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This paper generalizes and modifies the Equal-peak method for the design of nonlinear
vibration absorber for use in the vibration suppression of nonlinear primary vibration
system. For a vibration system with nonlinearity, the most relevant bandwidth is the
resonance band, in which the undesirable nonlinear vibration phenomenon occurs
because of the dramatically amplified of vibration amplitude. To generalize the Equal-peak
method for a complex nonlinear primary system under force/base excitations, we utilize
the nonlinear perturbation method and bifurcation theory to investigate the vibration
performances and critical conditions for dynamical transition. In addition to the Equal-
peak property, another novel advantage, called De-nonlinearity (introduced by coupling
nonlinearity), is revealed for vibration control in addition to the known effect of nonlin-
earity on vibration suppression. It is discovered that by applying the nonlinear vibration
absorber with appropriate design on the NL primary system, the Equal-peak property can
be accurately realized, and unexpected nonlinear vibration performances can be effectively
eliminated. A relevant experimental prototype is carried out to illustrate the Equal-peak
and De-nonlinearity properties, which is composed of a primary vibration system with
complex nonlinearity and a designed tunable nonlinear vibration absorber. The proposed
modified design method for Equal-peak and De-nonlinearity properties has huge potential
application in the vibration suppression for low-frequency and strong nonlinearity fields
such as ships, aircrafts and ocean platform.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration performances of nonlinear (NL) vibration systems may include some beneficial dynamical phenomenon,
such as High-Static-Low-Dynamic and saturation properties, which cannot exist for linear vibration systems [1,2]. Because of
the increasing interest in the exploration of novel vibration systems in the fields of aerospace, shipping engineering and ocean

platform, nonlinearity is widely utilized

in relevant applications [3—6]. However, nonlinearity can introduce undesired

complex vibration phenomenon, which usually occurs around the resonance frequency bands because of the large vibration
energy induced by resonance. Therefore, vibration absorber (VA) with designed of resonance frequency and nonlinearity is
introduced for vibration suppression at the resonance of the nonlinear primary system [7—9].
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Nomenclature

NL Nonlinear

QZs Quasi-zero-stiffness

X1 Motion of the primary system

X Relative motion between the primary system and the absorber
u(t) Force/base excitation

Zo Base excitation amplitude

Gy Restoring force function of the primary system

Gy Restoring force function of the vibration absorber

k1 Linear stiffness of the primary system

ko Linear stiffness of the vibration absorber

1 Linear damping coefficient of the primary system

Cy Linear damping coefficient of the vibration absorber
K1ni Nonlinear stiffness coefficient of the primary system
kon Nonlinear stiffness coefficient of the vibration absorber
w Mass ratio M;/M;

Q1 The first resonance frequency

Qo The second resonance frequency

Qpi The frequency point for jumping on the amplitude-frequency curve
NL-VA  Nonlinear vibration absorber

X Motion of the vibration absorber

f Force excitation amplitude

The design principle of VA is to induce a channel for vibration energy transformation from the primary system to the
absorber. In previous studies, VA with adjustable parameters was considered to be applicable to a wide frequency bandwidth
of the primary system. Thus, VA has been mainly designed according to the restoring force of the primary system [7—11]. For
an NL primary system, the resonance frequency migrates and is different from the value calculated according to the linear
regression part. The nonlinear vibration frequency depends on the vibration response. Therefore, to obtain satisfactory vi-
bration suppression effectiveness for a nonlinear primary system, Nonlinear Vibration Absorbers (NL-VAs) are proposed and
designed based on different suppression mechanisms, including autoparametric resonance [12—16] and energy sink [17—19].
To improve the vibration suppression at the resonance band of the primary system, the nonlinearity of NL-VA is designed for
the internal resonance. The natural frequency of VA is chosen to be close to the integral multiple of the natural frequency of
the primary system, and then an obvious energy sink is induced.

An effective NL-VA is expected not only to realize an anti-resonance effect at the resonance frequency band but also to
suppress the vibration amplitude in resonance band for the elimination of the undersigned complex vibration phenomena,
including multi-steady state and jumping phenomena induced by large resonance peaks [20]. After the design of the
dynamical frequency of NL-VA, the other coefficients of NL-VA are taken into consideration for remarkable vibration sup-
pression on the frequency domain. The Den Hartog's Equal-peak method has been proposed and subsequently widely used
for designing the parameters of the Linear Vibration Absorber (L-VA) to realize the H,, optimization of the vibration responses
on the frequency domain [21,22]. Next, to develop the nonlinear investigation of the suppression and tuning of nonlinear
resonance peaks, this Equal-peak method is generalized for the design and optimization of NL-VA for the nonlinear primary
system under different amplitudes of the force excitation [23—27]. The generalization of the Equal-peak method on the
Duffing primary system is a significant study because it provides the achievement of H,, optimization on the frequency
domain. In the previous studies of the Equal-peak method, although an appropriately designed NL-VA can make the reso-
nance peaks equal for large range of excitation amplitudes, this existing nonlinear generalization is only feasible for the case
that the primary system is a Duffing oscillator and the calculation of the existing tuning method for the Equal-peak property is
too large to be generalized further.

In this research, we plan to develop the design method of NL-VA for Equal-peak for the improvement of accuracy and
application based on nonlinear perturbation theory and bifurcation theory [28]. The modified design method can be appli-
cable to a NL primary vibration system with multiple terms of nonlinearity for force/base excitations. The designed NL-VA can
accurately realize the Equal-peak property for as large as possible ranges of the structural and excitation parameters. For
example, for the so-called Quasi-Zero-Stiffness (QZS) vibration systems [20,29—34], which is required to have high-static-
low-frequency (HSLF) property, a large resonance peak exists at this low frequency band and its restoring force is a com-
plex nonlinear function of the motion. Thus, the designed VA can be applied on these primary systems to suppress the vi-
bration, especially on the resonance frequency band. On the other hand, for a modelled nonlinear vibration system in
engineering practices, such as architectural structures, ship structures and aircraft truss structures, the configurations and
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elastic components cannot be changed easily to eliminate the undesired nonlinear phenomenon. This study on avoiding
nonlinear vibration performances is inspired by the previous studies on the concept of de-nonlinearity [9,21]. In Ref. [9],
nonlinearity induced by magnetic interaction is added on a nonlinear continuous structure. It proposes the concept that the
introduction and design of nonlinearity can avoid the nonlinear vibration performances of the primary system. In Ref. [22], it
discovers that the amplitude-frequency curve of a nonlinear primary system is similar as a linear system by introducing
appropriate nonlinear and damping coefficients of VA. In this paper, the studies on the transition of dynamical performances
such as multi-steady states regions show the mechanism of De-nonlinearity property due to the nonlinearity of the absorber.
Adding NL-VA with the simple Duffing nonlinearity can effectively allow the nonlinear primary system to perform as a linear
one by cutting the curves of resonance peak for multi-terms nonlinearity. The experimental prototype of the NL-VA, which is
assembled and realized by utilizing the Origami mechanism, also demonstrates the novelty of this research [35,36]. For the
Origami structure, the nonlinearity can be adjusted according to the designed parameters obtained by the proposed modified
method.

The paper is organized as follows. First, the principle and existing inadequacy of the Equal-peak method for NL-VA are
introduced in Section 2. Next, a modified tuning method with a derivation process is proposed based on HBM and bifurcation
analysis. With the comparison of results obtained by the modified method and the previous method, the parametrical design
of NL-VA by the modified method is found to be more effective and accurate in Section 3. In addition, it is verified that the
modified method is applicable for NL primary system under force/base excitations by the cases for the seventh-order
nonlinear vibration oscillator and the one with multiple nonlinear terms. Last, the experimental prototype of the NL-VA
applied on primary system with QZS property is realized by the Origami structure in Section 4 for the effect verification of
the Equal-peak and De-nonlinearity properties. The conclusion is given in the final Section.

2. The design principle of the nonlinear vibration absorber (NL-VA)

From the results obtained by the previous studies [7—9,23—26], a tunable VA with adjustable stiffness and damping is
proposed to suppress the vibration over a wide frequency band for a linear primary vibration system. To mitigate the
nonlinear resonance for as large as possible a range of forcing amplitudes, the full exploitation of the NL-VA is investigated
when the primary system is a nonlinear oscillator. The mechanical diagram is shown in Fig. 1.

