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Damage localization in plate-type structures has been widely investigated by exploring the
structural characteristic deflection shapes (CDS’s) or their spatial derivatives. Despite the
substantial advances in this kind of methods, several key issues still need to be addressed
to boost their efficiency for practical applications. This study considers three essential
problems: susceptibility to measurement noise, absence of baseline-data on pristine struc-
tures, and selection of measurement sampling interval and that of the parameters to be
used in the de-noising techniques for more accurate damage localization. To tackle these
problems, a novel baseline-free adaptive damage localization approach is proposed, which
combines the robust Principal Component Analysis (PCA) with Gaussian smoothing. A
damage localization evaluator is defined to determine both the spatial sampling interval
of the CDS’s and the scale parameter of Gaussian smoothing to warrant a better damage
localization. Moreover, effects of the measurement noise and numerical errors due to the
use of the finite difference scheme on the estimate of the CDS derivatives are quantified.
Finally, the feasibility and the effectiveness of the proposed method are verified both
numerically and experimentally by using a cantilever plate with a small damage zone. It
is found that the second-order spatial derivative of the CDS’s is able to provide the best
damage localization results among the first four order spatial derivatives of the CDS’s.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration-based methods for the detection and localization of structural damage play a significant role in structural
health monitoring and have experienced a rapid development in the past several decades [1–5]. Recently, damage
identification in plate-type structures has attracted more attention [6–8]. As compared to natural frequencies, structural
characteristic deflection shapes (CDS’s) or their spatial derivatives are more effective and sensitive dynamic features, as
structural damage is typically a local phenomenon that initiates and propagates within a local area [9,10]. Here, the so-
called structural characteristic deflection shapes refer to spatial shape-type features, e.g., mode shapes and operational
deflection shapes [11,12]. Moreover, CDS-based damage identification methods tend to be much more robust to environ-
mental and operational variability than natural frequency-based methods. With the development of advanced measurement
techniques like scanning laser vibrometer (SLV) or full-field digital image correlation, CDS’s can be readily acquired at a high
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spatial resolution within a short time. However, CDS’s and their spatial derivatives are vulnerable to measurement
uncertainties. For example, the CDS’s acquired by a SLV are easily contaminated by speckle noise [13].

The CDS- or its spatial derivative-based damage localization methods can either be baseline-based or baseline-free. In
practice, baseline data on pristine structures may not be available. Therefore, baseline-free methods which only utilize CDS’s
or CDS spatial derivatives of the damaged state are more attractive and useful. To examine the damage-induced local
characteristics without baseline data, advanced signal processing methods are commonly used, exemplified by methods like
wavelet analysis or fractal dimension analysis [14–16]. Gentile and Messina [17] studied the Gaussian wavelet transforms in
localizing open cracks of beams and concluded that high-order Gaussian derivative wavelets were more sensitive to damage.
Cao and Qiao [18] employed the stationary wavelet transform to improve the noise robustness of mode shapes and applied
continuous wavelet transform to localize the damage. Bai et al. [19] applied fractal dimension analysis to high-order mode
shapes of plates based on the fractal surface singularities. Moreover, fractal dimension analysis could be combined with
wavelet analysis to enhance the noise robustness of damage localization [20]. A common limitation of this kind of methods,
however, is to the difficulty in integrating the damage information of several CDS’s or CDS spatial derivatives for robust
damage localization.

On the other hand, without the baseline data on pristine structures, the pseudo-CDS’s or CDS spatial derivatives of the
undamaged state are primarily constructed based on those of the damaged state by surrogate models or low-rank models
(such as principal component analysis (PCA)) [21,22]. Then, differences in CDS’s or CDS spatial derivatives between the dam-
aged state and the undamaged state are evaluated to localize the damage. The basic principle is that the CDS’s or CDS spatial
derivatives of an intact plate are smooth; or, when represented as a matrix by following the measurement grid, possess a
low-rank structure. Xu and Zhu [23] employed a polynomial fitting approach to construct the mode shapes of the
undamaged plates. The square of the absolute differences with mode shapes of the damaged plates was then used for dam-
age localization. Cao and Ouyang [24] proposed a robust damage localization index by incorporating the damage information
of several modes, which applied gapped smoothing method to extract the damage characteristics of mode shapes. Yang et al.
[25] investigated the low-rank and sparse data structure of a 2-D strain field for damage identification in plates. One advan-
tage of this kind of methods is that the damage-induced local shape characteristics can be clearly extracted. Furthermore, the
extracted damage features of several CDS’s or CDS spatial derivatives can be readily integrated for robust damage
localization.

