figure 14

shows the structural mode shapes of the two plates and the

shape of the corresponding acoustic mode at the plate–cavity

interface. Obviously, the shapes of these modes are quite

complex so that the degree of morphological matching

between those structural modes and the acoustic mode is not

straightforward from these graphs. As mentioned before, the

proposed WNDM allows a description of the coupling

between one acoustic mode with the entire displacement

field at the interface, as opposed to the one used before for

mode-to-mode coupling.19

Figure 15 shows the wavenumber spectra at 2894 Hz.

Overall, the results are similar with the data presented in

Figs. 8 and 10. However, several new observations are worth

noting in Fig. 15. For example, the wavenumber components

of the irregular plate are more diverse. Furthermore, it is also

noteworthy that the wavenumber spectra of the acoustic

modes at the interface have changed significantly. The shape

of the spectrum varies greatly, which is in the shape of a

bright ring of glowing because the number of modes

increases and the coupling is strengthened due to the irregu-

larity of the cavity. Theoretically speaking, the irregularity

of the cavity gives rise to higher matching probability for the

FIG. 13. (Color online) Comparisons between the uniform plate and the ABH plate in narrow band. (a) Mean quadratic velocity of the pentagonal plate.

(b) Quadratic space average sound pressure level of the cavity.

FIG. 14. (Color online) Mode of plate

and acoustic mode of the cavity. (a)

Mode of the ABH plate at 2889 Hz. (b)

Mode of the uniform plate at 2908 Hz.

(c) Acoustic mode of the cavity (inter-

face) at 2894 Hz.
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bending waves in the plate and the acoustic wave in the cav-

ity. In other words, this gives rise to a much more effective

coupling between the structure and the enclosure, as shown

in Figs. 16(c) and 16(d). However, the matching degree of

main wavenumber components between the ABH plate dis-

placement and the acoustic mode is much lower than that

between the uniform plate and the cavity, as shown in Fig.

16. The value of the coupling coefficients of the ABH plate-

cavity, C1, C2, and
ffiffiffiffiffiffiffiffiffi
CC�
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1þC2
2

p
are 3.39� 10�8,

2.27� 10�8, and 4.08� 10þ8, respectively. Their counter-

parts for the uniform plate-cavity are 2.89� 10�7,

1.84� 10�7, and 3.43� 10�7, respectively. Obviously, the

value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1þC2
2

p
of the ABH plate-cavity is 12% that of

the uniform plate-cavity. Therefore, the reason for the noise

reduction in the cavity with an ABH plate is the vibration

amplitude reduction and mismatching between the displace-

ment spectrum and the spectrum of the acoustic field in the

wavenumber domain, which results in a weakened vibro-

acoustic coupling. It can be concluded that the ABH struc-

ture exhibits the general characteristic of vibro-acoustic

decoupling above the cut-on frequency. Meanwhile, the

WNDM is useful and effective for the coupling analysis over

an irregular interface.

VI. CONCLUSIONS

In this paper, the potential of ABH structures for interior

noise reduction in a pentahedral cavity is investigated.

FIG. 15. (Color online) The modulus of wavenumber-domain spectra of the displacements and acoustic mode at 2894 Hz. (a) and (b) correspond to the real

and imaginary parts, respectively, of ABH plate displacement; (c) and (d) correspond to the real and imaginary parts, respectively, of uniform plate displace-

ment; (e) corresponds to the acoustic modal vector at the interface.

FIG. 16. (Color online) The modulus of

wavenumber-domain spectra of cross-

correlation function at 2894 Hz. (a) and

(b) correspond to real and imaginary

parts, respectively, of ABH plate dis-

placement with acoustic modal vector at

interface; (c) and (d) correspond to real

and imaginary parts, respectively, of

uniform plate displacement with acous-

tic modal vector at interface.
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A validated numerical finite element model considering the

full plate-cavity coupling is established. The results show

the effectiveness of ABH effects on cavity noise reduction,

and also demonstrate the potential and benefit of using ABH

principles to design lightweight structures. For a better

understanding of the vibro-acoustic coupling and observed

noise reduction mechanism of the ABH structure, a WNDM

is established by deriving the relationship between the

space-averaged sound energy inside the cavity and the spec-

tra of the structural displacement and the acoustic mode of

the cavity. Using the FE model and the proposed WNDM,

two cases are investigated with ABH panels installed on two

different facets of the cavity. Results show and confirm a

dual physical mechanism behind the noise reduction in the

cavity: amplitude reduction and mismatching in the wave-

number spectra between the displacement and the acoustic

field, which by the same token weakens its coupling with the

enclosed cavity and reduces the sound radiation into the cav-

ity. Results also demonstrate that the proposed WNDM is a

useful and effective tool for coupling analysis over an irregu-

lar interface, which could further be used for aiding the

design, analysis, and optimization of complex ABH vibro-

acoustic systems.
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APPENDIX

The discretized vibro-acoustic coupling equation of the

plate-cavity system can be expressed as

Ms 0

�q0C Ma

" #
€w

€p

( )
þ

Ds 0

0 Da

" #
_w

_p

( )

þ Ks CT

0 Ka

" #
w

p

( )
¼

B

0

( )
F; (A1)

where w is the vector of nodal displacement of the plate; p is

the vector of nodal sound pressure inside the cavity; q0 is the

density of air; M, D, and K are the mass, damping and stiff-

ness matrices for the structure and acoustic field, respec-

tively. C is a matrix representing the coupling between the

plate and the acoustic field; F is the excitation force; and B
is a vector related to nodal force.