As shown in Fig. 1, NL-VA is assembled on a NL primary system, which is composed of a two-degree-of-freedom (2-DOF)
vibration system. According to the mechanical model shown in Fig. 1, the dynamical equation of the 2-DOF system is

Mi%; + Gi(x1) + C1%1 + Ga (X — Xa) + o (Xg — %) = u(t), (1)
MsX; — Gp(%1 —X2) + (X2 — %1) = 0.

where G; and G, are the nonlinear restoring forces for the primary system and the VA, respectively. The previous studies
[8,9,24] considered that the third-order Taylor series can describe the nonlinearity. Thus, the dynamical equation is simplified
for a coupled system with Duffing nonlinearity. Substituting X = x; — x, into Eq. (1), the dynamical equation is written as

MRy + kyXy + kipX3 + C1%q + Ky X + kopX- + 0% = u(t),
Mz;)é + ukqxq + pciXy + /Jklnx:i; (2)
(4 Dkgy® + (1 + Dkop®> + (1 + 16X = pu(t),

NL primary system x1(7) x2(?)
NL-VA
G,
WA v
\ AT
Base ¢ M, M,
T L
L C
N et

Fig. 1. Mechanical diagram of the vibration system consisting of the NL primary oscillator and the NL-VA.
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where u = % kin = and u(t) is excitation as u(t) = fcoswt+¢1. The derivation from Eq. (1) to Eq. (2) is

x1=0
shown in Appendix A.
Introducing the dimensionless parametrical transformation as

. (k1 kai w2 € )
t:w1t,w1: , Wy = 3 :_725 = 72g = 3
1 b v w1 T Mo 2T Myw,

fziﬂzkﬂzﬁ_ kznzfz _Y M
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the dimensionless dynamical equation is

Xy + X1 + @ + 260X + 2R + pfR> + 287X = cos(QF + ),

i - ~ o . (4)
X X1 +ax3 + 2508 + (4 DY2R + (u+ 1R +2(u + 1)E,7% = cos(QE + ¢1).

The detailed derivation of Eq. (4) under dimensionless parameters is also shown in Appendix A. According to the previous
studies of the Equal-peak method [23,24], for the Duffing primary system with fixed M, kq;, c; and kq,, to realize the Equal-
peak property, the structural parameters My, ka;, c2 and ka, of the NL-VA should be designed as

M; = uMj,
8uuky [ 16 + 320 + 92 +2(2 + ) /4 + 3¢
3(1 + p)? (64 4 80u + 27u2)

J koM, (8 +9u—4V4+ 3#)
Cy =

4(1 + ) ’

kz[ =

2:"szln
1+4u

kan =

Eq. (5) reveals that the values of k1, and kyj, are approximately in a linear relationship for the Equal-peak property. Thus,
according to the previous studies [23,24], regardless of the excitation amplitude of f, the nonlinear coefficient ko, of NL-VA is
considered proportional to the nonlinear coefficient ky, of the primary system. We increase the excitation amplitude f and
nonlinear coefficient k1, to examine the accuracy of the existing approach. To increase f and kq, over wide ranges while fixing
parameters according to Eq. (5), the amplitude responses of the primary system on the frequency band are shown in Fig. 2.

From Fig. 2, it can be seen that the amplitudes of the primary system in the frequency domain can be controlled to a low
range by applying the NL-VA. The resonance peaks can be effectively reduced by increasing the nonlinear coefficient ky,
proportionally to kq, for a larger f. However, as shown in Fig. 2, we can also see that when the values of fand ky, are increased
further, the values of the two resonance peaks are unequal and the phenomenon of multi-steady states occurs.

The tuning method for the Equal-peak condition is significant for vibration suppression. However, there are three main
deficiencies for the existing approach to determine the optimum nonlinear coefficient of NL-VA. First, the previous method
requires a massive amount of calculation because we must obtain all the amplitudes around the resonance frequencies for
different values of the other parameters. Second, the optimum nonlinear coefficient of NL-VA is obtained with the other
parameters changing in specific ranges rather than over very wide ranges. Third, the existing conclusion in Refs. [23,24] for
the designed NL-VA shows that the Equal peak property can be realized for a nonlinear primary system. Based on the previous
studies [8,9,23—26], we explore a modified tuning method for nonlinear generalization to determine the optimum nonlinear
coefficient of NL-VA for the primary system with multiple nonlinear terms for force/base excitations. The proposed method
also should be applicable for other parameters changing over wider ranges compared to those in the previous studies
[8,9,23,24].

3. Design of the NL-VA for equal-peak and de-nonlinearity properties
3.1. Method for the design of the NL-VA
In this section, we explore the Equal-peak method of NL-VA for the primary system with nonlinearity under both base and

force excitations with as large as possible values for the ranges of excitation amplitude and nonlinear strength. The process for
determining the optimum nonlinear coefficients of the NL-VA is based on the nonlinear analysis of the vibration properties.
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Fig. 2. The amplitude responses of the primary system for (a) increasing ki, by fixing f=0.005 and (b) increasing f by fixing ki, = 1.

3.1.1. Nonlinear resonance frequencies
Considering the nonlinearities of the NL primary system and the NL-VA, the dynamical equation is written as

Mi&1 + kyXy + 8n (X1) + C1X7 + kaR + 82 (R) + C2X = u(t),
MyX + kX1 + pciXy + g1 (1) (6)
+ (1 + DkoyyX + (1 + 1)gr2(X) + (1 + 1) = u(t),

where g,1, and g,; are the nonlinear restoring forces for the NL primary system and the NL-VA. Without losing the gener-
alization, we write the NL restoring force function as the following polynomial.

0

gn1 (1) Z KyniXi
5’ (7)

Sn2(X Z k2m

i=2

The excitation u(t) in dynamical Eq. (6) is assumed to be a harmonic signal. For force excitation, u(t) is written as
u(t) = fcos(wt+¢1), and for base excitation, u(t) is the acceleration applied on Mj as u(t) = zew?cos(wt+¢1). For force and base
excitations, the theoretical method for the nonlinearity generalization of the Equal-peak property is similar. In this section, to
illustrate the modified method for the optimum design of the nonlinearity of the NL-VA, the force excitation
u(t) = fcos(wt+¢1) is applied as an example.

Introducing the parametrical dimensionless transformation similar to Eq. (3), the dimensionless dynamical equation is
written as

Xy + X1+ 251X) + Zaix"] +,u72?+uZﬁ,§i + 25,uyx = cos(Qt + ¢1),

i=2 i=2
5(\” + X1 +251X’1 —+ ZO{,‘X% (8)
i=2
H+ DYR+ (1) 8% +2(p + 1)57% = cos(Q1 + ¢1).

i=2
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The coefficients in the polynomial expressions (8) are o; = ’j{‘—l",’f’” and §; = Aj,‘;—z;f” (i=2,3, ...). Utilizing HBM with high-
1

order harmonics, the solutions of the primary system and NL-VA are written as

X1 = dg +ay cos(QF) + ) _[ay cos(kQt) + a, sin(kQt)],
k=2
X =bg+ > [by cos(kQt) + by, sin(kQt)]. 9)
=1

Because we consider multiple nonlinear terms in the study, the expression of the solution contains high-order harmonics
for convergence and accuracy. The high-order harmonic terms correct the accuracy of the amplitude at the fundamental
frequency. The amplitude of the primary system at the fundamental frequency a; is the design criterion for the NL-VA. The
relationship between the fundamental frequency amplitudes and the frequency should be obtained not only for the solution
but also for stability analysis. Therefore, in Eq. (9), we set the amplitudes a; and by in polar form and the high-order harmonic
in rectangular form. In all, there are 2(K—2)+2 unknown amplitude coefficients ag, a1, ax; and ay (k=2,3, ...,K) in x; and
2(K—1)+1 unknown amplitude coefficients bg, bx; and by (k= 1,2, ...,K) in x».

Substituting the HBM solution (9) into dynamical Eq. (8), we obtain the conditions that the constant terms and the co-
efficient functions for each-order harmonic should equal to zero. From the first equation of Eq. (8), the constant terms ob-
tained are expressed by the function Hqo; the expressions of cos¢; and sing; are solved by the coefficient functions for cos Qf
and sin Qf, respectively, and then, the function obtained by the condition of trigonometric function as cos®¢;+sin’¢; =1 is H;
according to the condition that the coefficient for each-harmonic term should be zero, we can obtain the functions Hg1, Haro
(k=2,3, ...,K). Thus, there can obtain 2(K—2)+2 equations from the first equation of Eq. (8). Similarly, from the second
equation of Eq. (8), the constant terms obtained are expressed by the function Hag; the functions Hpk1, Hpk2 (k=1,2, ...,K)
express the coefficient for each harmonic. In all, there can obtain 2(K—1)+1 from the second equation of Eq. (8).

Therefore, in total, for K order harmonics, we have 4K + 1 unknown amplitude coefficients and 4K + 1 nonlinear algebraic
equations from Eq. (8). Thus, all the amplitudes can be calculated. The nonlinear algebraic equations are Hqg, H1, Hak1, Hak2
(k=2,3, ...,K) from the first equation of Eq. (8) and Hxq, Hpk1, Hpk2 (k=1,2, ...,K), written as

Hig(ag,bg,ay,a,b,Q,k) =0,
Hyo(ag,bg,aq,a,b,2,k) =0,

Hq(ag,bg,ay,a,b,Q k) =1,

Ha’{l(a07b07a17a7b>§27|<) =0 2 SI{SI(, (10)
Hyo(ag,bo,a1,a,b,2,k) =0 2<k<K,

Hpei(ag, bg,a1,a,b,2,k) =0 1<k<K,

Hpio(ag, bg,a1,2,b,2,k) =0 1<k<K,

where a and b reflect the amplitude of high-order harmonic as a = {ax;, azy, ..., axi, axz}, b = {b11, b12, b21, b2, ..., bx1, bk}, and
k represents the nonlinear coefficient of NL-VA to be designed.

