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Identification of Cascade Dynamic Nonlinear
Systems: A Bargaining-Game-

Theory-Based Approach
Zhenlong Xiao , Member, IEEE, Shengbo Shan, and Li Cheng

Abstract—Cascade dynamic nonlinear systems can describe a
wide class of engineering problems, but little efforts have been
devoted to the identification of such systems so far. One of the dif-
ficulties comes from its non-convex characteristic. In this paper,
the identification of a general cascade dynamic nonlinear system
is rearranged and transformed into a convex problem involving a
double-input single-output nonlinear system. In order to limit the
estimate error at the frequencies of interest and to overcome the
singularity problem incurred in the least-square-based methods,
the identification problem is, thereafter, decomposed into a multi-
objective optimization problem, in which the objective functions
are defined in terms of the spectra of the unbiased error function
at the frequencies of interest and are expressed as a first-order poly-
nomial of the model parameters to be identified. The coefficients
of the first-order polynomial are derived in an explicit expression
involving the system input and the measured noised output. To
tackle the convergence performance of the multi-objective opti-
mization problem, the bargaining game theory is used to model
the interactions and the competitions among multiple objectives
defined at the frequencies of interest. Using the game-theory-based
approach, both the global information and the local information
are taken into account in the optimization, which leads to an ob-
vious improvement of the convergence performance. Numerical
studies demonstrate that the proposed bargaining-game-theory-
based algorithm is effective and efficient for the multi-objective
optimization problem, and so is the identification of the cascade
dynamic nonlinear systems.

Index Terms—Cascade dynamic nonlinear systems, game the-
ory, system identification, frequency domain.
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I. INTRODUCTION

THE signal processing for nonlinear feature extractions in
nonlinear systems attracts increasing attentions due to its

significant application value in many engineering problems. For
example, nonlinear characteristics (e.g., the second-order or the
third-order harmonics) of Lamb waves can be used for struc-
tural health monitoring applications [1], [2]. In such systems, in
addition to the damage-induced nonlinear components, nonlin-
earities can also be generated from other constituents of the sys-
tem (which can be regarded as subsystems) such as transducers,
bonding layers as well as measurement devices. Although some
of the nonlinear components, e.g., power-amplifier and trans-
ducer nonlinearities, can be apprehended using pre-distortion
techniques [3], [4], the handling of other components from the
physical system itself is difficult to be apprehended. For ex-
ample, the bonding-layer nonlinearity and the damage-induced
nonlinearity. Moreover, due to the existence of the system damp-
ing, the corresponding subsystems behave like dynamic nonlin-
ear systems, in which the past inputs and/or the past outputs
intervene in the nonlinear systems. Such system can therefore
be modeled as a general cascade dynamic nonlinear system [2],
which is the model under the consideration in this paper.

Pioneering works in nonlinear system identification have been
largely devoted to the Wiener model (linear-nonlinear system)
[5]–[10] and the Hammerstein model (nonlinear-linear model)
[11], [12]. The Hammerstein-Wiener model can deal with a
cascade nonlinear system involving nonlinear-linear-nonlinear
combinations, in which both nonlinear subsystems are static
nonlinear. In this paper, we will investigate the cascade of
two dynamic nonlinear systems. Existing techniques based on
the Hammerstein-Wiener model, such as the iterative method
[13], [14], the maximum-likelihood method [15], the over-
parametrization method [16], [17], the biconvex based method
[18], and the frequency domain method [19] cannot be directly
applied to the identification of the cascade dynamic nonlinear
systems.

Despite its wide application value in representing a large class
of physical problems, cascade dynamic nonlinear systems have
received little attention as far as the identification is concerned.
One of the fundamental problems is that the identification prob-
lem is inherently non-convex. As an example, the input back-
lash nonlinearity and the output static nonlinearity were first
identified together and then separated via the Kozen-Landau
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decomposition algorithm [20], [21]. In [22], [23], an odd non-
linearity was assumed for the input system, and in [24]–[26]
an iterative gradient based approach was proposed. The non-
convex characteristic has been shown to lead to problems like
the local minimum.

Note that some of the nonlinear features needed to be de-
scribed in the frequency domain, exemplified by the second-
order harmonics and the third-order harmonics for power ampli-
fiers [11] and structural health monitoring problems [2]. There-
fore, it is desirable that the identification of the cascade dynamic
nonlinear systems be conducted in the frequency domain such
that the nonlinear features can be directly captured with the
estimate error being guaranteed at the frequencies of interest.
In this way, the nonlinear cost function (error function) can be
defined and optimized directly in the frequency domain, which
is more straightforward and more accurate to study the har-
monics based features when compared with the indirect time-
domain approach. The latter requires the identification in the
time domain first and thereafter uses the fast Fourier transfor-
mation. The whole process contributes to a global estimate error
which can be obtained. The error at the frequencies of interest,
however, cannot be guaranteed. To tackle this problem, some
previous attempts were made to conduct the frequency-domain
based identification of cascade nonlinear systems. For example,
the best linear approximation (BLA) method was proposed for
the identification of the Wiener model [27], the Hammerstein
model [28], [29], and the Wiener-Hammerstein model [30] in
the frequency domain. BLA, however, fails in the identification
of the cascade dynamic nonlinear systems because the Buss-
gang theorem does not hold for dynamic nonlinearities [31].
The Volterra series based frequency-domain method is a power-
ful tool for dynamic nonlinear systems [32]–[35] (e.g., nonlinear
ordinary differential equations (NODE) and nonlinear autore-
gressive with exogenous input (NARX) model) under the con-
vergence conditions [33], [36]–[38]. The generalized frequency
response function [39], [40] and the output spectrum function
were studied [41]. Thereafter, the characteristic relationship be-
tween the output spectrum and the parameters of interest was
investigated [42]–[45]. However, very few efforts have been de-
voted to the identification of cascade nonlinear systems using
Volterra series based frequency-domain method.

