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A theoretical model is developed to describe the acoustic characteristics of plane ultrasonic acoustic waves

impinging on a porous coating, namely, a rigid surface periodically corrugated with subwavelength grooves

(two-dimensional cavities). The proposed model takes into account the high-order diffracted modes, and therefore

incorporates mutual coupling among neighboring cavities. Themodel predicts a reflection frequency consistent with

thenumerical results and reproduces a couplingmode inducedby interactions betweenwaves scattered fromadjacent

cavities.With thismodel, the cavity geometry parameters are optimized to achieve theminimumreflection coefficient.

The result shows that the Mack second mode is strongly suppressed and that the maximum fluctuating pressure

decreases by about 88% upon using the optimized porous coating in a Mach 6 flat-plate flow.

Nomenclature

A = porous layer admittance
Ar = cavity aspect ratio; 2b∕H
b = cavity half-width
facs = normalized acoustic frequency; fH∕aw
H = thickness of porous layer
R = reflection coefficient
T = temperature
t = time
x, y = streamwise and normal directions
ρ = density
ϕ = porosity, 2b∕s
ω = angular frequency

Subscripts

c = waves in the cavity
i = incident waves
r = diffracted waves
w = parameters at the wall
∞ = freestream

I. Introduction

VARIOUS techniques have been developed to prevent or delay
hypersonic boundary-layer transition [1–3]. One of the most

promising control technologies is the passive porous coating concept

proposed by Fedorov et al. [4] because of its minimal effect on mean
flow and the effective suppression of the most unstable boundary-
layer instability: namely, the Mack second mode [5–7]. The effect of
a porous coating on the hypersonic boundary layer can be either
theoretically interpreted by the porous boundary condition of vertical
velocity at the wall (v 0

w � Ap 0
w [4,8]) or numerically investigated by

directly resolving the flowfield within the microstructures [9–11].
The first method is more convenient when we focus on the influences
of the geometry parameters of microstructures without the need to
modify the computational mesh. The admittance A is a complex
quantity that depends on the properties of the wall material, porosity
parameters, mean flow characteristics at the wall surface, and flow-
perturbation parameters such as wave frequency and wavelength.
The equation for admittance is derived by applying the theory of
sound wave propagation in a thin, long tube [12]. Although this
theoretical model, hereinafter called Fedorov’s model, has been
widely applied (see recent works in Refs. [13–15]), it does not take
into account the high-order diffractedwaves, and thus underestimates
the coupling among adjacent cavities as well as their contribution to
the overall admittance [16–18]. This simplification is considered to
be responsible for the low-frequency shift of the reflection curves
[14,19]. The design of this porous coating device and its integration
with thermal protection systems require the development of accurate
models of the effect of the porous coating. In particular, further
optimization requires frequency matching between the most
amplified Mack second-mode instability wave and the minimum
reflection property of microstructures.
In the present study, we improve the porous coating model by

considering high-order diffracted waves when the acoustic
disturbance penetrates the porous surface. In this way, the scattering
and coupling effect ismore carefully taken into account. Based on the
proposed model, a straightforward optimization procedure is
introduced to maximize the absorption of the porous layer.

II. Theoretical Model and Optimization

As shown in Fig. 1, the porous surface is a rigid surface
periodically corrugated with subwavelength grooves (two-dimen-
sional cavities) being infinitely extended in the x direction. The
background medium is assumed to have uniform and constant
density ρw and sound speed cw. The subscript w denotes the local
physical quantity at thewall. The half-width and depth of the cavities
are b and H, respectively, with the unit-cell period being s. The
porosity and aspect ratio are ϕ � 2b∕s and Ar � 2b∕H,
respectively. These definitions are in accordance with previous
research [14,19].

Received 7 March 2018; revision received 9 May 2018; accepted for
publication 19 May 2018; published online 16 July 2018. Copyright © 2018
by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the ISSN 0001-1452
(print) or 1533-385X (online) to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Assistant Professor, School of Aerospace Engineering and Research
Assistant,Department ofMechanical Engineering; alsoHongKongPolytechnic
University, Kowloon, Hong Kong Special Administrative Region.

†Ph.D. Candidate, Department of Mechanical Engineering, Hong Kong
Special Administrative Region.

‡Professor, Department of Mechanical Engineering, Hong Kong Special
Administrative Region; cywen@polyu. edu.hk. Associate Fellow AIAA
(Corresponding Author).