The optimum nonlinear coefficient of NL-VA should render the values of two resonance peaks low and equal. The reso-
nance frequencies at the original fundamental frequency band of the primary system are defined as Q;1 and Q,,, whose values
depend on the amplitude of the steady state a;. Because the primary system and VA are both nonlinear oscillators, with
coupling in both linear and nonlinear parts, the accurate values of Q1 and Q;, cannot be theoretically expressed by linear
eigenvalue analysis. Although Q1 and Q> cannot be expressed explicitly, they always correspond to the extremes on the
amplitude-frequency curves expressed by Hy. Therefore, the resonance frequencies Q1 and Q,, for the two resonance peaks
are defined by the conditions for extremes on the amplitude-frequency curve as

2
(@n.90) = {01 T4 —0 1 <o), (1)

3.1.2. Multi-steady states frequency bandwidths

Alternatively, as shown in Fig. 2 (b), when the excitation amplitude and nonlinearity strength are increased, the phe-
nomenon of multi-steady states occurs. As shown in the previous studies about nonlinear vibration systems, on the frequency
band, at critical frequencies for multi-steady states, one solution may bifurcate to three solutions [2—4,8,9,17—30]. The critical
frequencies, defined as Qp; (i=1,2, ...), correspond to the local saddle-node bifurcation of the solution. According to the
bifurcation theory for determining the saddle-node point of the steady states, the values of the critical frequency Q; satisfy
the following condition

dH;(a;,9) :0}.

(@u} = { 2 T (12)
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The number of Qp, depends on the parameters of the system. For small f and k1p;, there is no multi-steady state band; for
increasing f and kip; the multi-steady states may occur. When the NL-VA is applied in the primary system, the bandwidth of
multi-steady states is reduced for increasing the nonlinear coefficient k,,,. However, for further increasing the k,,, the other
resonance peak is raised, and thus, the multi-steady states may occur again. Therefore, by considering the values and
occurrence of Qq, Q2 and Qp;, the optimum design of nonlinearity of NL-VA can be obtained theoretically, thereby mitigating
the vibration responses in the resonance band as well as eliminating the multi-steady states.

3.2. Derivation process of the modified method on the design of NL-VA

From the analysis in the above section, the amplitude-frequency curve at the fundamental frequency band is determined
by all the equations in Eq. (10); the nonlinear resonance frequencies satisfy Eq. (11); and the frequency bandwidth for multi-
steady states satisfies Eq. (12). We show these critical points and curves in Fig. 3 to illustrate the principle of the method.

Fig. 3 illustrates the principle of the curves Q;; and Q, and the points Q. The proposed method for the nonlinear
generalization and optimization design of NL-VA is based on the curves and points shown in Fig. 3. Although the expressions
of Eq. (10), Q;1, Q2 and Qp; are complex, all the formulas are implicit algebraic polynomial equations, which have indicated
roots. Thus, for complex nonlinearity or large excitation amplitudes, the accurate optimal nonlinear coefficients of NL-VA that
achieve the requirements of suppression effectiveness can be obtained.

As illustrated in Fig. 3, the critical condition for the Equal-peak property is that the amplitude of the primary system at the
first resonance point is equal to the value at the second one. However, the amplitude of VA is different at the two resonance
peaks. To realize the Equal-peak property, at the first and second new resonance peaks Q1 and Q, around the original
fundamental resonance frequency band, the amplitudes of the primary system are both A;, and the amplitudes for the high-
order harmonics of the primary system and NL-VA are different. The conditions for the Equal-peak property are written as

HlO(Al7a17b17‘QT17 KC) = 07
HZO(Al7a17b]7'QT]', KC) = 07
Hi(A1,a1,b1,Qp1,kc) = 1

Hakl(ALa] b17 ;K ):O ZSkSI<7 (13&)
Hgz(Ar,a1,b1,Q r17 )=0 2<k<K,
Hpia (Ar,a1,b1,251,k) =0 1<k <K,
Hpio(Ar,a1,b1,Qp1,k0) =0 1<k <K,

and

Hip(A1,a3,b2,955,kc) =0,
Hyo(A1,a3,b7,015,kc) =0
Hi(Aj,a3,by,915,%c) = 1,
Hye (A1, a3,b,Q1,k0) =0 2 <k <K, (13b)
Hgo(A1,a2,b2,Q02, k) =0 2<k<K,
Hpq(A1,a2,b2,22,kc) =0
Hpa(Ar,a3,b5,215,kc) =0

where A is the equal amplitudes of the primary system on Q;1 and Q;2, a; = {dg_1,d21_1,022_1,---,aK1_1,9k2_1}» @2 = {do_2,

a21.2,022_2, -, 0k1_2,0k2 2}, b1 = {bo_1,b11_1,b12_1, -, b1_1,bk2_1}, B2 = {bo_2,b11_2,b12_2, ..., bi1_2, bka_2} and k. reflects
the optimal parameters of NL-VA for the Equal-peak property.

F T T T T H
/ /

L / /

L) H, %al’bl N
_az {Hz a,by ) bStabgny
= Ant}lresnﬂance /€21 boundary
a, /
g / /
<

Dimensionless frequency

Fig. 3. The amplitude-frequency curve, the nonlinear resonance frequencies, the multi-steady states band and the critical frequency points.
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The factor that determines whether the multi-steady states phenomenon occurs is determined by bifurcation theory.
When the designed NL-VA can eliminate the frequency bandwidth of multi-steady states, the nonlinearity of NL-VA plays a
significant role in erasing the nonlinear performances for the primary system. Here, we define a new concept of De-
nonlinearity, i.e., the vibration of a nonlinear oscillator performs similar to a linear oscillator induced by an introduced
nonlinearity. Because of the De-nonlinearity property, the NL-VA reduces undesirable nonlinear vibration performances. The
critical frequencies Qp; for multi-steady states and the corresponding amplitude can be solved by the following equations:

HlO(a09b0aa]9a7b7 'Qbiv KC) = 0’

HZO(a07 b07 a]7a7b7 ‘Qbiv KC) = 07

Hi(ao,bo,a1,a,b, an ko) =1,
6H1/6(11

akl (a07b07a1 a, b ‘QbHKC) 0 2 < k < I<~ (14)
C(k2(a 07a'l7 b Qbu C):O 2§k§1<,

Hpei(ag, bo,a1,a,b, Qp k) =0 1 <k<K,

Hpio(ag, bo,a1,2,b,Qp,kc) =0 1<k <K,.

Eq. (14) determines the boundary for the nonlinear coefficients of NL-VA for multi-/single-steady states and the band-
width of the multi-steady states.

In summary, when the parameters of primary system are given as My, kq;, and ¢ and the nonlinearity gy is fixed, the
parameters in linear terms of the proposed NL-VA are designed as in Refs. [23,24], while the nonlinear coefficients are
determined by the proposed method of Eq. (13). In addition, Eq. (14) is utilized to assess the occurrence of the multi-steady
states band. The principles and formulas of the proposed method are reorganized as the derivation process shown in Fig. 4.

From Fig. 4, the optimal nonlinear coefficients of NL-VA can be determined to realize the low vibration amplitudes at the
resonance frequencies and avoid the unexpected nonlinear vibration phenomenon. According to the process shown in Fig. 4,
the NL-VA is applicable for the primary system with multiple nonlinear terms under force/base excitations.

X, =a,+a,cosQf + Y (a, coskQF +a,, sinkQ7 )
k=2
£=b,+ (b, coskQf +b,, sin kQ7 )

k=1 \L

Substituting into
dynamical equation

Coefficients of )
constant, cos kQf andsin kQ7

:

Polynomial formulas
Hyo, Hyo, Hy,
Hepy Hypr (6=2,3+++,K)
Hypyy Hyy (=1,2,3+++,K)

dH,/dQ=0
d’H,/dQ* <0

Qr] and Q,Q

n Parameters
[Ea 0] -

Amplitude a,
Designed parameters
Multi-steady states band

Fig. 4. The derivation process of the proposed method for designing the NL-VA.
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3.3. Case studies and comparisons

For a primary system with multiple nonlinear terms, the nonlinearity of NL-VA should be simple but efficient. Thus, the
NL-VA is always assumed as a Duffing nonlinear oscillator, and the nonlinear function g, in the dynamical equation is

gn(X) = I<2,1§3. The nonlinear coefficient to be designed is only kz,, which can clearly illustrate the accuracy and mechanism
of vibration suppression by the NL-VA. The following two case studies show the mechanism and efficiency of a VA with simple
nonlinearity on vibration suppression at the fundamental frequency of a primary system with Duffing/multi-terms
nonlinearities.