The objective of the present work is to investigate the iden-
tification of a general cascade dynamic nonlinear system in
frequency domain. Firstly, to tackle the non-convex character-
istic, a cascade dynamic nonlinear system is rearranged, and
the estimate error function of the identification problem is cast
into a double-input single-output (DISO) nonlinear function. In
this way, the identification problem is transformed into a convex
problem. Secondly, in order to guarantee the estimate error at
each frequency of interest, the identification problem is decom-
posed into a set of sub-problems that are defined at the same
frequency. The identification problem then becomes a multi-
objective optimization one. Although the convex characteristic
holds in the decomposition of the multi-objective problem, an
effective and efficient algorithm is not straightforward. Despite
the success of the gradient descent method, Newton method,
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the

Levenberg-Marquardt (LM) algorithm in dealing with single-
objective optimization problems, for the multi-objective case,
the ‘jump’ phenomenon may exist between two consecutive
iterations, which would be more obvious especially when the
number of sub-problems is large, and therefore would deterio-
rate the convergence performance of the identification. Although
evolution algorithms, for example, the genetic algorithm and the
simulated annealing algorithm, are in principle applicable to this
multi-objective optimization problem, potential limitations ex-
ist to hamper their practical implementation. For example, the
adjustment of the parameters (e.g., the commute rate for GA)
may depend on the experience, and the local search performance
needs to be improved because the feedback information of the
current candidate solution is not full employed for generating the
new candidate solutions. To tackle these problems, the present
work makes use of the bargaining game theory to model the
interactions and competitions among various sub-problems in
the multi-objective optimization. The sub-problems defined at
the frequencies of interest can determine their own strategies
according to the preceding competition result. The bargaining
game theory based algorithm (BGTA) employs both the global
and the local information in the multi-objective optimization
process, therefore would greatly improve the convergence per-
formance.

The contributions of this paper are summarized as follows: 1)
To transform the non-convex problem into a convex problem,
the cascade dynamic nonlinear systems are rearranged, allow-
ing the identification problem to be modeled as a DISO Volterra
system. Note that both of the two sub-systems are dynamic
nonlinear; 2) To guarantee the estimate error at the frequen-
cies of interest, the identification problem is decomposed into a
multi-objective optimization problem; the unbiased error func-
tion is given, and the spectrum of the unbiased error function is
demonstrated to be a first-order polynomial of the model param-
eters of the cascade dynamic nonlinear systems to be identified,
such characteristic relationship will greatly facilitate the multi-
objective optimization in the frequency domain; 3) To develop
an effective and efficient algorithm for the multi-objective opti-
mization problem, bargaining game theory is employed to model
the interactions and competitions among various sub-problems,
which would greatly improve the convergence performance of
the multi-objective optimization problem.

The remaining part of the paper is arranged as follows: In
Section II, the model under the consideration and the identifi-
cation problem are formulated. In Section III, the bargaining
game theory based identification of the cascade dynamic non-
linear systems is proposed. Numerical results and discussions
are presented in Section IV. Finally, conclusions are presented
in Section V.

II. MODEL UNDER THE CONSIDERATION AND

PROBLEM FORMULATION

A. Model Under the Consideration

Volterra model was widely reported in the literature to char-
acterize a dynamic nonlinear system. Here we study a cas-
cade dynamic nonlinear system as the cascade of two Volterra
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Fig. 1. Cascade dynamic nonlinear systems. (a) is a straightforward model of
a cascade dynamic nonlinear system, (b) is an intermediate transformation of
model (a), and (c) is the model under the consideration, which is a rearranged
model of (a).

models as shown in Fig. 1(a), in which f(u) and h(x) are given
as polynomial nonlinearities

x(k) = f(u) =
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

�

c i(n1 , . . . , ni)

× u(k − n1) · · ·u(k − ni) (1)

and

y(k) = h(x) =
Ih∑

i=1

∑

0≤n1 ≤···≤ni ≤Nh

c̃i(n1 , . . . , ni)

× x(k − n1) · · ·x(k − ni), (2)

where x(k) is an unmeasurable intermediate variable, u(k) and
y(k) are the system input and output, respectively. n1 , . . . , ni

are the difference orders with the maximum order Nf and Nh ,
and i is the nonlinear order with the maximum order If and
Ih , respectively.

�

c i(·) and c̃i(·) are the nonlinear parameters
of model (1) and (2). Denote x = [x(k), . . . , x(k − N)] and
y = [y(k), . . . , y(k − N)].