Generally speaking, high-order spatial derivatives of the CDS’s, especially the curvature, are commonly used for structural
damage localization in flexible structures, as the spatial derivatives can effectively amplify the damage-induced local struc-
tural changes [26–28]. However, the finite difference method, usually adopted for estimating the spatial derivatives of CDS’s,
spreads and amplifies the numerical and measurement errors, which can severely degrade the estimation accuracy of these
quantities [29]. To tackle the problem, two strategies, namely the proper choice of the sampling interval and low-pass filters,
are commonly used [30–32]. For the former, a numerical solution was presented by Sazonov and Klinkhachorn [31] to min-
imize the effect of the measurement noise and that of the truncation errors of the finite element method on the calculation of
the curvature and strain energy mode shapes. For the latter, methods including cubic spline interpolation [33], wavelets [34],
Gaussian function derivatives [35] and wavenumber filtering [36] were investigated. However, these damage localization
strategies cannot guarantee the best (the most accurate) damage localization result.

This paper proposes a novel baseline-free adaptive damage localization method to achieve the best damage localization
by using only CDS’s or their spatial derivatives of the damaged state. The proposed method takes advantage of the low-rank
structure of 2-D CDS’s and the sparse property of the structural damage locations. Different from the methods that intuitively
setting the measurement sampling interval and the denoising parameters, a damage localization evaluator (DLE) is defined
to quantify the damage localization performance and to determine the optimal spatial measurement sampling interval and
the proper scale parameter of Gaussian smoothing for the best damage localization corresponding to the highest DLE value.
In addition, localization results using the first four order spatial derivatives of the CDS’s are presented and compared to eval-
uate the proper order of the CDS spatial derivatives for more accurate damage localization.

The structure of the paper is organized as follows. In Section 2, the principle of damage localization of plates by using
CDS’s or CDS spatial derivatives is described and a baseline-free damage localization index is defined based on a robust
PCA. Then, the noise propagation and truncation errors of the finite element method during high-order CDS spatial derivative
estimation are quantified in Section 3. In Section 4, an adaptive damage localization method is proposed and a damage
localization evaluator is defined. Numerical and experimental studies are then conducted to verify the proposed approach
in Section 5 and Section 6, respectively. Finally, conclusions are summarized in Section 7.

2. Principle of the baseline-free damage localization in plates

Consider a homogeneous and isotropic thin plate of constant thickness h. The governing equation of harmonic motion at a
given angular frequency x writes
Dr2r2w x; yð Þ þ jCxw x; yð Þ � qhx2w x; yð Þ ¼ f x; yð Þ ð1Þ
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where j=
ffiffiffiffiffiffiffi
�1

p
;r2 ¼ @2=@x2 þ @2=@y2 is the Laplace operator; D ¼ Eh3

= 12 1� t2
� �� �

is the plate’s flexural rigidity with Young’s
modulus E and the Poisson’s ratiot. w x; yð Þ denotes the plate displacement in the z-direction; C indicates the viscous damp-
ing coefficient and q the mass density.

If the external force distributionf x; yð Þ and its spatial derivatives are always continuous including f x; yð Þ ¼ 0, the damage-
induced changes in Young’s modulus E or plate thickness hwill cause a sudden change/singularity inw x; yð Þ and thenwd x; yð Þ
(d indicates the damaged state) can be used for damage detection and localization.