3.3.1. NL-VA on a system with Duffing nonlinearity

To verify the modified tuning method and show its improvement to determine a more accurate design of nonlinear co-
efficient of NL-VA for the Equal-peak property, in the first case study, we consider the primary system to be a weak nonlinear
oscillator. The mechanical model is similar to that shown in Fig. 1, and the dimensionless dynamical equation is expressed in
the same manner as Eq. (3). Because of weak nonlinearity, the restoring force is expanded by Taylor series as g,;(x1) =

&G,
dx3

)x? = kip3X3. The dimensionless dynamical equation is written as
x1=0

Xy + X1+ 2E1X%) + azxd + py?R + ubR; + 2600yR = cos(Qf + ¢1),
X+ X1+ 250X + a3 (15)
(4 1)Y2R + (n+ 1)BRT +2(1 + 1)57% = cos(QF + ¢7),

where az = ",;—”3 f%,and g = ﬁ f2. As a simple case study for the verification of the proposed method, the actual expressions
1

of Eq. (14) for different-order harmonics are listed in Appendix B as Eqs. (B.2)-(B.11).

Assuming that the structural parameters M1, kqj, k13, and c; of the primary system are fixed and known, the nonlinear
coefficient ky,, of the absorber is designed according to the proposed method. When the parameter values of the linear part of
the primary system are fixed as M1 =1, k1;= 1, and ¢y =0.002, the values of M5, ky;, and ¢, of the linear part in the NL-VA are
selected according to the conclusions in Ref. [24] (the expressions are shown in Eq. (5)) as M = uM; =0.05, ky; = 0.04513, and
¢ = 0.0128. According to the derivation process in Fig. 4, the values of k;;, are obtained, as shown in Fig. 5 for different mass
ratios u, nonlinear coefficients kq,3 and excitation amplitudes f. In Ref. [24], the ratio between ky, and ki3 is found to be
independent of the value of the excitation amplitude f.

The results obtained by the proposed method in Fig. 5 reveal that the ratio between k;;, and k1,3 is approximately equal to a
constant for small f, whereas the ratio deviates from that relationship for large f. Since the nonlinearity of the primary system
only contains the cubic term in this case, we refer to Ref. [24] to propose a fitting factor between ka, and ki3 for quickly
finding the optimum value k>, for Duffing primary system. Referring the previous study [24] and based on the variations of ka;,
for the Equal-peak property under different values of fin Fig. 5 (a), a correction factor is introduced to time the factor 2u?/
(1 +4u) in Ref. [24], and then, the regression of ky, is given by
2

2
k= (115 - 4.3f) 5 e

k1n3~ (16)

The optimum values obtained by the regression expressed as Eq. (16) is also shown in Fig. 5.

Fig. 5 shows that the proposed modified method can obtain the accurate nonlinear coefficient of NL-VA for the Equal-peak
property. The accurate optimal value of ky;, is determined by solving the functions in Eq. (11) according to the expressions of
Hy and Ha, which are given in Appendix B. Thus, the calculation is much smaller than the previous process. For small k13, k1n3
is approximately linearly proportional to kyp,, and for large kq,3, the excitation amplitude fis involved in the relationship. For
different parameters, the new regression of the relation of the nonlinear coefficients k1,3 and k2, modifies the design of the
NL-VA.

For a case study, the nonlinear coefficient ki3 of the primary system is set as kq,3 =150 and the excitation amplitude is
f=0.01. From Fig. 6, the value of the nonlinear coefficient solved by Ref. [24] is k,, = 0.62, which cannot realize the accurate
Equal-peak effectiveness because of the strong nonlinearity. The designed k,, obtained by Eq. (16) is kp, = 0.69, which is
larger than the value k, = 0.62 from Ref. [24]. A comparison of the amplitude-frequency curves for the nonlinear coefficient
kon obtained in Ref. [24] and Eq. (16) is shown in Fig. 6.

From Fig. 6, for the designed nonlinear coefficient of NL-VA obtained by Eq. (16), the second peak is cut, and the two
resonance peaks are forcibly equalized to each other. It is obvious that the ky, obtained from the previous study (Ref. [24]) is
insufficient for the Equal-peak and the De-nonlinearity properties because the second peak is higher than the first peak and
the multi-steady states phenomenon exists. In addition, the comparison between HB1 and HB3 demonstrates that the so-
lutions for only first harmonic and three harmonics are almost the same. In the following case studies and further applica-
tions, to guarantee the convergence and accuracy of the HBM solutions, especially for strong nonlinearity, the number of
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Fig. 5. The values of the designed nonlinear coefficient k,, of NL-VA for (a) different kin3; (b) different f; (c) different u.

harmonics is always chosen to be higher than the order of nonlinearity. Therefore, the proposed method can modify the
accurate nonlinear design of the NL-VA for the Equal-peak and De-nonlinearity properties.

Next, we investigate the variations in multi-steady states bandwidth to show the effect and mechanism of the NL-VA on
the De-nonlinearity property. For k1,3 = 10, we increase the nonlinear coefficient k5, from zero. The multi-steady state bands
and the amplitude-frequency curves are shown in Fig. 7 for different excitation amplitudes f.

As shown in Fig. 7, for different values of the excitation amplitude f, the values of ky, for the Equal-peak property are very
close because f has little effect on the proportion between k, and kq,3, as indicated in the above section. However, for
different f, the shapes of the amplitude-frequency curves are different. From the variation of multi-steady states band, each
time we increase the excitation amplitude, the area of multi-steady states region increases because a larger f results the
increase of response x3, which in turn induces the multiply enhanced nonlinearity term kqn3x3. Also, since the solutions are
obtained by perturbation method, for strong nonlinearity, from the Blue and Green curves in Fig. 7 (b), the value of k3,
obtained by the process as Fig. 4 has error for absolute accurate equal peak. Therefore, it is more difficult to eliminate the
multi-steady states region effectively and the values of two resonance peaks have little error for larger f than ki,3. When fis
increased to approximately 0.035, the multi-steady state band is remarkably reduced but cannot be totally avoided for
optimal ky, by Eq. (16). Fortunately, as shown in Fig. 7 (b), regardless of the occurrence of multi-steady states and solution
error from the perturbation method, the Equal-peak property can be realized for a wide range of the excitation amplitude f
using the proposed modified method.

3.3.2. NL-VA on the primary system with seventh-order nonlinearity

The results and comparisons in the above case study revealed that the modified tuning method can obtain an accurate
optimum nonlinear coefficient of the NL-VA for the Duffing nonlinear system. In recent years, research studies of novel
nonlinear structures for vibration suppression have revealed that complex nonlinearity has advantages for vibration control,
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Fig. 7. (a) The multi-steady state bands for increasing k,, and different f; (b) the amplitude-frequency curves for the Equal-peak property.

especially in the field for vibration isolation [1,2,5,31—34]. When the restoring force of the primary system is a complex
nonlinear function [5,31—34], polynomial with multiple terms can describe the original nonlinearity more accurately than the
Duffing nonlinearity. In Refs. [33,34], the seventh-order nonlinear function is utilized to fit the restoring force of the QZS
vibration system. In this section, the availability of the proposed modified method for the NL primary system with seventh-

order nonlinearity is investigated as a study case.
We follow the derivation process in Fig. 4 to design the nonlinear coefficient k;,, of the NL-VA for a NL primary system with

multiple nonlinear terms. The seventh-order nonlinearity is considered as the case study. The dimensionless dynamical
equation is written as

Xy 4 X1 + 260X + a3x3 + asxS + azx] + py2X + pfsR; + 257X = cos(QF + ),
X X1+ 26X + a3x3 + asx] + azx]
A+ DY2R + (1 + 1)BRT + 2(p + 1)E7% = cos(QF + ¢1),

(17)

where a3 = k,;;-?fz, as = kﬁ_fff4v a7 = ",;_1"17 6.8 = N%lzf{ and the other dimensionless parameters are the same as those in Eq. (3).

In this case study, because the highest nonlinearity is seventh-order, the solution is set with more than seven harmonics for

convergence and accuracy.

The linear coefficients of primary system are set as M1 =1, ky;=1, and ¢; =0.002, and the nonlinear coefficients are set as
kin3=1Nm3, kins =1 x 10N m™, and kq,7 =1 x 10° N m . For the excitation amplitude f= 0.01, the amplitude-frequency
curves of the primary system with the designed k,,, determined by the previous study in Ref. [24] (considering only ki,3) and
the modified method (considering all nonlinear coefficients) are shown in Fig. 8 for comparison. In Fig. 8, the black line

represents the amplitude-frequency curve when k;, = % k13 = 0.0042 N-m~3, as given in Ref. [24], and the red line
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Fig. 8. Comparison of the amplitude-frequency curves of the primary system between the value of k,, only considering k1,3 and that considering all nonlinear
coefficients.

represents the amplitude-frequency when k;, = 0.124 N m~> with the consideration of all terms of nonlinearity by assuming
the solution with the first harmonic to the ninth harmonic.