By substituting x(k) in (1) into sub-system (2), it is obvious
that the identification of the cascade dynamic nonlinear system
shown in Fig. 1(a) turns into the optimization of a polynomial

up to (Ih + 1)-th order (i.e., c̃i(·)�

c
Ih

i (·)), which is a non-convex
problem. Therefore, the parameters

�

c i(·) and c̃i(·) cannot be
uniquely determined. To overcome the non-convex characteris-
tic, we split sub-system (2) into two parts as

h(x) = x(k) + h̃(x). (3)

Given a h̃(x), we can construct a nonlinear autoregressive
exogenous (NARX) model

h̃(x) + g̃(x,y) =
Ig∑

p̃=1

∑

0≤n1 ≤···≤np̃ ≤N

d̃p̃,0(n1 , . . . , np̃)

p̃∏

s=1

x(k − ns) +
Ig∑

i=1,q≥1
p̃+q=i

∑

0≤n1 ≤···≤np̃ ≤N
0≤np̃ + 1 ≤···≤ni ≤N

d̃p̃,q (n1 , . . . , np̃+q )

p̃∏

s=1

x(k − ns)
p̃+q∏

s= p̃+1

y(k − ns) =
Ig∑

i=1
p̃+q=i

∑

0≤n1 ≤···≤np̃ ≤N
0≤np̃ + 1 ≤···≤ni ≤N

d̃p̃,q (n1 , . . . , np̃+q )
p̃∏

s=1

x(k − ns)
p̃+q∏

s= p̃+1

y(k − ns) (4)

such that
∥∥∥h̃(x) + g̃(x,y)

∥∥∥ = ‖e(x,y)‖ → 0 (5)

holds under certain norm ‖ · ‖ with appropriate nonlinear or-
der Ig and difference order N . d̃p̃,q (n1 , . . . , np̃+q ) is the
nonlinear parameter of the corresponding nonlinear term∏p̃

s=1 x(k − ns)
∏p̃+q

s= p̃+1 y(k − ns), p̃ and q are the nonlin-
ear orders of the input x and output y, respectively. Denote∏i

s=i+1 (·) = 1, and

d̃p̃,0(n1 , . . . , np̃) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c̃1(0) − 1, p̃ = 1, n1 = 0,

c̃i(n1 , . . . , ni), 1 ≤ p̃ = i ≤ Ih , 0 ≤ n1 , . . . , ni ≤ Nh,

except p̃ = 1, n1 = 0,

0, others.
(6)

From (4) and (5), h̃(x) can be approximated by −g̃(x,y),
which can be denoted as h̃(x) = −g̃(x,y). Therefore, h(x) =
x(k) − g̃(x,y) holds. Fig. 1(a) can then be converted to
Fig. 1(b). But the unmeasurable intermediate variable x still
exists in the model. Substitute x into g̃(x,y),

g̃(u,y) = g̃(x,y) =
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

×
�

dp,q (n1 , . . . , np+q )

×
p∏

s=1

u(k − ns)
p+q∏

s=p+1

y(k − ns), (7)
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where

�

dp,q (n1 , . . . , np+q ) =
p∑

p̃=1
d̃p̃,q (n1 , . . . , np̃+q )

× ∑
i1 + ···+ip̃ =p

p̃∏
s=1

�

c is
(ns1 , . . . , nsis

).
(8)

Denote the difference order of parameter d̃p̃,q (·) in (8) as

ñ1 = n1 , . . . , ñp̃ = np̃ , then n1 , . . . , np in
�

dp,q (·) is the ascend-
ing sorting of {n11 + ñ1 , n12 + ñ1 , . . . , n1i1 + ñ1 , . . . ,np̃1 +
ñp̃ , np̃2 + ñp̃ , . . . , np̃ip̃

+ ñp̃}.
Substitute (1) and (7) into model Fig. 1(b), the following

equation can be obtained:

y(k) = x(k) − g̃(x,y) = x(k) − g̃(u,y)

=
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

�

c i(n1 , . . . , ni)u(k − n1) · · ·u(k − ni)

−
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

�

dp,q (n1 , . . . , np+q )

×
p∏

s=1

u(k − ns)
p+q∏

s=p+1

y(k − ns). (9)

Moving y(k) in (9) from the left-hand side to the right-hand

side, the corresponding parameter is −(
�

d0,1(0) + 1). Note that
multiplying a non-zero constant onto both sides of the equation
will not make any difference for identifying (9), which is the
so-called scale deflection problem [18], [46], [47]. To avoid the
scale deflection, we assume that the parameter of y(k) in (9) is

non-zero, i.e., −(
�

d0,1(0) + 1) �= 0. Multiplying both sides of

(9) by a constant 1/(
�

d0,1(0) + 1), the model Fig. 1(c) can be
obtained as

fs(x) + g(u,y) − y(k)

=
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)u(k − n1) · · ·u(k − ni)

+
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

dp,q (n1 , . . . , np+q )

×
p∏

s=1

u(k − ns)
p+q∏

s=p+1

y(k − ns) = 0, (10)

ỹ(k) = y(k) + v(k), (11)

where

ci(n1 , . . . , ni) =
�

c i(n1 , . . . , ni)(�

d0,1(0) + 1
) , (12)

dp,q (n1 , . . . , ni) =

⎧
⎪⎨

⎪⎩

−
�

d p , q (n1 ,...,n i )(
�

d 0 , 1 (0)+1
) , q ≥ 1,

0, q = 0,

(13)

and obviously,

d0,1(0) = −1. (14)

v(k) is the Gaussian white noise with zero mean and variance
σ2 . y(k) and ỹ(k) are the outputs without noise and with noise,
respectively. Obviously,

xs(k) = fs(x) =
x(k)(�

d0,1(0) + 1
) (15)

and

g(u,y) = − g̃(x,y) − y(k)(�

d0,1(0) + 1
) + y(k). (16)

Remark 1: Given the cascade dynamic nonlinear model
shown in Fig. 1(a), there exists an equivalent model shown in
Fig. 1(c) that can be described by (10)–(14), which is the model
under the consideration in this paper.