Traditionally, the high-order spatial derivatives of wd x; yð Þ are preferred, as they are more sensitive to incipient damage
than wd x; yð Þ [28]. To extract the damage-induced features inwr

d x; yð Þ (wr
d x; yð Þ ¼ @r=@xr þ @r=@yrð Þwd x; yð Þ; 8r 2 0;þ1½ � and r

is an integer), a robust principal component analysis is adopted, which decomposes Wr
d(W

r
d 2 Rn1�n2 is a matrix contain-

ingwr
d x; yð Þ at all measurement points) into a low-rank matrix L, a sparse matrix DI (which is defined as the damage index

matrix for damage localization) and a noise matrix E as
Table 1
Coeffici

r

1
2
3
4

Wr
d ¼ L þ DIþ E

minimize k L k� þ nk DI k1 subject to k Wr
d � L � DI k 6 �

ð2Þ
where n > 0 is an arbitrary balance parameter; � � > 0ð Þ a threshold for noise matrix E: k L k� ¼
P
i
ki Lð Þ represents the

nuclear norm of matrix L (which is the l1 norm of singular values) and k DI k1 ¼ P
ij

DIij
�� �� denotes the l1 norm of matrix

DI. The healthy state wr x; yð Þ can be well approximated by L and the damage-induced changes/singularities in wr
d x; yð Þ are

revealed by DI.
Moreover, the balance parameter n in Eq. (2) should be properly chosen to well separate the low-rank matrix L and the

sparse matrix DI. It can be seen that an L with a sufficiently high rank will incorporate the damage features in its represen-
tation. For a very low rank L, however, characteristic deflection shape features will be embedded in DI, which will corrupt the
damage identification procedure and even produce misleading identification results. Here, n ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n1; n2ð Þp

is chosen
based on the work reported in the related papers [37,38].

3. Problems in high-order derivative estimation

The spatial derivatives of w x; yð Þ; wr x; yð Þ; such as slopes (r ¼ 1), curvatures (r ¼ 2) and, more recently, third and four
derivatives, have been widely used to localize damage in plate-type structures due to their damage sensitivity [39]. The most
used approach to evaluate wr x; yð Þ is via the finite difference method, thus generating two essential problems: noise prop-
agation and numerical approximation, which may jeopardize the accurate damage localization.

3.1. Noise propagation of the finite difference method

The acquired displacement w x; yð Þ can be easily contaminated by measurement noise. To mathematically demonstrate
the uncertainty propagation due to the finite difference calculation, w x; yð Þ is assumed to be polluted by Gaussian white
noise as
w
�

x; yð Þ ¼ w x; yð Þ þ n x; yð Þ ð3Þ

in which n x; yð Þ is the Gaussian white noise and expressed in detail as
n x; yð Þ ¼ nlevelnnrw ð4Þ

where nn denotes the normally distributed random white noise with a zero-mean with a variance being 1; nlevel is the noise
level range of [0, 1] and rw the standard variance of w x; yð Þ;8x; y. Thus, the mean value and standard deviation of n x; yð Þ are 0
and rn ¼ nlevelrw, respectively.

Taking the spatial derivative estimation along x direction as an example, the uncertainty propagation at each measure-
ment point writes
Er
n ¼ @r w

�
xi; yj
� �
@xr

� @rw xi; yj
� �
@xr

¼
Xm
k¼�m

ckn xiþk; yj
� �

=dr
x ð5Þ
ents of the central differences with second-order accuracy.

c�2 c�1 c0 c1 c2 cr

�1/2 0 1/2 1/6
1 �2 1 1/12

�1/2 1 0 �1 1/2 1/4
1 �4 6 �4 1 1/6
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where ck is the coefficient of the finite difference method and the coefficients of the second-order central difference method
are tabulated in Table 1. n xiþk; yj

� �
is an independent random variable for different k and possesses the same probability dis-

tribution of 0;rnð Þ. In addition, dx denotes the spatial sampling interval of w x; yð Þ along x direction.

In Eq. (5), Er
n still holds a normal distribution with the mean value and standard deviation being 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼�mc

2
k

q
rn=d

r
x,

respectively. It can be seen that the finite difference method significantly amplifies the effects of the measurement noise in
high-order spatial derivativeswr

d x; yð Þ, as dx is normally very small during experimental measurements. Moreover, the higher
the order of wr

d x; yð Þ, the more sensitive it is to the measurement noise.

3.2. Truncation errors of the finite difference method

Truncation errors are caused by the difference between the actual solution and the approximate solution [40]. The prin-
ciple of the finite difference scheme is a Taylor expansion in which a truncated series are typically used instead of an infinite
series.