From the comparison in Fig. 8, it is obvious that the designed k;,, by the proposed method realizes the Equal-peak and De-
nonlinearity properties effectively. This result reveals that the value of ky, with consideration of only kq,3 is much smaller
than the value obtained with the consideration of all nonlinear terms. Thus, this result verifies that the proposed modified
method can determine the optimum nonlinear coefficient of the NL-VA for the primary vibration system with complex
nonlinearity.

The effect of ky, on the De-nonlinearity property for increasing excitation amplitude f and nonlinear strength ki
(j=3,5,7) is investigated. For different fand kin; the multi-steady state bands and amplitude-frequency curves for the critical
values and optimal values of ky, are revealed in Fig. 9.

From Fig. 9, when a large nonlinearity of the primary system or excitation amplitude induces the multi-steady states band,
the increase of the ko, of NL-VA can effectively change its bandwidth. Because of the multiple nonlinear terms, the variation in
the multi-steady states band is different from the first case for the Duffing primary system. To increase ky, from zero to a
specific value, the amplitude-frequency curve at the multi-steady states band is divided. With the further increase of ky,, the
upper curve increases and the lower curve decreases. The critical point for the division of the amplitude-frequency curve is
defined as the Breakpoint in Fig. 9 (a) and (d). When kjy;, is fixed at the breakpoint, the amplitude-frequency curves are cut at
the frequency of the breakpoint, as shown in Fig. 9 (b) and (e). When the second resonance peak on the lower amplitude-
frequency curve is higher than the first one as the ky, reaches the breakpoint value, with the increase of ky, to the equal-
peak value, the second resonance peak is depressed and the accurate Equal-peak property can be realized. To the contrary,
at the breakpoint of ky,,, the second resonance peak is lower than the first one, then, with the increase of ky, till the Equal-peak
value, the second resonance peak is further decreased and is lower than the first one (as the Blue line shown in Fig. 9 (f)). The
reason for the inaccurate Equal-peak property is induced by the strong nonlinearity and the conditions of equal peak lose the
efficiency. Also, at the value of ky,, for the Equal-peak property, the upper and lower curves have divided at far distances; thus,
the De-nonlinearity property is also achieved with the mechanism of local bifurcation introduced by the nonlinearity.
Therefore, the Equal-peak method can be explored in a primary system with complex nonlinearity using the proposed
derivation process.

3.3.3. NL-VA on the primary system with QZS nonlinearity

For a primary system with QZS property, based on its structural design, its resonance frequency can be reduced to nearly
zero for the High-Static-Low-Dynamic property. From the modelling in Refs. [1,2,5,29—34], it is known that the expression of
the restoring force of the vibration system with QZS property is an irrational function. Although some previous studies
[2,5,29] utilize a third-order Taylor series expansion to describe the irrational stiffness function around the zero equilibrium,
there exists an obvious error between the expansion and the original function for large motion [1,30—34]. Because a sig-
nificant QZS system should be applicable for low-frequency and large-amplitude excitation, there usually is a high resonance
peak at the low-frequency band and the multiple-terms nonlinearity should be considered in this investigation. As QZS
structure is utilized as elastic component from the primary mass to the base, the excitation cannot be isolated in the reso-
nance frequency bands. Therefore, when the primary system has QZS property, to suppress the vibration and eliminate the
nonlinear performances at the resonance frequency band, NL-VA is designed according to the proposed processing. The
configuration of the primary system with QZS property coupled NL-VA is shown in Fig. 10.
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Fig. 10. The structural configuration of the primary system with QZS property coupled a NL-VA.

As shown in Fig. 10, we consider the primary system with QZS property as Refs. [1,2,5,29—34]. According to Ref. [34], the
restoring force of the primary system has multiple nonlinear terms, defined as G; (x;) where X; = x; — z. The restoring force
of the NL-VA is still given as ky;(+) + kon(+)>. The dynamical equation is written as

M]?] + G] (5(\1) + C]?] + k215(\ + k2n5(\3 -+ C2§ = I\/I]f7

s ~ . ~ N B . 18
Mo+ 4Gy (1) + iepsy + (1 + 1) (ko + k) + (1 + 1)ca% = uMyZ. (18)

where X = x; — x, and z is the base excitation as z = z, cos(wt + ¢ ). According to the investigations in Refs. [1,2,5,29—34] and
the deformations of the elastic components in the QZS primary system shown in Fig. 10, the restoring forces G are written as

Gq (5(\1) = I{yk\‘l + 2]{,1?] 1- 170 . (19)

V(lo = 20) + %

In Eq. (19), the restoring force G is an irrational symmetrical function that satisfies G1(0) = 0. We utilize the polynomial
function g; to describe Gy to simplify the analysis rather than using the third-order Taylor series expansion. To apply the
primary system for large excitation, we consider a polynomial function g; with (2i+1) order, written as

n
N _ _ - 2it1
21(%1) = kX1 +8n(X1) = kX1 + > kin@is)X1 (20)
i

where kinis1) (i=1.2, ...,n) is the fitting nonlinear coefficient, which is obtained by the least square method (LSM). The
processing is listed in Appendix C. For the same term number for the polynomial and Taylor series expansion, the
comparison is shown in Fig. C.1. From the comparison in Fig. C.1, the restoring force of the primary system with QZS
property can be accurately described by a fitting polynomial with multiple terms rather than Taylor series expansion.
When the dimensionless motion X; is raised and close to 1, the difference between the Taylor series expansion and the
original function dramatically increased. Thus, the fitting polynomial is required to describe the original irrational
function accurately.

Referring to the dimensionless transformation given by Eq. (3), the dimensionless parameter transformation introduced is
given by
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In the parameter transformation Eq. (21), k, reflects the stiffness ratio of the vertical and horizontal springs in the QZS
system; /s is the ratio between the pre-deformation length and the original length of the horizontal spring, the value of which
should in the range of [0, 1]. The dimensionless dynamical equation is written as

R+ R+ Z i Ry 26R) 4+ PR+ bR + 25,u7% = 0% cos(QF + 1),
1:1
R 4R+ Z wpi Xy 26
P
F(u+ 1)YER + (n+ 1R + 25, (u+ 1)y% = Q2 cos(Qt + ¢1).

(22)

Next, the functions H; and H; are obtained by solving Eq. (22) via HBM. Setting the structural parameters of the primary
system as M1 =1, k,=1, ky =kp/ky=0.5 and c¢; =0.002, the parameters of the linear parts M, kp; and c; of the NL-VA are

designed according to the pervious study as Eq. (5). For p=0.05, ky; = 0.04535ky;, c; = 0.012756+/k;; and the nonlinear
parameter ky, of NL-VA are determined using the proposed method based on the process shown in Fig. 4. For different pre-
deformation ratios A, the fitting polynomial functions g for the restoring force of the primary system with multiple nonlinear
terms are shown in Table 1 in Appendix D. The values of the nonlinear parameter k3, of NL-VA with increasing z, and A are
shown in Fig. 11.

For the realization of the Equal-peak and De-nonlinearity properties of the nonlinear primary system with multiple
nonlinear terms, the optimum values of the nonlinear coefficient k;, of NL-VA depend on both structural parameters and
excitation parameters. From the expressions of g; shown in Table 1 in Appendix D, for increasing the pre-deformation ratio 4,
the fifth-order nonlinear coefficients negatively increase, and thus the nonlinearity weakens with larger ;. As a result, for
smaller A, the nonlinear coefficient k», becomes much more different for different excitation amplitudes z,. For larger A, the
values of ky, tend to approach each other. From Fig. 11, for a NL primary system with multiple nonlinear terms, we obtain the
nonlinear coefficient of NL-VA to realize the Equal-peak and De-nonlinearity properties. For different values of z. and A;, the
amplitude-frequency curves are shown in Fig. 12.

Fig. 12 shows the effect of NL-VA on the vibration responses of the primary system with multiple nonlinear terms in the
frequency domain. Fig. 12 (a) shows that utilizing L-VA cannot suppress the amplitude of the primary system around the
second resonance frequency and avoid the multi-steady states phenomenon; furthermore, when utilizing the NL-VA with the
designed nonlinear coefficient ko, the adverse nonlinear vibration performances are avoided by the realization of both Equal-
peak and De-nonlinearity properties. From the results in the frequency domain, we can conclude that for a primary system
with multiple nonlinear terms, the static capacity can be guaranteed because M is much smaller than M;; moreover, the

0.08
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£0.04
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0.00b L L L L L H

Fig. 11. The nonlinear coefficient ko, of the NL-VA for increasing base excitation amplitudes on the primary system with multiple nonlinear terms for increasing
As.
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effective frequency band for vibration suppression can be widened to the low-frequency band by increasing As without the
possibility of multi-steady states being induced by the increase of nonlinearity. Therefore, using the proposed modified
method, the NL-VA with an optimum design is significantly beneficial for the dynamical vibration performance of the primary
system with QZS property.