Remark 2: If the model in Fig. 1(a) is simply identified via
a high-order Volterra model, the individual sub-system in the
cascade cannot be uniquely and accurately determined because
the identification is a non-convex problem. With the transfor-
mation from Fig. 1(a) to Fig. 1(c), once the model (10)–(14)
is identified, the first sub-system can be obtained as fs(u) =∑If

i=1
∑

0≤n1 ≤···≤ni ≤Nf
ci(n1 , . . . , ni)

∏i
j=1 u(k − nj ), and

the second sub-system can be modeled by (10), i.e., y(k) =
xs(k) + g(u,y) = x(k) − g̃(x,y) = h(x).

Remark 3: If we only consider the identification of model
(10)–(14) without the transformation from Fig. 1(a) to Fig. 1(c),
the two nonlinear sub-systems, f(u) and h(x), cannot be
uniquely estimated either, and only the general Volterra model
(10) can be obtained.

Assumption 1: A multi-frequency excitation, i.e.,

u(k) =
Q∑

q=1

Aq sin(ωqk + χq ) (17)

is assumed, where Aq , ωq , χq are the amplitude, the frequency,
and the phase for the q-th sinusoidal input, respectively. As
assumed after (14), the noise satisfies v(k) ∼ N(0, σ2).

B. Identification of Cascade Dynamic Nonlinear Systems

Given the model (10)–(14), the identification of the cascade
dynamic nonlinear systems boils down to identifying the co-
efficients ci(·) and dp,q (·) from the given input u(k) and the
measurable output ỹ(k). The intermediate variable x(k) is un-
measurable. The identification problem can be expressed in time
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domain as

ε(k) =
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)u(k − n1) · · ·u

× (k − ni) +
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤np + q ≤N

× dp,q (n1 , . . . , np+q )
p∏

s=1

u(k − ns)
p+q∏

s=p+1

ỹ(k − ns),

(18)

arg min
θ

‖ε‖ , (19)

where θ = [c1(0), . . . , cIf
(Nf , . . . , Nf ), d0,1(0), . . . , d0,I (N,

. . . , N), . . . , dI ,0(N + Nf , . . . , N + Nf )] are the coefficients
to be identified, ε = [ε(k), . . . , ε(k − M)] with M the number
of observed errors, and ‖ · ‖ denotes a metric with a certain
norm. ỹ is the output with noise v.

Assumption 2: In this paper, we assume that the maximum
nonlinear order I and If, and the maximum difference order
N and Nf are known. The following work then focus on the
identification of the model parameters θ.

Remark 4: The identification of the cascade model presented
in Fig. 1(a) is non-convex, which may be solved using evo-
lution algorithms. However, the evolution algorithms may be
time-consuming, and the identification cannot be guaranteed to
achieve the global optimum. After rearranging the model to the
one shown in Fig. 1(c) and considering the identification prob-
lem (18), (19) as a DISO system with u and ỹ being the two
new inputs and the error function ε as the new output, the error
function (18) is linear in parameters, and therefore is a convex
function. The rearrangement of the cascade dynamic nonlinear
model from Fig. 1(a) to Fig. 1(c), therefore, transform the iden-
tification problem from a non-convex problem into a convex
problem.

Remark 5: The identification problem (18), (19) may be
solved with the least square method θ̂ = (ΘTΘ)−1ΘTε, which
could potentially become singular especially when the number
of parameters to be identified is large. Even when a global opti-
mum is obtained, if the nonlinear features are to be described in
the frequency domain and the estimate error at the frequencies
of interest needs to be quantified, the evolution algorithms and
the least square method can only provide the total estimate error
but cannot guarantee the errors at the frequencies of interest.
These motivate the present work to deal with the identification
problem (18), (19) in the frequency domain directly.

III. GAME THEORY BASED FREQUENCY DOMAIN

IDENTIFICATION APPROACH

In this section, the identification problem (18), (19) is dealt
with in the frequency domain. Firstly, the error function ε(k)
will be expressed as the output of a DISO nonlinear system,
and its output spectrum will be given as an explicit polyno-
mial function of the input spectra. Once the output spectrum of

ε(k) is obtained, the identification problem (18), (19) can be
conducted in the frequency domain by optimizing the output
spectra in the whole frequency range Ω. In this case, we need
to consider the output spectrum of error ε(k) at each frequency
of interest, then, the identification problem is converted into a
multi-objective optimization one. Note that the effective and
efficient handling of a multi-objective optimization problem is
not straightforward. To tackle this problem, the bargaining game
theory is employed to model the interactions and competitions
among the sub-problems defined at the frequencies of interest,
leading to the proposition of BGTA, conducive to the multi-
objective optimization problem.

A. Output Spectrum of the Error Function ε(·)
It is well-known that in a forward problem, i.e., from input

u(k) to intermediate variable x(k) and then the output y(k)
and noised output ỹ(k), the identification is unbiased because
the noise only exists in the output ỹ(k), and E(ỹ(k)) = y(k)
holds. Unfortunately, in model (18), the noise is involved in
the new input ỹ(k), and the identification becomes a biased
estimation. To tackle the problem, the bias of model (18) is given
firstly.