§Assistant Professor, Department of Mechanical Engineering, Hong Kong
Special Administrative Region.

¶Professor, Department of Mechanical Engineering, Hong Kong Special
Administrative Region.

2942

AIAA JOURNAL
Vol. 56, No. 8, August 2018

D
ow

nl
oa

de
d 

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
A

ug
us

t 1
2,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
72

72
 

http://dx.doi.org/10.2514/1.J057272
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J057272&domain=pdf&date_stamp=2018-07-17


The acoustic field and the surface admittance of such textured
surface can be analytically obtained in the plane wave expansion
method [16–18]. An obliquely incident plane acoustic wave can be
written as (the time dependence e−jωt is omitted for simplicity)

pi � ejkxxe−jkyy;

vy;i �
1

jωρw

∂pi

∂y
� −

ky
ρwω

ejkxxe−jkyy (1)

where pi is the incident pressure, vy;i is the y component of the
particle velocity, and j � ������

−1
p

. Note that kx is the parallel
momentum and ky � �k20 − k2x�1∕2 is the perpendicular momentum,
in which k0 � ω∕cw is the wave number with ω being the angular
frequency. The reflected pressure field pn

r and y-component particle
velocity vny;r of the nth-order diffracted wave are expressed as

p�n�
r � Rne

jk�n�x xejk
�n�
y y;

v�n�y;r � k�n�y

ρwω
Rne

jk�n�x xejk
�n�
y y (2)

where k�n�x � kx � 2πn∕s, k�n�y � �k20 − �k�n�x �2�1∕2, n ∈ Z, and Rn is
the reflection coefficient of the nth-order diffraction. Inside the
cavities, the fundamental wave mode dominates for a long
wavelength limit (2b ≪ λacs, where λacs is the wavelength of the
incident acoustic wave), and the sound pressure and particle velocity
within the cavity are denoted as

pc � C1e
jkcy � C2e

−jkcy;

vy;c �
kc
~ρω

�C1e
jkcy − C2e

−jkcy� (3)

where the dynamic density ~ρ, compressibility ~C, and wave number kc
are complex and frequency-dependent quantities owing to the
thermal and viscous boundary layers inside the narrow cavity:

~ρ � ρw∕Ψν; ~C � γ − �γ − 1�Ψt

ρwc
2
w

;

k2c � ω2 ~ρ ~C � k20
γ − �γ − 1�Ψt

Ψv

(4)

Here, Ψi � 1 − tan�kib�∕kib with

k2i �

8>><
>>:

k2v � jω
ρw
μ

viscouswave number

k2t � jω
ρwCp

κ
thermal wave number

The subscript i is either v or t to denote the effects of viscous or

thermal boundary layers, respectively. In the aforementioned

equations, κ is thermal conductivity, μ is viscosity, and γ � Cp∕Cv is

the ratio of the specific heat at constant pressureCp to specific heat at

constant volume Cv.
The bottom of the cavity is rigid (vy;cjy�−H � 0); thus,

C1 � C2e
2jkcH ≡ Ce2jkcH . At the interface between the upper half-

space and the cavity opening mouth, the sound pressure should be

continuous:

1

2b

Z
x�b

x�−b

�
ejkxx �

X�∞

n�−∞
Rne

jk�n�x x

�
dx � C�1� e2jkcH� (5)

Equation (5) is then deduced as

X�∞

n�−∞
�δn;0 � Rn�Sn � C�1� e2jkcH� (6)

where

Sn � �2b�−1
Z

b

−b
ejk

�n�
x x dx � sinc�k�n�x b�

is the overlap integral between the nth-order diffracted mode and the

fundamental mode inside the cavity, and δn;0 is the Kronecker delta
function defined as δn;0 � 1 for n � 0 and δn;0 � 0 otherwise.
As for the requirement of the continuous particle velocity vy at the

interface, one may further obtain

−
ky
ρwω

ejkxx �
X�∞

n�−∞

k�n�y

ρwω
Rne

jk�n�x x

�

8><
>:

kc
~ρω

C�e2jkcH − 1�; x ∈ �−b; b�
0; x ∈= �−b; b�

(7)

Multiplying Eq. (7) by e−jk
�r�
x x (r ∈ Z) and averaging over the unit-

cell area, we have

Rr � δr;0 − C�1 − e2jkcH�ϕ ρwkc

~ρk�r�y

Sr (8)