In conclusion, based on the case studies of primary systems with different multiple nonlinear terms, especially for the
vibration systems with QZS property [1,2,5,29—34], the results of the vibration performances on the frequency domain verify
the significant effect of the modified design method of the nonlinear NL-VA. By applying an optimum-designed NL-VA, the
resonance peak at low-frequency band can be suppressed, and thus the dynamical bifurcations [20,32] can be avoided.

4. The verification experiments of VAs with linear and nonlinear properties
4.1. The construction of the system with VA

The experimental construction of the system consisted of the nonlinear primary system and vibration absorber is shown in
Fig. 13. The primary system vibrates under the excitation from the base and the VA is applied on the primary system. In the
experiment, the laser is utilized to measure the vibration of the primary system.

As shown in Fig. 13, the restoring force of the primary system is nonlinear and the restoring force of the VA depends on its
structure, which is designed according to the proposed method.

In experiments, the prototype of primary system is constructed as shown in Ref. [34], which has QZS property for induce
high-static-low-frequency in some specific fields [1,2]. The experimental construction and deformation are shown in
Appendix D. This kind of vibration system has multiple-nonlinear terms and quasi-zero linear stiffness coefficient, and thus, it
has a high resonance peak at low frequency band and obvious nonlinear multi-steady state phenomenon. On the primary
system, L-VA and NL-VA are applied to suppress the vibration of the NL primary system in resonance frequency band.
Referring [34], dimensionless dynamical equation of the primary system is written as

n

P ~ ~2j+1 A .

X1+ 01X+ XY +EX = —Z (23)
=
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Fig. 13. The construction of the system with primary system and VA.

According to the restoring force property of the vibration system as Ref. [34], the restoring force can be approximately
described by polynomial with multiple terms as Eq. (23). In Eq. (23), w1 is the natural frequency, apj; 1 the nonlinear coefficient
and £, is the damping coefficient.

4.2. The coefficients of the primary system by identification

Firstly, the coefficients of the primary system are identified without the VA. In identification experiment, the excitation is
harmonic vibration as z = z.cos(wt+¢1) and the response of the primary system x; as X; = a cos wt. In the experiment, for
discrete excitation frequencies wy (k= 1,2, ...,m), the point-by-point response amplitudes of the primary system measured are
ak. Based on the least square method (LSM), the error between the response amplitude solved by Eq. (23) and the measured
ones should be minimized. Thus, the parameters should satisfy the following equation systems:

m

d
7 kz: (W (ay, wg)]* =0, (24)

where y represents the parameters to be identified for y = {w1, &1, asz}T. The coefficients of the NL primary system are listed
in Table 2. Also, Fig. 14 shows the point-by-point amplitudes for different excitation frequencies obtained by dynamical
equation as j =5 with parameters by identification and the obtained by experiments.

From Fig. 14, the amplitude-frequency curve verifies obvious nonlinearity of the primary system. For the identification
results, as w = 4 Hz, two amplitudes are obtained. Thus, the primary system is nonlinear although it is too difficult to see the
multi-steady states phenomenon in experiment. In addition, the results in Fig. 14 shows the dynamical performances and
resonance peak of the primary system without the VA measured in experiment.

4.3. Experimental prototypes for L-VA and NL-VAs

4.3.1. The construction of L-VA and NL-VAs

In the experiment, we construct VAs to realize the Equal-peak and De-nonlinearity properties for the NL primary system.
To verify the proposed design method for the VA, a L-VA and two NL-VAs are respectively assembled on the nonlinear primary
system, and then their vibration performances for vibration absorption are compared. The constructions and mechanical
models of the proposed L-VA and NL-VAs are shown in Fig. 15. Because the restoring forces of L-VA and NL-VAs are different,
the elastic components and constructions of L-VA and NL-VA are completely different. The L-VA is realized by an elastic beam
and two NL-VAs with different structural parameters are realized by elastic origami mechanism [35,36].

As shown in Fig. 15(a) and (b), the restoring force of the L-VA is as a lightweight elastic cantilever beam. The mass M is
concentrated at the free end of the cantilever beam. Thus, the dynamical equation of the designed L-VA shown in Fig. 15(a)
and (b) is written as

Table 2
The coefficients of the NL primary system by identification for j = 5.

w1 (rad/s) w1 (Hz) & Y3 Ys Y7 Yo Y11
23.419 3.72 0.0047 62394 382742.5 4,075 x 108 3.7 x 10'° 3.42 x 10'2
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Fig. 14. Amplitude-frequency curves for identification (Lines) and amplitudes from experiments (Dots).

MaXy + kyxy + CoXy = u(t). (25)

where ky; is the stiffness of the transverse vibration of the cantilever beam.

On the other hand, we explore the Origami mechanism [36] to realize the adjustable nonlinearity of the NL-VA due to
geometrical nonlinearity. In the NL-VAs, p; (i= 1,2, ...,6) reflects the fold with original angle ¢jy. Based on the analysis of the
Origami structure [35,36], the restoring force is a tunable nonlinear function for different assembly angles. The dynamical
equation of the NL-VA is written as

Mz).(.z + k21X2 + kznx% + C2X2 = u(t). (26)
where kyj, ko, and c; can be adjusted by the different structural parameters of the Origami structure.

4.3.2. The coefficients of the NL-VAs by identification

When the coefficients of the NL primary system are fixed as Table 2, the nonlinearity of VA should be designed to realize
Equal-peak and De-nonlinearity properties. In the experiment, the mass of absorber M, is much smaller than M; and is
designed as M, = uM; =0.055 x M; = 0.025 kg. Then, the optimum linear coefficients of L-VA are designed according to Eq.
(5) as Ref. [24] as koy = 1244Nm™, c; = 014N sm™'; the optimum nonlinear coefficients of NL-VAs are determined by the
process of proposed method shown in Fig. 4, approximately as ky, = 1017.47 N m~> for z, = 0.3 mm.

In the L-VA, the cross section and length of beam determine the stiffness. In the NL-VA by Origami structure, to induce the
required natural frequency and Duffing nonlinearity, two structural parameters, namely, the length of plane Irand original
angle of fold ¢1, are changed. For smaller I, the natural frequency increases, whereas for smaller ¢1q, the natural frequency
decreases. Based on the design of structural parameters, the L-VA, NL-VA-1 and NL-VA-2 have nearly equal linear stiffness
coefficient. The parameters of the L-VA, NL-VA-1 and NL-VA-2 are identified by respective experiments, as shown in Fig. 16.

From the identification results and comparison in Fig. 16, it can be seen that the NL-VA-1 and NL-VA-2 reveal nonlinear
vibration performance because its resonance frequency offsets to a high frequency value. Also, the nonlinearity strength of the
NL-VA-2 is stronger than NL-VA-2. The values of the identification parameters are listed in Table 3.

As shown in Table 3, from the identification results, the linear coefficient of L-VA is very close to the optimum design value
while the linear coefficients of the two NL-VAs have little deviation from the optimum value. The nonlinear stiffness coef-
ficient kyj, for NL-VA-1 and NL-VA-2 is both larger than the optimum value k,, = 1017.47 N m~3. In addition, compared the
nonlinear coefficients of NL-VA-1 and NL-VA-2, the strength of nonlinearity of NL-VA-2 is larger than NL-VA-1 due to its angle
of fold is larger than NL-VA-1 [36].

4.4. The effectiveness of the designed L-VA and NL-VAs

We assemble the L-VA, NL-VA-1 and NL-VA-2 on the nonlinear primary system and measure the responses of M for the
three cases separately. The amplitude of base excitation is fixed at z, =0.3 mm, and the excitation frequency varies from
2.5 Hz to 5 Hz with an interval of 0.1 Hz. The absolute motion amplitudes of the primary system are measured as shown in
Fig. 17.

Fig. 17 demonstrates that VA can reduce the resonance of the primary system and the nonlinearity of VA is beneficial for
the vibration suppression compared to the effect of the L-VA. For L-VA, since its linear stiffness ky;= 12.71 is very close to the
optimum ky; = 12.44, there is an anti-frequency band around 3.7 Hz, where is the original resonance peak of the primary
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Fig. 15. (a) The mechanical model of L-VA, (b) the experimental prototype for L-VA; (c) the mechanical model of NL-VA, (d) two experimental prototypes for NL-

VAs.
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Fig. 16. Identification results of the L-VA, NL-VA-1 and NL-VA-2 compared with the experimental measurement for different excitation frequencies.

system (about 3.7 Hz in the definition results as shown in Fig. 14 and Table 2). However, the two resonance peaks of the
primary system with L-VA are unequal and the amplitude around the second resonance is very high since the nonlinear
coefficient of the L-VA equals to zero. For NL-VAs, the second resonance peak is significantly reduced by increasing the
nonlinearity. It can be seen that by respectively applying NL-VA-1 and NL-VA-2 on primary system, the vibration perfor-
mances at two resonance bands are tuned. For NL-VA-1, the two resonance peaks are controlled at a low value, and their
values are close. The second resonance peak is lower than the first resonance peak because the actual value of ko, of the NL-VA
utilized is k2, = 1233 N m~3, which is little larger than the designed value of k,;, = 1017 N m~3. On the other hand, for NL-VA-
2, which has much greater nonlinearity than the NL-VA-1, the second resonance peak is further reduced since the nonlinear



X. Sun et al. / Journal of Sound and Vibration 449 (2019) 274—299 293

Table 3
The structural parameters and identified coefficients of the L-VA, NL-VA-1 and NL-VA-2.