Theorem 1: The bias of model (18) is given as

δ(k) =
I∑

i=2,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

×
[
dp,q (n1 , . . . , np+q )

p∏

s=1

u(k − ns)
∑

j0 +j1 + ···+jl =q

×

⎛

⎜⎜⎝
j0∏

j=1

y(k − ni,j ) ×
l∏

s=1,
js is even,js ≥2

μ (js) σjs

⎞

⎟⎟⎠

⎤

⎥⎥⎦

(20)

and

j0∏

j=1

y(k − ni,j ) = E

⎛

⎝
j0∏

j=1

ỹ(k − ni,j )

⎞

⎠
∑

r0 +r1 + ···+rl =j0

−

⎛

⎜⎜⎝
r0∏

r=1

y(k − nj,r ) ×
l∏

s=1,
rs is even,rs ≥2

μ (js) σrs

⎞

⎟⎟⎠ , (21)

where σ is the standard derivation of the noise
v, and {{ni,1 , . . . , ni,j0 }, {ni,j0 +1 , . . . , ni,j0 +j1 }, . . . , {ni,j0

+ · · · + jl−1 + 1, . . . , ni,j0 + ···+jl
}} is a partition of the set

{np+1 , . . . , np+q} where ni,j0 +1 = · · · = ni,j0 +j1 , . . . , and
ni,j0 + ···+jl−1 +1 = · · · = ni,j0 + · · · + jl−1 + jl . j1 , . . . , jl are
even numbers larger than 2, and j0 + · · · + jl = q. Denote
{j0 , . . . , jl} a partition of set {n1 , . . . , ni}, the summation∑

j0 + ···+jl =q (·) stands for the sum of (·) on all partitions of

the set {np+1 , . . . , np+q},
∏0

j=1 (·) = 1, and

μ(js) = 1 × 3 × 5 × · · · × (js − 1). (22)
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It can be observed that (20) and (21) form a recursion cal-
culation because a high-order product

∏j0
j=1 (·) in (20) can be

recursively calculated using the low-order product
∏r0

r=1 (·) in
(21), i.e., j0 > r0 . The recursion terminates with the following
condition:

y(k − n2,1)y(k − n2,2) = E (ỹ(k − n2,1)ỹ(k − n2,2))

− E (v(k − n2,1)v(k − n2,2))

=

{
E (ỹ(k − n2,1)ỹ(k − n2,2)) , n2,1 �= n2,2 ,

E (ỹ(k − n2,1)ỹ(k − n2,2)) − σ2 , n2,1 = n2,2 .
(23)

Proof: For model (18), the following equation holds,

E (ε(k)) =
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)

× u(k − n1) · · ·u(k − ni) +
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

× dp,q (n1 , . . . , np+q )
p∏

s=1

u(k − ns)E

(
p+q∏

s=p+1

ỹ(k − ns)

)
,

(24)

where E(·) denotes the expectation of (·), and

E (ỹ(k − np+1) × · · · × ỹ(k − np+q ))

= E

{
p+q∏

s=p+1

[y(k − ns) + v(k − ns)]

}

=
p+q∏

s=p+1

y(k − ns) + E

(
p+q∏

s=p+1

v(k − ns)

)

+
∑

i1 +i2 =q

[
i1∏

s1 =1

y(k − ni,s1 ) × E

(
i2∏

s2 =1

v(k − ni,i1 +s2 )

)]
.

(25)

The problem then becomes the high-order moments of the
noise v(k), which can be given as [48]:

E(vs(k)) =

{
0 s is odd,

μ(s)σs s is even,
(26)

where μ(s) = 1 × 3 × · · · × (s − 1). Substituting (26) into
(25), and note that (10) holds, the bias δ(k) = E(ε(k)) can
be obtained.

Let q = j0 and p = 0, and substitute these two values into
(25), then (21) is straightforward. This completes the proof. �

Example 1: Given g̃ = d4(1, 1, 1, 1)ỹ(k − 1)4 . All the
partitions of the set {n1 , n2 , n3 , n4} can be given as
{{n1 , n2 , n3 , n4}}, {{n1 , n2}, {n3 , n4}}, {{n1 , n3}, {n2 , n4}},
{{n1 , n4}, {n2 , n3}}, {{n2 , n3}, {n1 , n4}}, {{n2 , n4}, {n1 , n3}},
and {{n3 , n4}, {n1 , n2}}. Then the bias can be obtained as
δ(k)=μ(4)σ4 + 6 × y(k − 1)2μ(2)σ2 =3σ4 +6y(k − 1)2σ2 .
Note that y(k − 1)2 = E(ỹ(k − 1)2) −σ2 holds. Therefore,
δ(k) = −3σ4 + 6E(ỹ(k − 1)2)σ2 .