Substituting Eq. (8) into pressure continuity condition (6) yields

2S0 − C�1 − e2jkcH�ϕ2
ρw
~ρ

X�∞

r�−∞

kc

k�r�y

S2r � C�1� e2jkcH� (9)

The coefficient C can be determined from Eq. (9) and is then

substituted into Eq. (8). The reflection coefficients of Eq. (9) are

determined to be

Rn � δn;0 �
2j tan�kcH�ϕ�ρw∕ ~ρ�Sn�kc∕k�n�y �

1 − j tan�kcH�ϕ�ρw∕ ~ρ�
P�∞

r�−∞�kc∕k�r�y �S2r
(10)

For second-mode instability waves, normal incidence may be

hypothesized, i.e., kx � 0 and ky � k0 [19]. As a result, the

formulations of vi, pi and v
�n�
r , p�n�

r are greatly simplified. Assuming

that the periodicity s ≪ λacs, the effective admittance A can be

derived as

A � v

p

����
y�0

� s−1
R s∕2
−s∕2�vi �

P�∞
n�−∞ v�n�r �jy�0 dx

s−1
R s∕2
−s∕2�pi �

P�∞
n�−∞ p�n�

r �jy�0 dx
�

R s∕2
−s∕2

�
−�k0∕ρwω� �

P�∞
n�−∞�

������������������������������
k20 − �2πn∕d�2

p
∕ρwω�Rne

j�2πn∕s�x
�
dxR s∕2

−s∕2 �1�
P�∞

n�−∞ Rne
j�2πn∕s�x� dx

� �k0∕ρwω�
R s∕2
−s∕2�R0 − 1� dxR s∕2

−s∕2�R0 � 1� dx
� 1

ρwcw

R0 − 1

R0 � 1
(11)

Fig. 1 Schematic drawing of reflection of acoustic waves from equally
spaced two-dimensional cavities.
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where the reflection coefficient of the zero-order diffraction (specular
refraction) is

R0 � 1� 2j tan�kcH�ϕ�ρw∕ ~ρ�kc∕k0
1 − j tan�kcH�ϕ�ρw∕ ~ρ�

P�∞
r�−∞

kc�������������������
k2
0
−�2πr∕s�2

p S2r
(12)

Note that all higher-order diffracted modes are evanescent and
cannot radiate to the far field for normal incidence at low
frequencies (s∕λacs ≤ 1).
Fedorov’s model is first calculated for an isolated deep cavity and

then multiplied by porosity ϕ to treat the structured surface as a
homogenous surface of uniform effective acoustic admittance [4].
Therefore, the diffracted waves coming from the opening mouth are
not considered. To evaluate the overall effect when a plane wave
penetrates a porous surface, the present model considers an infinite
array of grooves. Because higher-order diffractedmodes are included
in the derivation, the mutual coupling between disturbances from
neighboring cavities is taken into account. In particular, if we neglect
all higher-order modes and let the porosityϕ approach zero (the local
oscillation inside each cavity is independent), Eq. (12) reduces to
Fedorov’s model [12,14]:

A � ϕ

Zc

j tan�kcH� (13)

where Zc � ~ρω∕kc is the characteristic impedance inside the cavity.
Figure 2 shows the reflection coefficients of plane monochromatic

ultrasonic waves penetrating a porous surface in a quiescent and
uniform-temperature atmosphere, with the two aforementioned
theoretical models, the numerical results of Brès et al. [14], and by a
finite element solver (COMSOL Multiphysics®). The porous
parameters are taken from Brès et al. [14], and they are listed as a
combination of Ar � 0.12 and 0.3 and ϕ � 0.2, 0.48, and 0.8. It
should be noted that some of the high-order diffractedmodes become
propagative, and thus radiate into the propagatingmode in free space,
when s∕λacs > 1 [16]. The specular reflection is obfuscated with
high-order diffractions in the upper half-space and cannot be
separated from the superposed sound field in our full-wave
simulation byCOMSOL. Therefore, we do not provide the datawhen
facs > 0.67, i.e., s∕λacs > 1 for the case in Fig. 2a. Here, facs �

fH∕cw � H∕λacs is the normalized incidence-wave frequency [14],
andH∕s � ϕ∕Ar � 0.67 for the case in Fig. 2a. Also, wewould like
to emphasize that s∕λacs � 1 is a reasonable upper limit of the
theoretical model. Actually, the numerical results of Brès et al. [14]
were also cut off before facs � 0.67 for the case in Fig. 2a, but they
declared the calculation was strongly affected by the presence of a
resonant acoustic mode of frequency fres � ϕ∕Ar [20]. In addition,
they only showed the results before fres∕2 for the case in Fig. 2b, and
they attributed the reason to the first subharmonic mode [20].
Nevertheless, the influences of the first subharmonic mode were not
observed in other cases. For all cases, the predictions of the proposed
model basically coincidedwith the numerical results fromCOMSOL
and Brès et al. [14], even at high frequency when the wavelength λacs
decreased to the same order of magnitude as s and the interaction of
the scattered waves at the porous surface became strong: for instance,
at facs � 0.67 in Fig. 2a, when the ratio s∕λacs approaches unity.
Comparatively, Fedorov’s model tends to shift the predicted
frequency because it neglects the higher-order diffracted modes.
Despite the homogenous hypothesis of s ≪ λacs for both theoretical
models, the present model shows the advantage of predicting results
that are consistentwith numerical results up to the limit s∕λacs � 1. In
particular, when s∕λacs � 1, a coupling acoustic mode is reportedly
induced by the interaction of waves scattered from adjacent cavities
[14,20] and greatly decreases the absorption of the porous coating.
This coupling mode is well reproduced by the proposed model, with
the predicted jRj approaching unity. For further illustration, we
calculate the distributions of jRj as a function of porosityϕ at constant
Ar � 0.3. As shown in Fig. 3, the maximum jRj appears along the
diagonal (dashed line) of the contour plot, where the incident-wave
frequency facs approaches ϕ∕Ar. This observation is exactly the
same expression of coupling frequency fres advocated by Brès et al.
based on direct numerical simulation [14,19,20]. Additionally, when
the incident-wave frequency is much lower than fres, both
aforementioned theoretical models give results that are consistent
with numerical results (Fig. 2d). Moreover, Fig. 3 shows that the
minimum jRj can be achieved by optimizing the cavity-shape
parameters. Brès et al. [19] deduced an expression of optimum cavity
depth to ensure the phase opposition between the reflection from the
solid wall and from the porous surface. However, R is a nonlinear
function of the porosity parameters and flow quantities [Eq. (13)].
A numerical solution seems to be an effective way to obtain the

facs

facs facs

facs

|R
|

|R
|

|R
|

|R
|

0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5

0 0.25 0.5 0.75 1 1.25 1.50 0.25 0.5 0.75 1 1.25 1.5

0

0.2

0.4

0.6

0.8

1

a) Ar = 0.3, φ = 0.2

c) Ar = 0.3, φ = 0.48 d) Ar = 0.3, φ = 0.8

1

b) Ar = 0.12, φ = 0.2

0

0 .2

0 .4

0 .6

0 .8

1

0

0 .2

0 .4

0 .6

0 .8

1

0

0 .2

0 .4

0 .6

0 .8

1

Fig. 2 Reflection coefficient amplitudes obtained from COMSOL (squares), Brès et al. [14] (triangle), Fedorov’s model (dashed line), and proposed
model (solid line).
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minimum |R| by applying triple program loops in the following order:

loop 1 is 0.2 ≤ ϕ ≤ 0.8, loop 2 is 0.06 ≤ Ar ≤ 0.3, and loop 3 is

0 < facs < min�ϕ∕Ar; 2.0�. These parameters span the range of

interest for practical applications [14] and ensure the accuracy of the

proposed model.
To confirm the proposed optimization strategy, we numerically

study the stabilization problem of a hypersonic flow along a two-

dimensional (2-D) flat plate at a zero angle of attack (Fig. 4). The

freestream flow conditions are the same as in the experiment of

Bountin et al. [21]:Mach numberMa∞ � 6.0, unit Reynolds number

Re∞ � 10.5 × 106 m−1, and temperature T∞ � 43.18 K. The wall
is isothermal with a temperature of Tw � 293 K. The numerical

method and code validation are available in Ref. [22]. An unsteady

disturbance is introduced at the beginning of the plate by a slot of

periodic suction-blowing at the fixed frequency of 138.74 kHz. The
porous coating covers the second half of the plate, and its effect is