10 Iy M w ki ¥ = waw () kan
optimum 0.55 =12.44 1 =0.14 =1017.47
L-VA 0.027 0.054 12.71 0.927 0.164
NL-VA-1 40° 3 mm 0.029 0.058 14.16 0.91 0.1922 1233.75
NL-VA-2 50° 5 mm 0.029 0.058 14.21 0.91 0.2179 3427.08

0] S S B S S B B S =

[ |--Without VA / ]
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o = L ]
g E6r 1
2% [ ]
22,0 f
£ il ]
< s | ]
E T ]
82r ]
L8 S |

0 oo b T b e e e o o I

25 30 35 4.0 4.5 5.0
Excitation frequency (Hz)

Fig. 17. The amplitudes of the primary system in frequency domain for the cases without VA (Dashed lines), L-VA (“O”), NL-VA-1 (“ x ") and NL-VA-2 (“0O0") by
experiments.

coefficient of NL-VA-2 is ko, = 3427.08. The two resonance peaks for NL-VA-1 and NL-VA-2 prove that the nonlinearity can
effectively adjust the magnitude of the two resonance peaks. Also, the variations of the two resonance peaks conform to the
theoretical analysis and the effect of nonlinearity in NL-VA is verified. Therefore, the experimental results verify the benefits
introduced by the nonlinearity on the Equal-peak and De-nonlinearity properties. In addition, for the NL-VA, its mass is much
lower than that of the primary system, and the machine size is very small; these characteristics can potentially be of use in
engineering practices.

5. Conclusions

In this paper, we explored the nonlinear tuning method of NL-VA for primary system with multiple nonlinear stiffness
terms under force/base excitation. The nonlinearity of NL-VA was designed to suppress the nonlinear resonance vibration in
resonance frequency band. The vibration performances and control mechanism were investigated both theoretically and
experimentally. The following conclusions can be drawn based on our results and discussions.

(a) This study proposed a generalized method to determine the optimal values of nonlinear coefficient of NL-VA by high-
order harmonic analysis. Because the expressions of resonance frequencies and solution of steady states are obtained
theoretically, the optimal nonlinear coefficient of NL-VA for equal-peak is determined accurately for different excitation
amplitudes over a very wide range;

(b) Based on the theoretical results, is finds that utilizing NL-VA on the nonlinear primary system not only reduces the
resonance peaks but also eliminates undesirable nonlinear vibration performances, such as multi-steady states. Ac-
cording to local bifurcation analysis, the relation between the bandwidth of multi-steady states and nonlinear coef-
ficient of NL-VA is established. It is found that applying nonlinearity to a nonlinear primary system can realize the De-
nonlinearity property;

(c) Since it has discovered that the large response at the resonance can be suppressed, the vibration performances at the
resonance band of the nonlinear primary system with QZS property can be improved without changing any compo-
nents of it;

(d) A novel experimental prototype of the NL-VA system was realized via an Origami structure. The nonlinear coefficient of
the NL-VA can be adjusted by changing the structural parameters. The comparison of the amplitude-frequency curves
of the primary system among L-VA, NL-VA-1 and NL-VA-2 verifies the effect of nonlinearity of VA on Equal-peak and
De-nonlinear properties. This study revealed an innovative use of the Origami mechanism in the field of vibration
control to provide adjustable dynamical nonlinearity.
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In conclusion, the optimum design of NL-VA according to the modified nonlinear tuning method can realize both Equal-
peak and De-nonlinearity properties, both of which have significantly potential applications in low-frequency nonlinear
vibration systems such as ships and aircrafts.
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Appendix A

Substituting X = x; — X, into Eq. (1), the dynamical equation is written as

M%7 + G1(X1) + €1%1 + G (X) + czx = u(t),

M2<X1*X)sz( ) — 3% = 0. (A1)

Re-arranging the second equation in (A.1) by substituting ¥; = M [~G1(x1) — c1%1 — Go(X) — 62§+ u(t)] into it, (A.1) is
given as

Mq%1 + Gi(x1) + 1% + G(X )+sz = u(t),

M, R . (A.2)
Mx + Gy (R) + 02X = Moy = M, |~ G1x) - c1x1 — Ga(X) — X +u(t)|.
1

Introducing the parametrical transformation of 4 = M , the dynamical equation can be written as

Mq%y + Gy (%) + ¢1%1 + Ga(X R) + X = u(t), (A3)

MoX + Gy (x1) + pcrky + (1 + 1)Go(X) + (0 + 162X = pu(?).
Next, further introducing simplification as kq,; = d;g‘ and ky,, = ‘j;f; . Eq. (A.3) can be simplified to Eq. (2).

" lx=0 * 1x=0

Substituting the parametrical dimensionless transformation given by Eq. (3) into Eq. (2), the following equations can be
obtained:

k kll ~ ~3 kll’\/ f
My—X7 + kqixq + k1nX3 + €14 =Xy + ko)X + kopX™ + Cp4 /X =f cos| w1 Q-—
1M1+111+1n1+1\IM11+ 2X + kopX” + ¢ M, f 1800

k k
lev;lx + pkypxq + pey g /M—lllxﬁ + ukqnx3 (A4)

t
(L)]7

~ o [k
+ (u+ DkyX + (u + 1)k2nx3 + (u+1)cy 1:/;’ X' = uf cos(wlg-

We re-arrange the above equation as

X) +Xq +”%1X? +0 \/I\/L—Iq,x +;:?; +Il%“3 0 \/N}l_kli’ kL”cos(Qt)
5(\”4*%/”(1 +%uq\ﬂv}]—k”xa +Mlplli1”x?+( H)AT;%X (A.5)
+(u+ 1)%2 llﬂf +(n+ 1)%2 1\/;1k1,A/ = %ukiucos(gt)

Because of the conditions of jft u = it 72 =1, %j =¥ i ;l = ,ulliﬂ%j = /.I,ng = wy? and j7* I;%’,’ = ’12',1//1[\\//1112 kznw/zMz Mzo)z' Eq.

(A.5) is derived as
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" k]n 3 1 kzn 3 1 ~1 f
X;+X1+5—x+¢C +pyeX + 5% + ¢ X =--cos(Qt
L l\/M1k1,l wr* kqg > /Miky ki (@),
N 1 kings 25
X +x1+cl\/l\mx +k1 X1+ (w+1)yx (A.6)

ko M, 1 o f
+1 x +(u+1 =2 cos(Qt
('u )Mz (b )MZ \/M]kll kll ( )

Introducing the transformation f+— ;- and both sides in (A.6) divided by f, (A.6) yields

M; ,%

X A7
AN (A7)
~3 ~/

X +(}L+1)M1 ! X — cos (i),

76‘ [ ——
MZ 2\/M1k” f

Next, considering the transformation x4 »—>"’ and X|—>" (A.7) is written as

1 ~ kypo~3 1 . -
1n 2 / 2 2n¢2 4
x+x+ X3+ cp———X, + X+ “Lf4x° + ¢ X = cos(Qt),
1Ex g P Mk, il > /Miky; (21)
A 1 / kln 23
X +Xx1+¢C B+ (u+1)y°% A8
b7 k1f 1+ (u+ 1)y (A.8)
kon 2~ M; 1 -
+(“+1) f X +(M+1)ﬁ \/Wx :COS(‘Qt)’
1Kq

Thus, contrasting the coefficients in (A.8) and the dimensionless transformation Eq. (3), Eq. (4) can be obtained.