Theorem 2: The spectrum of the expectation of the unbi-
ased error function E(ε(k) − δ(k)) can be given as a first-order
polynomial with respect to the parameters to be identified as

Ψ (ω) = F [E (ε(k)) − δ(k)]

=
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)ϕn1 ,...,n i
(ω)

+
I∑

i=1,p≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

dp,q (n1 , . . . , np+q )

× φn1 ,...,np + q
(ω) , (27)

where ci(·) and dp,q (·) are the model parameters to be identified,
and F (·) denotes the Fourier transform, and the coefficients of
the first-order polynomial can be obtained as

ϕn1 ,...,n i
(ω) =

∑

ω1 + ···+ωi =ω

i∏

s=1

(
e−jns ωs U(ωs)

)
, (28)

φn1 ,...,n i
(ω) =

∑

ω1 + ···+ωp + q =ω
p+q=i

[
p∏

s=1

(
e−jns ωs U(ωs)

)

×E

(
p+q∏

s=p+1

(
e−jns ωs Ỹ (ωs)

))]
−

∑

ω1 + ···+ωp +
ωi , 1 + ···+ωi , j 0 =ω

×
⎡

⎣
p∏

s=1

(
e−jns ωs U(ωs)

)×
∑

j0 +j1 + ···+jl =q

×

⎛

⎜⎜⎝Gj0 (ωi,1 , . . . , ωi,j0 )

⎛

⎜⎜⎝
l∏

s=1,
js is even,js ≥2

μ (js) σjs

⎞

⎟⎟⎠

⎞

⎟⎟⎠

⎤

⎥⎥⎦ ,

(29)

where

Gj0 (ωi,1 , . . . , ωi,j0 ) = E

(
j0∏

s=1

(
e−jni , s ωi , s Ỹ (ωi,s)

))

−
∑

r0 +r1 + ···+rl =j0

⎛

⎜⎜⎝Gr0 (ωj0 ,1 , . . . , ωj0 ,r0 )

×
l∏

s=1,
rs is even,rs ≥2

μ (rs) σrs

⎞

⎟⎟⎠ , (30)
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G2(ω2,1 , ω2,2) ==
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E

(
2∏

s=1

(
e−jn2 , s ω2 , s Ỹ (ω2,s)

))
, n2,1 �= n2,2 ,

E

(
2∏

s=1

(
e−jn2 , s ω2 , s Ỹ (ω2,s)

))
− σ2 , n2,1 = n2,2 ,

(31)

and U(ω) and Ỹ (ω) are the spectra of u(k) and the noised
output ỹ(k), respectively. E(·) denotes the expectation of (·).

Proof: Note that the unbiased error function can be given as

E (ε(k)) − δ(k) =
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)

× u(k − n1) · · ·u(k − ni) +
I∑

i=1,q≥1
p+q=i

∑

0≤n1 ≤···≤np ≤N +Nf

0≤np + 1 ≤···≤ni ≤N

× dp,q (n1 , . . . , np+q )
p∏

s=1

u(k − ns)E

(
p+q∏

s=p+1

ỹ(k − ns)

)

− δ(k), (32)

which can be considered as a double-input single-output non-
linear system because both of u(k) and ỹ(k) are measurable.
The following equations hold [49]:

F (x(k))|ω = X(ω) =
If∑

i=1

∑

0≤n1 ≤···≤ni ≤Nf

ci(n1 , . . . , ni)

×
∑

ω1 + ···+ωi =ω

e−jm 1 ω1 U(ω1) × · · · × e−jm i ωi U(ωi)

and

F

(
i∏

s=1

y(k − ns)

)∣∣∣∣∣
ω

=
∑

ω1 + ···+ωi =ω

e−jn1 ω1 Y (ω1) × · · ·

× e−jni ωi Y (ωi).

Taking the Fourier transform on both sides of (32) and substi-
tuting the above two equations into the Fourier transform lead to
the results in (27)–(29). For (30) and (31), by taking the Fourier
transform on both sides of (21) and (23), respectively, and then
following the similar procedures for proving (27)–(29), the re-
sults can thereafter be obtained. This completes the proof. �

Remark 6: It is worth noting that the spectrum of the ex-
pectation of the unbiased error function is a first-order poly-
nomial of the model parameters to be identified (i.e., θ), and
the coefficients of the first-order polynomial, ϕn1 ,...,n i

(ω) and
φn1 ,...,n i

(ω), are both independent of θ. According to [50], (27)
is therefore a convex function with respect to the model parame-
ters to be identified, θ, which means that the optimization of (27)
at each given frequency ω is a convex optimization problem.

B. Frequency Domain Based Modeling of Multi-Objective
Convex Optimization

Given the output spectrum of the expectation of the unbiased
error function at frequency ω, i.e., Ψ(ω) in (27), the identifica-
tion problem (18), (19) can then be investigated in the frequency
domain based on the L∞-norm by minimizing the maximum er-
ror over the entire frequency range Ω,

arg min
θ

max { |Ψ (ω)|| ∀ω ∈ Ω} , (33)

where |Ψ(ω)| denotes the module of Ψ(ω). Problem (33) is a
convex optimization problem with Ψ(ω) given in (27).

Proof: From Remark 5, it is shown that Ψ(ω) is a con-
vex function with respect to the model parameters to be
identified, θ, and so is |Ψ(ω)|. The pointwise maximum
max{|Ψ(ω)||∀ω ∈ Ω} is a convex function [50]. Problem (33)
then comes to minimize a convex function over a convex region,
and therefore is a convex optimization problem. This completes
the proof. �

Remark 7: The convex optimization problem (33) needs fur-
ther tactic treatment in order to get an effective and efficient
algorithm. Noted that the objective function in (33) is non-
differentiable, the module |Ψ(ω)| at each frequency ω is dif-
ferentiable exclude the singularities. A naive gradient based
method, e.g., in each step choose the gradient of |Ψ(ωs)| that
|Ψ(ωs)| = max{|Ψ(ω)||∀ω ∈ Ω}, may lead to the ‘jump’ phe-
nomenon, i.e., the sudden increase of the cost function between
two consecutive iterations, which is a key issue affecting the
convergence performance of the multi-objective optimization
problem.