Taking the x coordinate as an example, w xiþ1; yj
� �

is expressed at x ¼ xi according to linear Taylor expansion as
w xiþ1; yj
� � ¼ w xi; yj

� �þ � � � þ dr
x

r!
@rw xi; yj

� �
@xr

þ drþ1
x

r þ 1ð Þ!
@rþ1w nx; yj

� �
@xrþ1 ; nx 2 xi; xiþ1½ � ð6Þ
Based on Eq. (6), the truncation error at each measurement point is evaluated by
Er
t ¼ crd2

x
@rþ2w nx; yð Þ

@xrþ2 ; nx 2 x�m; xm½ � ð7Þ
in which, cr is the coefficient and its value for the second-order central difference method is tabulated in the last column of
Table 1. Moreover, Eq. (7) indicates that the truncation errors are proportional to the square of the spatial sampling interval
dx and the two-order higher derivative of the estimated derivatives.

By increasing dx, the truncation error Er
t tends to be amplified whilst the noise effect Er

n being reduced accordingly, which
is typically depicted in Fig. 1. In general, an optimal d1 can be obtained to minimize the average total errors of measurement
noise and truncation errors for a given order r. However, it is not realistic to determine the optimal d1 without the priori
information on measurement noise. Furthermore, the optimal d1 does not set the damage localization performance as the
direct optimization objective. To address this issue, an alternative strategy is proposed, which optimizes the damage local-
ization performance by adjusting the measurement sampling interval after an initial high spatial resolution measurement.
Furthermore, at a given measurement sampling interval d, the scale parameter r of Gaussian smoothing will be tuned to
obtain the optimal damage localization.

4. Adaptive damage localizations in plates

4.1. Damage localization evaluator

In order to obtain the best damage localization results by exploring a given measurement data set, a damage localization
evaluator is defined to quantify the damage identification performance. Then, the best damage localization is achieved by
adaptively adjusting the spatial sampling interval d and the scale parameter r of Gaussian smoothing which warrant the
highest DLE value. DLE is defined as
DLE ¼ h1=h2 ð8Þ
d1

Measurement grid distance

Er
ro
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s

Fig. 1. Typical plot of the total errors of the finite difference method.
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Fig. 2. Definition of (a) damage localization evaluator (DLE) and (b) equivalent estimation zone (EEZ).
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where h1 and h2 denote the peak values of DIwithin and outside the damage zone, respectively, which are shown in Fig. 2(a).
As the area of the damage zone is unknown a priori, an equivalent estimation zone (EEZ) is assumed, which is illustrated in
Fig. 2(b). In the present case, the maximum absolute outlier value in DI is chosen as the centre of the EEZ, which is set as 0.05
� 0.05m2.

While the centre of the EEZ can be easily determined, its area should be properly set which indeed needs careful consid-
erations. Theoretically and ideally, the area of EEZ should be larger than the actual damage zone to completely remove the
damage effects on areas outside EEZ, as the establishment of DI involves neighbouring measurement points beyond the dam-
aged zone. Furthermore, a large-scale parameter r of Gaussian smoothing will enlarge the damage zone as well. In practice,
without knowing the actual size of the damage, one can start with a relatively large EEZ as long as the areas outside EEZ are
still able to reflect the characteristics of measurement noise (noise-induced outlier values randomly scattered over the plate
surface). If the noise-induced characteristics are not detected, the area size of EEZ could be successively reduced until these
are detected.

4.2. Adjustment of measurement sampling interval

Initially, a smaller sampling interval d is used during the data acquisition phase. Then, d will be adjusted by a
triangulation-based linear interpolation. In the process, the observation points are discretized into Delaunay triangulation
and a neighbourhood of nearby measurement points are used for the linear interpolation.

Linearly interpolating the planar surface of a triangle only requires applying barycentric coordinates to the data at the
vertices of the triangle. This is a weighted average method and the value of the interpolated surface bwd x; yð Þ, at any inter-
polation point x; yð Þ within the triangle is
bwd x; yð Þ ¼
X3
i¼1

hiwd xi; yið Þ ð9Þ
where the coefficient hi is the ith barycentric coordinate of the interpolation point with respect to the triangle; and wd xi; yið Þ
the observed value at the data point xi; yið Þ.