Appendix B

For the 2DOF vibration system constructed by the primary system and VA with Duffing nonlinearity as Eq. (15), the so-

lutions contain symmetrical terms. For a symmetrical system, only odd harmonics exist in the HBM solution; thus, the so-
lution should be set as

K
X1 = ay cos(Qf) + Z[ @ks1)1 €0S((2k + 1)Q1) + (51 1)2 Sin((2k + l)Qt)]
. k=1 (B.1)
Z[ (k1)1 €OS((2k + 1)QF) + bgp_1 7 sin((2k + 1)92)].

k=1

The expressions for the nonlinear algebraic equations obtained by HB1 (K= 1) and HB3 (K = 2) are given as

2
3«
Hy, = |:al @+ Z i + 205, Qbya + by + #63 (b 11 +b11b%2>}

+

3up3 i
- Mjf (b?z + ble%]> — b1y +2Q(ar6y + /szbn)} 2=1, (B2)

3
Hypt = a1 9% +3632% (b + buabty ) — biy (@ = %) +2b1,225, = 0, (B3)
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3652
Hpio = ﬂi (b?z + blzb%) — bz (92 - A2) —2b11Q%, =0
and
2 3a3
H, = {al - Q° + 7 (al +atas +2a;a%, + a1a32) + Pubyy + 2b12 Qs
3851 2
+ M 3 (b 11+ b“b%Z + b%1b31 — b%2b31 + 2b11b%1 +2b11b12b32 + 2b11b%2):|
+ {— %“30%032 +2a1QF + 2b11Q3pE, — phbyy
3uBs) 2
s 3 (b b1z + b3y + bi1b3y — bi;bsy — 2by1biabsy + 2byob3; + 2b12b§2>} =1,
aza’ 3a3
Hg31 = az1 — 9a3; Qz :il 1y = <a31 as, + 2(1] asy + a31> + ,Ldzb3 +— s ,Ldzb
3ul?
+ MT& ( — byybT, + 2by1b3; + 2b3,b3y + b3, + baﬂ’%z) + 603081 + 6b3pQAué, =0
Hoar — 90,02 4+ 3B 2 L 92 3 2b E 253,
a32 = Q33 — 328" +—= (032‘131 +2aids; + ‘132) T uATD3y =
3 2
,u b5 (blzb 31+ 2b3yb3, + 2b% b3y + b3, + b32b%1) + 6031081 + 6b31Q4ué, =0
Hp11 = a19% — b119% + b11 2% + 2b1,Q2
b11 = 0197 — b11Q7 4+ b11A” + 2b12QAué,
3
308 (3 b2, + byubdy — Baban + 2b13bd, + 2biibabss + 2bss).
Hy = —b12Q% + byp2” — 2by1 @ik,
3[3312 2 2 2 2 2
(b 12 +b1ab1y + b11b3y — bizbsy + 2b1ab3; — 2by1beabzy + 2b11b32>,
aza?  3a
Hy3y = a3 — 9a31Q° + %Jrf <¢131a§2 +2a7a3; + a§1> +(+ 1)2b3y + %3 (0 +1)A°b3,
3(u+ 142
+ Wf)@ ( — by1b3; + 2by1 b3, + 2b3bsy + b3, + b31b32> +6(u + 1)b3Q¢1 =
3
Hy3p = a3 — 9a3,Q° + T3 (032‘1%1 +2a7a3; + a§2> + (1 +1)2 b3z — %(H +1)2°b3,
3(u+ 1)2%
+ (#f)ﬂﬁ (bub%l +2b3yb3, + 2b3 b3y + b3y + b32b§1> +6(u+ 1)b31 Q81 =
respectively.
Appendix C

X. Sun et al. / Journal of Sound and Vibration 449 (2019) 274—299

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

For the fitting polynomial g; with multiple terms, the coefficients are obtained by the LSM. For different values of motion

X (k=12, ...

,N), the original restoring force obeys Eq. (19), equalling to G;(X},). Utilizing fitting polynomial g; to fit these

points (X, G (X)), the error between g and these points should be minimum, which is given by the following condition.
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N
=" la1 (%) — G ()
k

N J
~ _2i41 ~ ~ I .
=" (kiR + D K Xe | — kXi — 2k | 1 0 = min.
k

J=1 (o — 20)* +Xf

Thus, the fitting processing is the solution of an extremum problem. The coefficients k1n2j;+1)( = 0,1,2, ... J) are obtained by

0 o j—01.2. (C2)
k1n(2j41)
Then, we have J+1 equations for the J+1 coefficients ki; =Ky, and Kqp(2j41)-
On the other hand, the coefficients of Taylor series expansion are expressed as
J g+ .
71 R (C3)

I

Fig. C.1 shows the comparison of the polynomial function g1 and the Taylor series expansion with same order i = 15. In the
comparison in Fig. 11, without loss of generality, the structural parameters are k, = 1, k, = 0.5, and [y =1.

2 T T T T | T T T T T If T " T T T
- —— Original function G, ;! ,' 1
H« - - - Fitting Polynomial g, [ ,' I
| |— ——Taylor series expansion by I s ————
T N 1' t [
I
I
I

2,0.5 4=0.3
! N

Restoring force
[e)

Dimensionless motion

Fig. C.1. Comparison of the restoring force functions among the original function G, fitting polynomial g; and Taylor series expansion.

Appendix D

The experiment of the primary system with QZS property is shown in Fig. D. 1.
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Table 1
The fitting polynomial g; for different As.
As &1
0.0 1.004%; + 0.46%3 — 0.253%; +0.11%] — 0.035%; + 0.008%]" — 0.0014%}> + 1.71 x 1074z}’
1.6 x 107587 + 1.1 x 1075%;° — 5.68 x 10 8%2" +2.04 x 1079%7> —4.43 x 10- 172> +1.15 x 101333’
+3.02 x 10714%% — 12 x 107 15%3" £ 2.5 % 107173 —3.2 % 107198 + 2.34 x 10721%37 — 7.6 x 10-24%;°
0.1 0.898%; + 0.6%; — 0.37%; + 0.17%] — 0.057%] + 0.013%}' — 0.002%}° + 2.8 x 104%}°
—2.7x 1075%;” +1.89 x 1075%1° — 9.75 x 1078%3" 4 3.52 x 1079%7> — 7.67 x 107 11%3> 4 2.09 x 1013z’
+5.22 x 107 14%2% —2.07 x 1071583 + 437 x 10717%3% — 5.6 x 10719%3° + 4.09 x 1021337 — 1.3 x 10-24%3°
0.2 0.767%; + 0.8% — 0.55%; -+ 0.27%] — 0.091%] + 0.022%]' — 0.0038%]> + 4.8 x 107%%}°
—4.6 x 10758} +3.24 x 1075%1° — 1.67 x 10 8%3" +6.05 x 10 9%3° — 1.33 x 10 11x3> + 3.77 x 10~ 13%7’
+8.98 x 1071%3° — 359 x 10715%3" 4 7.56 x 10717%3> — 9.67 x 10719%3° 1 7.1 x 1021%3” — 2.3 x 10-24%3°
03 0.607%; + 1.1%; — 0.81%; + 0.42%] — 0.15%] + 0.036%]' — 0.0063%}° + 8.16 x 104}’
—7.8x1075%)7 + 55 x 107531 — 2.85 x 1078%2" + 1.04 x 1079%% —2.28 x 10" 11%}° 4 6.74 x 10-13%%’
+154 x 10714%% —6.17 x 10715831 1 1.3 x 10717832 — 1.67 x 107 19%3% 1+ 1.23 x 10721337 — 4.01 x 10-24%3°
0.4 0.406%; + 1.48%> — 1.21%; + 0.66%] — 0.24%] + 0.059%." — 0.0105%}> + 1.36 x 10-3%}°
—131x 10747} +93 x 10°5%]° — 484 x 1077%%' +1.76 x 108%% — 3. x 107 19%%° 1+ 1.19 x 10-12%%’
+2.62 x 10713%2° — 1.06 x 10714%3" +2.23 x 10717%3% — 2.87 x 107 18%3> 1+ 2.11 x 10-20%3 — 6.89 x 10~ 23%3°
0.5 11 <13 515

0.152%; + 2.05%3 — 1.82%] + 1.03%] — 0.38%] + 0.096%." — 0.017%]> +2.26 x 10-3%]
—2.18 x 1074%]7 + 1.56 x 1075%]° — 8.14 x 107%%' +2.98 x 10 8% — 6.61 x 107 19%%> 4+ 2.09 x 10~ 12%7’

+443 x 10713%2 —1.79 x 10714%3" 1 3.8 x 10716%3> — 4.88 x 10 18%3> +3.59 x 10-29%37 — 1.18 x 10-22%3°

(b)

Fig. D.1. (a) Experimental prototype of the primary system with QZS property, (b) deformations of elastic steel sheet, (c) deformation of the right-side QLS, and
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(d) force diagram of the isolation object.

Fig. D.1 (a) shows the nonlinear primary system for the experiments. According to Ref. [34], in Fig. D. 1 (a), the elastic steel
sheets act as a positive stiffness component, and the pre-deformation symmetrical assembled Quadrilateral-Linkage Struc-
tures acts as the negative stiffness component. For motion X1, the elastic steel sheets are curved laterally, as shown in Fig. D. 1
(b), and the Quadrilateral-Linkage Structure deforms as shown in Fig. D. 1 (c). Then, the restoring force of the primary system
is nonlinear, which is shown in Fig. D. 1 (d). The experimental prototype of the proposed isolation primary system can realize
the High-Static-Low-Dynamic property because of the adjustable nonlinear stiffness. This kind of vibration system is widely
applied in vibration isolation fields due to the high-static-low-frequency property induced by the complex nonlinear
restoring force. Based on Refs. [29—34], the dynamical equation of the proposed nonlinear primary system shown in Fig. D. 1
(a) is written as
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J

¢ 2j11 '

MiX4 +k11X] +Zk1n(2j+1)x1 +c1x1 =0. (D.1)

=

Appendix E. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsv.2019.02.033.
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