In the following, the game theory is introduced to model the
behaviors of the optimization process and to establish an effec-
tive and efficient algorithm for the multi-objective optimization
problem (33).

C. Bargaining Game Theory Based Multi-Objective
Optimization

Given the multi-objective optimization problem (33), clas-
sical optimization algorithms can well employ the local infor-
mation to update the coefficients, by using, for example, the
gradient based strategy. Problems, however, may occur in such
optimization process such as the jump phenomenon, resulting
from the lack of global information in the coefficient updating
process. Evolution algorithms may offer an alternative to the
problem, but most of them such as the genetic algorithm cannot
make full use of the local information, detrimental to the local
searching. In this section, the bargaining game theory is used to
overcome such problems through a simultaneous consideration
of both the global and local information. Firstly, the definition
of the game model for a multi-objective optimization problem
(33) is given. Then the game theory based behavior modeling
of the interactions and competitions among all multiple objec-
tives is presented, which provides a feasible way to achieve the
optimal strategy (i.e., the estimated optimal coefficients). The
Nash equilibrium of the behavior modeling is demonstrated.
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Finally, a game theory based algorithm is summarized for the
multi-objective optimization problem (33).

Definition 1: The multi-player bargaining game model in-
volves:

Players: The frequency ω in the frequency range Ω, i.e.,
∀ω ∈ Ω. Denote the number of players as λ.

Strategy set: θ ∈ R� , where � denotes the dimension of the
coefficients θ with R being a real number set.

Utility set: {Φ(ω)|∀ω ∈ Ω}, where Φ(ω) is the utility of
player ω given as

Φ(ω) = 1 − |Ψ (ω)| (34)

and the system utility is defined as

Φ = arg max
θ

min
ω∈Ω

Φ (ω) = arg min
θ

max
ω∈Ω

|Ψ (ω)| . (35)

Assumption 2: In order to guarantee an agreement in the
bargaining game, it is assumed that Φ(ω) = 0, ∀ω ∈ Ω holds if
player ω decides not to enroll in the bargaining game.

Behavior modeling: In the s th-round of the bargaining, the
behavior can be modeled as:
Step 1: Given the strategy θs and the indicator κ, each player

(∀ωα ∈ Ω) calculates its utility Φs(ωα ). If Φs(ωα ) <
κ holds, player ωα generates its new strategy

θs+1 (ωα ) = θs (ωα ) + r�θ (36)

such that Φs+1(ωα ) > Φs(ωα ) holds, where r =
[r1 , . . . , r� ]T is a random vector with rs randomly
generated in [−1, 1], s = 1, . . . , �, and �θ is a given
constant step; otherwise, the new strategy for player
ωα should reduce its utility, i.e., Φs+1(ωα ) < Φs(ωα ).

Step 2: Each player ωα sends their new strategy θs+1(ωα ) to
all other players ∀ωβ ∈ Ω, ωβ �= ωα . Each player ωβ

should calculate its utility Φs(ωα ;ωβ ) based on the
player ωα ’s strategy and feedback to player ωα .

Step 3: Each player ωα calculates the minimum utility of its
own strategy, i.e.,

Φs+1,min (ωα ) = min
∀ωβ ∈Ω

Φs (ωα ;ωβ ) . (37)

Step 4: All the players negotiate and choose the maximum
utility, i.e.,

Φs+1,max = max
ωα ∈Ω

Φs+1,min (ωα ) . (38)

If Φs+1,max > Φs,max , choose the corresponding player’s
strategy as the strategy of this round’s bargaining, i.e.,

θs+1 = θs+1 (ωα ) , (39)

and calculate the indicator as

κs+1 =
∑

ωβ ∈Ω

Φs+1 (ωα ;ωβ )
/

λ, (40)

where λ is the number of the players; go to step 5. Otherwise,
if Φs+1,max < Φs,max , the new strategy of this round should be
directly rejected, then go to step 1 for generating new strategies.
Step 5: End of the round’s negotiation.

Remark 8: According to (38) in step 4, the maximum sys-
tem utility Φs+1,max is chosen among all the players’ utilities.
Therefore, the new strategy θs+1 in (39) and the indicator κs+1
in (40) would involve the global information. In step 1, each
player generates its own new strategy independently via a local
searching, and obviously, the local information is employed.
Both the global and local information are considered in the
multi-objective optimization problem, which would improve the
convergence performance of the optimization.

Remark 9: The indicator κ in (40) represents an approxi-
mation of the targeted system utility. For Φs(ωα ) > κ in step
1, if player ωα still chooses to maximize its own utility, the
corresponding strategy will have a larger chance to reduce the
other players’ utilities, and consequently will reduce the sys-
tem utility. Other players would have a greater chance to reject
this strategy. In order to help achieve an agreement, player ωα

should choose its new strategy such that Φs+1(ωα ) < Φs(ωα )
holds.