4.3. Gaussian smoothing

Since the high-order spatial derivative estimation is very susceptible to the measurement noise, it is common to
smoothen wd x; yð Þ before applying the finite difference method. To this end, a Gaussian smoothing is applied, which con-
volves wd x; yð Þ with a Gaussian function as
bwd x; y;rð Þ ¼
Z þl

�l

Z þl

�l
wd x� u; y� vð Þg u;v ;rð Þdudv ð10Þ
where r denotes the scale parameter and g x; y;rð Þ is a two-dimension Gaussian function and expressed as

1= 2pr2
� �

exp � x2þy2ð Þ= 2r2ð Þð Þ. In addition, the size of the Gaussian smoothing is limited to a window of �l; l½ � instead of
�1;þ1½ �. Here, l ¼ d3re is used to approximate 99.73% of the Gaussian kernel, where d3re represents the ceil of 3r. It is
seen that the window size is a function of the scale parameter r of Gaussian function. Therefore, when optimizing r, the
window size will be tuned accordingly.

Due to the differentiation property of the convolution integral, the rth-order spatial derivative of bwd x; y;rð Þ can be cal-
culated in two equivalent forms as
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bwr
d x; y;rð Þ ¼ wd x; yð Þ � gr x; y;rð Þ ¼ wr

d x; yð Þ � g x; y;rð Þ ð11Þ

in which, � represents the convolution operator described in Eq. (10).

By adjusting r, bwr
d x; y;rð Þ can be handled at different spatial scales. It is well known that the damage-induced outlier val-

ues in DI tend to be spatially close to each other whilst the noise-caused outlier values tend to be scattered over the mea-
sured plate surface, which are depicted in Fig. 3(a). For a smaller r, there will be many outlier values due to measurement
noise as shown in Fig. 3(a). By increasing r, fine-scale features will disappear, which include both noise effects and damage-
induced local features. For a larger r, the damage-induced local shape characteristics will be smoothed as well [41]. Thus, an
appropriate selection of r is required to obtain the best damage localization as displayed in Fig. 3(b).

The boundaries imply some discontinuities on the estimated bwr
d x; yð Þ r ¼ 1;2;3;4ð Þ, which cannot be eliminated by Gaus-

sian smoothing. Moreover, this has to be processed before Gaussian smoothing, as Gaussian smoothing propagates the dis-
continuity effects of boundaries [42]. Here, a spatial Hanning window is applied to wr

d x; yð Þ before Gaussian smoothing. The
2-D window is defined by the product of two identical 1-D windows [43] as
u2D x; yð Þ ¼ u xð Þu yð Þ ð12Þ

in which, u xð Þ is defined by
u xð Þ ¼ 1=2 1� cos px=að Þð Þ; x 2 0;a½ �
u xð Þ ¼ 1; x 2 a; Lx � að Þ

u xð Þ ¼ 1=2 1� cos p x� Lx þ 2að Þ=að Þð Þ; x 2 Lx � a; Lx½ �

8><
>: ð13Þ
The value of a denotes the width on the boundary of wr
d x; yð Þwhere the spatial derivatives are discontinuous. As shown in

Table 1, one measurement point for the first and second order derivatives and two measurement points for the third and
fourth-order derivatives cannot be used. In this paper, a is set as the length of the first five measurement points around
the boundaries to further suppress the effects of boundaries.

Finally, the proposed baseline-free adaptive damage localization method is illustrated by the flowchart in Fig. 4.
Noise-induced values Damage-induced values Damage zones

(a) Noisy case (b) Ideal case 

Fig. 3. An illustration of damage localization results.

Fig. 4. A flowchart of the proposed baseline-free adaptive damage localization.
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5. Numerical studies

A cantilever aluminium plate, of a dimension 0:35� 0:23� 0:003m3 with Young’s modulusE = 69 GPa, Poisson’s
ratiom ¼ 0:35 and mass densityq = 2700 kg/m3, is studied. The plate is modelled using the four-node quadrilateral elements
in MATLAB according to the Mindlin plate theory. The cantilever plate, clamped on the left, is discretized into 140� 92
elements with an element size of 0:0025� 0:0025� 0:003m3. The plate contains a damage zone of0:02� 0:02m2, which
is centred at (0.10 m, 0.115 m) as graphed in Fig. 5(a). The damage is simulated by reducing the plate thickness of the
associated finite elements.
(a) (b) 