modeled by the boundary condition v 0
w � Ap 0

w at the wall. Because

the sound speed cw is determined by Tw, the remaining input flow

parameter for Eq. (13) is ρw. In this case, we use the value of ρw at

x∕Lref � 0.75, and the optimized shape parameters are ϕ � 0.66,
Ar � 0.28, and facs � 0.67. With these shape parameters, the

streamwise minimum jRj is 3.4 × 10−5 at x∕Lref � 0.75, and the

maximum jRj is 2.9 × 10−3 at x∕Lref � 0.5. For comparison,

the performance of a conventional porous coating [14]with relatively

deep cavities (ϕ � 0.66, Ar � 0.1, and facs � 1.87) is also

presented.
Figure 5 shows the instantaneous contours of fluctuating pressure,

and Fig. 6 compares the amplitude distributions of fluctuating

pressure for the three cases. Here, the fluctuating pressure p is

normalized by ρ∞u
2
∞, and ρ∞ and u∞ are the freestream density and

velocity, respectively. According to Ref. [22], theMack secondmode

dominates along the second half of the plate. Taking the baseline case

as an example (Fig. 5a), two-cell structures form downstream

(x∕Lref > 0.5) with a longitudinal wavelength equal to approx-

imately twice the boundary-layer thickness, which corresponds to the

typicalMack second-mode structure [23]. Upon installing the porous

coating, theMack secondmode is strongly suppressed, especially for

the optimized case (Fig. 5b).Notably, upstreamof the porous coating,

the strong oscillations in Fig. 6 result from the coexistence ofmultiple
waves (includingmodeF andmodeSof acousticwaves, and entropy/
vorticity waves) in the boundary layer [13,22]. Compared with the
baseline case and the conventional porous coating, the maximum
fluctuating pressure for the optimized case decreases by 88 and
30%, respectively. Also, the optimized shallow cavity is easier to
manufacture. For the second mode wave packets having a frequency
band between 88.28 and 176.58 kHz (referred to in Ref. [21]), the

Fig. 3 Contours of reflection coefficient amplitude obtained from
proposed theoretical model.

Slot of 2-D wall disturbance 

y

x

Oblique shock

Porous coating

Boundary layerMa∞ = 6

Fig. 4 Schematic drawing of problem formulation. Porous coating is at
0.5 ≤ x∕Lref ≤ 1.0, and Lref � 0.2 m is the reference length.

Fig. 5 Instantaneous fluctuating pressure fields for a) baseline case
without porous coating, b) optimized one, and c) conventional one.

|p
'|

x/Lref

0 0.2 0.4 0.6 0.8 1

10-3

10-4

10-5

10-6

Solid wall
Porous: optimization
Porous: convention

Fig. 6 Amplitude distributions of pressure perturbation along the wall.

f, kHz

|R
|

90 100 110 120 130 140 150 160 170
0

0.1

0.2

0.3

0.4

0.5
Porous: optimization

Porous: convention

124.5 153.8

Fig. 7 Calculated reflection coefficients for different disturbance
frequencies calculated by the proposedmodel (line) and Fedorov’smodel
(symbols).
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calculated jRj of the optimized porous coating varies more obviously
than those of the conventional one, and its advantage can only be
found in a narrow frequency band between 124.5 and 153.8 kHz
(Fig. 7). It suggests a porous coating consisting of varied-depth
cavities, such as a gradient coating [18], will be a potential candidate
to suppress the disturbance with broadband frequencies. Once again,
the Fedorov’s model shifted the predicted frequency at the optimized
shape parameters because it neglects the higher-order diffracted
modes (Fig. 7).

III. Conclusions

In conclusion, an improved theoretical model describing how a
porous coating affects the control of the hypersonic boundary-layer
transition is proposed herein, taking into account the higher-order
diffractionwaves generated at the porous surface. Comparedwith the
results of Fedorov’s model, the reflection frequency predicted by the
proposed model is consistent with numerical data and reproduces
the coupling mode between adjacent cavities. Additionally, a
straightforward optimization strategy involving program loops is
introduced. The Mack second mode is strongly suppressed by the
optimized porous coating, with the maximum fluctuating pressure
decreasing by about 88%. For the second-modewave packets having
a frequency band, an optimized porous coating with varied-depth
cavities will be explored in a future study. This work also indicates
that similar theoretical models could be developed to describe porous
coatings with pores or cavities of different cross sections.
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