The mean quadratic velocity of the plate and the space-

averaged sound energy inside the enclosure are defined as24

ht2
ni ¼

1

2S

ð
S

tnt
�
ndS; (A2)

hp2
ei ¼

1

2V

ð
V

pp�dV; (A3)

with tn being the normal velocity of the plate and S the

whole vibrating surface, and V and p are the volume and the

acoustic pressure, respectively.

Based on the modal superposition theory, w and p can

be decomposed over the in-vacuum structural mode shape

functions u ¼ u1;…;unsf gT and the rigid-walled acoustic

mode shape functions w ¼ w1;…;wna

	 
T
, respectively, as

w ¼ uqs ¼
X

j

qsjuj; (A4)

p ¼ wqa ¼
X

i

qaiwi; (A5)

where qs ¼ qs1;…; qsnf gT and qa ¼ qa1;…qanf gT are the

modal coordinates of the plate and cavity, respectively.

Using the orthogonality property of the modal shape

functions and considering the effect of viscous damping, Eq.

(A1) can be cast into the following form:

�Ms 0

�q0
�C �Ma

" #
€qs

€qa

( )
þ

�Ds 0

0 �Da

" #
_qs

_qa

( )

þ
�Ks

�C
T

0 �Ka

" #
qs

qa

( )
¼ uTB

0

( )
F; (A6)

where �Ms, �Ds, and �Ks are diagonal matrices of the structural

modal mass, damping, and stiffness, respectively, and �Ma,
�Da, and �Ka are their acoustic counterparts. �C ¼ ð1=SÞwTCu
is the coupling matrix between the structural modes and

acoustic modes.

According to Eqs. (A1) and (A6), the elements in the

coupling matrix can be expressed as

�Cij ¼
1

S
wT

i Cuj ¼
1

S

ð
S

ŵiûj dx dy; (A7)

where the modal vector ŵi, which only contains the pressure

at the interface, is the reduced form of the ith acoustic mode

in the cavity, wi, and the modal vectors ûj, which only

includes the normal displacement at the interface, is the

reduced form of the jth vibration of mode uj. It should be

noted that the same symbols have been used for both modal

functions in the physical space and modal vectors in discre-

tized space in the above expressions. According to Eq. (A7),

it is obvious that the coupling coefficient depends on the

morphological matching between the structural modal func-

tion and the acoustic modal function at the interface.

Since the damping factor of the acoustic modes is very

small, the sound pressure at the acoustic resonance frequen-

cies yields the dominant contribution to the space-average

pressure. Therefore, the pressure response at the acoustic res-

onance frequencies is discussed here by assuming harmonic

excitation at the frequency of the ith acoustic mode.

According to Eq. (A6), the response of the jth structural

mode is
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qsj tð Þ ¼ ~qsje
ixait; (A8)

where ~qsj is the complex amplitude of the structural coordinate,

including the initial phase, and i is the imaginary unit. The acous-

tic equation of the system in the modal space can be expressed as

€qai þ 2naixai _qai þ x2
aiqai

¼ q0

�Mai
S
X

j

�Cij €qsj ¼ �
q0

�Mai
x2

ai

X
j

qsj

ð ð
ŵiûj dx dy

¼ � q0

�Mai
x2

aie
ixait

ð ð
~wnðx; yÞŵiðx; yÞ dx dy; (A9)

where fai and �Mai are the damping ratio and mass of the ith
acoustic mode, respectively, and

~wnðx; yÞ ¼
X

j

~qsjûj x; yð Þ (A10)

is the complex amplitude of the plate vibration at the inter-

face, which includes the initial phase at each position (x,y).

If the response of acoustic modes is expressed as

qai tð Þ ¼ ~qaie
ixait ¼ �qaie

i xaitþ/aið Þ; (A11)

then there exist

�qai ¼ �
q0

2fai
�Mai

Ci; /ai ¼
p
2
; (A12)

where

Ci ¼
ð ð

~wnðx; yÞŵiðx; yÞ dx dy (A13)

is defined as the coupling coefficient between the acoustic

mode and the vibration displacement. It should be noted that

this coupling coefficient is a synthetic indicator of the cou-

pling effect between the acoustic mode and all the structural

modes at the given frequency.

Because the damping ratio of the acoustic modes is very

small, the influence of the non-resonant modes can be

neglected. According to Eq. (A5), the acoustic field at the

resonance frequency of the ith acoustic mode can be approx-

imately expressed as

~p ¼ ~qaiwiðx; y; zÞ; (A14)

where ~qai is the complex amplitude of the acoustic field

defined in Eq. (A11). The quadratic space-averaged sound

pressure at the ith acoustic mode is given in the following

form:

hp2
ei ¼

1

2V

ð
V

~p~p�dv

¼ q2
0

4f2
ai

�M
2
ai

CiC
�
i

1

2V

ð ð ð
w2

i x; y; zð Þ dx dy dz; (A15)

where
Ð Ð Ð

w2
i ðx; y; zÞ dx dy dz is a constant.
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