Fig. 5. (a) FE model of a plate with a damage zone and (b) the 10th mode shape.
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Fig. 6. Noise-free damage localization results using.wr
d x; yð Þ r ¼ 0;1;2;3;4ð Þ.
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In the following study, the 10th mode shape is used as a representative example, which is shown in Fig. 5(b). The main
purpose here is to demonstrate the working principle and the feasibility of the proposed adaptive damage localization based
on robust PCA. In practical applications, different mode shapes show different sensitivities to damage at different locations
and each one has its own blind inspection zones such as the areas around the nodes of the mode shape. Therefore, the dam-
age information from more mode shapes should be integrated to warrant a more robust and reliable damage localization. As
one of the options, the proposed DI in Eq. (2) can be readily embedded into a data fusion approach to combine the damage
localization results based on different mode shapes [44].

In this numerical study, the noise-free damage localization results of the plate with a damage of 5% depth reduction are
first presented in Fig. 6 to verify the effectiveness of the proposed DI in Eq. (2).

It is seen from Fig. 6 that the damage zone is clearly identified by using either the mode shape or any of its first four spa-
tial derivative terms, regardless of the magnitude level of the DI. Thus, the robust PCA is proved to be powerful in extracting
the damage-induced local shape features in plate-type structures. Moreover, the higher the order of wr

d x; yð Þ, the larger the
magnitude of the damage-induced local shape discontinuities. Hence, the high-order spatial derivatives of wd x; yð Þ is able to
enhance the local damage characteristics, which naturally boosts structural damage identification. In addition, the extracted
damage-induced characteristics of wr

d x; yð Þ r ¼ 0;2;4ð Þ in Fig. 6 (a), (c) and (e) present clear peak features whilst
wr

d x; yð Þ r ¼ 1;3ð Þ in Fig. 6 (b) and (d) provide two separated shape features. In practice, the damage-induced features of
wr

d x; yð Þ r ¼ 1;3ð Þmay cause misleading damage localization results and this will be illustrated further in the following study.
Secondly, to investigate the effects of measurement noise on wr

d x; yð Þ(r = 0,1,2,3,4), a Gaussian white noise of nlevel ¼0.05%
(Signal to noise ratio = 66.15 dB) is added to pollute the 10th mode shape and the damage localization results of the plate
with the same damage of 5% depth reduction are presented in Fig. 7.
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Fig. 7. Damage localization results using wr
d x; yð Þ r ¼ 0;1;2;3;4ð Þ with 0.05% noise.
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It is clear that the damage localization results using high-order wr
d x; yð Þ r ¼ 2;3;4ð Þ are severely degraded by the added

Gaussian white noise, whilst wd x; yð Þ r ¼ 0ð Þ still provides accurate damage localization results, as shown in Fig. 7(a). More-
over, damage characteristics in wr

d x; yð Þ r ¼ 1;2;3;4ð Þ, as displayed in Fig. 6, are overwhelmed by the propagated measure-
ment noise of the finite element method.



y
(m

)
y

(m
)

(a) r=1 Nx=100, =2.5 DLE=13.50

(c) r=3 Nx=100, =2.1 DLE=7.79 (d) r=4 Nx=25, =0.9 DLE=9.34

y
(m

)

x (m)

y
(m

)

(b) r=2 Nx=105, =2.7 DLE=24.10
x (m)

x (m) x (m)

Fig. 10. The best damage localization for a plate with a damage of 5% depth reduction by using wr
d x; yð Þ r ¼ 1;2;3;4ð Þ with 0.05% noise.
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Fig. 11. Experimental set-up of a cantilever plate.
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Fig. 12. A plate with a damage zone: (a) Front surface and (b) Back surface.
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To tackle the problem, the spatial sampling interval d of wd x; yð Þ and the scale parameter r of Gaussian smoothing are
optimized to obtain the best damage localization results. The DLE values at different sampling interval d and scale parameter
r of wr

d x; yð Þ r ¼ 1;2;3;4ð Þ are shown in Fig. 8.
It is seen from Fig. 8 that only a small region of the combined d and r can provide a large DLE value, corresponding to

better damage localization performance. Therefore, it is vital to optimize the sampling interval d and apply proper denoising
techniques for accurate damage localization when using high-order derivatives of CDS’s. Moreover,w2

d x; yð Þ is able to provide
high DLE values at a wide range of dwhilst thew4

d x; yð Þ only performs well for some large d, which demonstrates thatw4
d x; yð Þ

is more prone to measurement noise. In addition,w2
d x; yð Þ is more sensitive to damage, as it possesses the largest zone of high

DEL values and the highest DLE values among wr
d x; yð Þ r ¼ 1;2;3;4ð Þ.

To further interpret the damage localization performance at different DLE values in Fig. 8, the damage localization results
using different r for d = 0.0025 m (Nx = 140) is illustrated in Fig. 9. Fig. 9 (b) and (d) indicate that the damage localization
results are poor for both excessively small and large r, with DLE values being around 1. Furthermore, by increasing r,
the magnitude of outlier values in DI becomes smaller as indicated in Fig. 9(b)-(d), suggesting a reduction in both the noise
and damage-induced singularities. In addition, the identified damage zone in Fig. 9(c) is a circle whilst the original damage
zone is a square, which is caused by Gaussian smoothing.

Finally, the best damage localization results using wr
d x; yð Þ r ¼ 1;2;3;4ð Þ are presented in Fig. 10. It is clear from Fig. 10

that all the spatial derivatives wr
d x; yð Þ(r = 1,2,3,4) can achieve accurate damage localization when using optimal d and r

which correspond to the highest DLE values in Fig. 8, while this is impossible by using the original noisy data as shown
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Fig. 13. Damage localization of a plate with a damage of 10% depth reduction by using wr
d x; yð Þ r ¼ 0;1;2;3;4ð Þ.
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in Fig. 7. Moreover, w2
d x; yð Þ and w4

d x; yð Þ tend to work better for damage localization than w1
d x; yð Þ and w3

d x; yð Þ, as the latter
two provide two damage zones for a single damage location.
6. Experimental validation

In order to verify the proposed baseline-free adaptive damage localization method, cantilever aluminium plates with the
same physical and geometrical properties as those used in the numerical study are tested. The experimental set-up is illus-
trated in Fig. 11.

The damage is introduced by reducing the plate thickness on the other side. As shown in Figs. 5 (a) and 12, a damage zone
with 10% thickness reduction is centred at (0.10 m, 0.115 m) with an area of0:02� 0:02m2. The plate is excited by a shaker
(LDS V406) close to its right edge, as depicted in Fig. 12(a).

The vibration responses are measured by a PSV-500 SLV within a measured zone which is slightly smaller than the orig-
inal plate dimension to avoid the effects of the boundaries. The measurement zone is of0:326m� 0:219m spanning from
0.0084 m to 0.3334 m in the x direction and from 0.0028 m to 0.2218 m in the y direction as shown in Fig. 12(a). A total
of 141� 95 measurement points are used with a grid cell size of0:00233m� 0:00233m. Here, a sufficiently large number
of measurement points is necessary to capture the damage-induced local CDS distortions, especially for incipient damage.
For practical applications outside a laboratory, the fast development of measurement technology, exemplified by the non-
contact measurement technology such as optic and imaging techniques, embedded sensors and smart sensing skin technol-
ogy etc., could offer improved solutions to the measurement problem in the near future. It should be understood that the
proposed technique may need to be revamped to adapt to the physical quantities measured by different techniques.

To determine the resonant frequencies of the plate, a pseudo random signal of 0–2000 Hz, generated by the PSV-500 sys-
tem, is used to excite the plate. The associated mode shape data are then obtained at the resonance frequency. Certainly, the
operational deflection shapes at non-resonant frequencies can also be used.

Here, the 10th resonant frequency is used and the velocities of measurement grid are acquired using the ‘FastScan’ mode
of PSV-500, with the bandwidth of the acquisition signal being set as 300 Hz. A wider bandwidth can speed-up the measure-
ment, whereas a narrow bandwidth will provide a better signal to noise ratio. In the present case, 30 averages are used for
each measurement point, amounting to a total of 141� 95 measurement points.

With the measured mode shape of the damage state, damage localization is first conducted by using the mode shape and
its first four order spatial derivatives without denoising, with results illustrated in Fig. 13. It can be seen that without denois-
ing, the mode shape (r = 0) provides the best damage localization results. The high-order mode shape derivatives are readily
contaminated by measurement noise and unable to provide useful information for damage localization, in agreement with
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Fig. 14. DLE values of wr
d x; yð Þ r ¼ 1;2;3;4ð Þ for a plate with a damage zone of 10% depth reduction (Nx is the number of measurement points along x

direction, d=0.326/Nx and Ny ¼ round 0:219=dð Þ).
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the numerical analyses reported above. Therefore, the proposed DI is robust to the experimental measurement noise in
wd x; yð Þ but sensitive to the propagated measurement noise in wr

d x; yð Þ r ¼ 1;2;3;4ð Þ.
Then, the proposed baseline-free adaptive damage localization approach is applied using wr

d x; yð Þ r ¼ 1;2;3;4ð Þ. The DLE
values using different d and r with a damage zone of 10% and 16.67% depth reduction are presented in Figs. 14 and 15,
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Fig. 15. DLE values of wr
d x; yð Þ r ¼ 1;2;3;4ð Þ for a plate with a damage zone of 16.77% depth reduction (Nx is the number of measurement points along x

direction, d=0.326/Nx and Ny ¼ round 0:219=dð Þ).
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Fig. 16. The best damage localization results using wr
d x; yð Þ r ¼ 1;2;3;4ð Þ for a plate with a damage zone of 10% depth reduction.
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respectively. It is seen from both figures that high DLE value zones can be obtained, which indicates that the tuning of d and
r is an efficient strategy to improve the damage localization performance. Therefore, the proposed adaptive damage local-
ization method shows its effectiveness in obtaining more accurate damage localization results by adjusting the measure-
ment sampling interval d and scale parameter r of Gaussian smoothing. Moreover, w2

d x; yð Þ provides the best damage
localization results among the first four order spatial derivatives of wd x; yð Þ, as it possesses the largest zone of high DLE val-
ues as shown in Fig.s 14(b) and 15(b). In addition, the magnitude of DLE values are proved to be capable of indicating the
relative damage severity.

Finally, the best damage localization results using wr
d x; yð Þ r ¼ 1;2;3;4ð Þ for a plate with a damage zone of 10% depth

reduction are presented in Fig. 16, which correspond to the highest DLE values in Fig. 14. A comparison with Fig. 10 verifies
the conclusions obtained from the numerical study. Moreover, Fig. 16 experimentally demonstrates that, with a proper
choice of the sample interval d and the scale parameter r, all first four order spatial derivatives of wd x; yð Þ can provide
acceptable damage localization results.

7. Conclusions

From both theoretical and experimental perspective, this paper investigates three vital aspects in the characteristic
deflection shape (CDS) based non-destructive damage localization: suppression of measurement noise, baseline-free and
adaptive damage localization. Instead of trying to determine an optimal spatial sampling interval on a trial–error basis to
minimize the measurement noise and the truncation errors of the finite difference calculation, an effective parameter tuning
strategy is proposed, which optimizes both the spatial sampling interval of CDS’s and the scale parameter of Gaussian
smoothing to achieve accurate damage localization results, quantified by a damage localization evaluator (DLE). The
baseline-free damage localization index is evaluated by using the low-rank structure of 2-D CDS’s (or their spatial deriva-
tives) and the location sparsity of the damage-induced characteristics. Numerical and experimental results demonstrate that
the proposed baseline-free adaptive damage localization approach is robust and effective in reducing the effects of measure-
ment noise to obtain more accurate damage localization.

Other conclusions are summarized as follows:

1. Robust principal component analysis is shown to be effective to extract the damage-induced local characteristics of 2-D
CDS’s and CDS spatial derivatives.

2. The higher the order of CDS spatial derivative, the larger the magnitude of the damage-induced local shape distortions
and the more susceptible it is to measurement noise.

3. The magnitude of the DLE values is capable of indicating the relative damage severity.
4. The second-order CDS spatial derivative, through a proper balancing of the damage sensitivity and anti-noise robustness,

is shown to provide the best damage localization results among the first four order spatial derivatives of CDS’s.
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