Theorem 3: After several rounds of negotiations, the multi-
player bargaining game finally converges to the Nash equilib-
rium, which means that no unilateral deviation in the strategy
by any single player ωα is profitable for that player, i.e.,

Φ(ωα |θ∗ (ωα ) ,θ∗ (ω−α )) ≥ Φ(ωα |θ (ωα ) ,θ∗ (ω−α )) ,

∀ωα ∈ Ω, (41)

where θ∗(ωα ) is the optimal strategy set of the player ωα ,
θ∗(ω−α ) is the optimal strategy set of all other players except
for player ωα , and Φ(ωα |·) is the utility of player ωα with strat-
egy set ·. The strategy θ∗(ω1) = · · · = θ∗(ωλ) is the optimal
solution of the multi-objective optimization problem (33).

Proof: Suppose that there exists a strategy θ(ωα ) such
that Φ(ωα |θ(ωα ),θ∗(ω−α )) ≥ Φ(ωα |θ∗(ωα ),θ∗(ω−α )) for all
strategies θ∗(ω−α ) but it is not a Nash equilibrium. Resulting
from the competition characteristic among all the players in the
multi-objective optimization, at least one of the player’s utilities
will be decreased by unilaterally deviating from the strategy,
namely:

Φ(ωβ |θ (ωα ) ,θ∗ (ω−α )) ≤ Φ(ωβ |θ∗ (ωα ) ,θ∗ (ω−α )) ,

∃ωβ ∈ Ω, ωβ �= ωα,

which means that the minimum utility has been decreased. Note
that the goal of the optimization is to maximize the minimum
utility. Therefore, in the negotiation (step 4), the new strat-
egy will be chosen as θs+1 ∈ θ∗(ω−α ), and θ(ωα ) will be
rejected. The assumption does not hold and none of the play-
ers can benefit by unilaterally deviating its strategy. Therefore,
the strategy θ∗(ω1) = · · · = θ∗(ωλ) is the Nash equilibrium of
the multi-objective bargaining game model. This completes the
proof. �

The following algorithm is summarized to provide a step-
by-step negotiation process to achieve the optimal strategy of
the multi-player bargaining game model, and so is the optimal
estimate of the multi-objective frequency-domain based identi-
fication problem (33).

In the initialization, the coefficients θ0 and the indicator κ0
can be randomly given. After several rounds of bargaining,
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TABLE I
ALGORITHM TO ACHIEVE THE NASH EQUILIBRIUM

Algorithm 1 will converge to the Nash equilibrium, and the
optimal estimation can therefore be obtained. Owing to the use
of the global information, the system utility in Algorithm 1 in-
creases successively as the iterative bargaining goes on, that
is, the maximum error in (33) monotonously decreases, which
will greatly improve the convergence performance of the multi-
objective identification problem (33).

Remark 10: Although finding the Nash equilibrium in a
game is a NP problem, Algorithm 1 together with the behavior
modelling can achieve the Nash equilibrium. The reasons are:
1) the multi-objective optimization problem in (33) (or (35)) is
a convex problem, so there only exists a single Nash equilib-
rium in the game; 2) according to Algorithm 1 and the behavior
modelling, a higher utility (i.e., a smaller estimate error at the
frequencies of interest) can be guaranteed after each negotiation
until reach the Nash equilibrium, which means that the current
strategy gets closer to the Nash equilibrium after each negotia-
tion, and after several rounds of negotiations (can be determined
by the targeted utility Φtargeted or the estimate error acceptable
at the frequencies of interest), the strategy can reach the Nash
equilibrium.

Remark 11: The bargaining game theory algorithm (BGTA)
is proposed to solve the multi-objective optimization problem
where the objective function given in (33) is based on L∞-
norm. There also exist other criteria to characterize the objective
function, e.g., the L1-norm or L2-norm that integrate the mod-
ule or squared module over the entire frequency range. With
these norms, the estimate error at the frequencies of interest
would be more conservative (much larger than the estimate

error provided by the proposed BGTA method) because it is a
total estimate error that integrates the error over the whole fre-
quency range. If the L1-norm or L2-norm is selected as the cri-
terion to formulate the objective function, the proposed BGTA
method cannot be directly applied to the single-objective opti-
mization problem. We will consider these criteria in our further
study.

Remark 12: To guarantee a unique solution, the frequencies
taken into account in the identification problem (33) (i.e., the
number of players considered in the bargaining game) should be
greater than or at least equal to the number of model parameters
to be identified.

Remark 13: In the above, we demonstrate that the bargain-
ing game theory based multi-objective optimization is a convex
problem and a unique optimal solution exists. Generally, a small
step �θ can ensure the convergence of the numerical simulation
to the optimal solution with a large number of bargaining, and
a large step �θ with a small number of bargaining. If the step
�θ is too large, the numerical simulation may not converge to
the optimal solution. It is difficult to provide an analytical and
explicit criterion for the step �θ to guarantee the convergence
of the numerical simulation. Instead, we can give two or more
different steps �θ , if the solutions of these different steps are
the same, the numerical simulations can be considered as con-
verging to the optimal solution. Otherwise, we can reduce the
step �θ , until the results using different steps are the same.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

Examples are investigated using the cascade dynamic nonlin-
ear system described by (42)–(44). Note model (42) is a Volterra
model, and model (43) a NARX model, which can be merged to
the general system (10)–(14) that describes the cascade dynamic
nonlinear systems.

x(k) = 0.6u(k) + 0.2u(k − 2) + 0.6u(k)u(k − 1), (42)

y(k) = x(k) + 0.4y(k − 1)y(k − 2) + 0.6y(k − 1)u(k)

− 0.1y(k − 1)u(k − 2) − 0.1y(k − 1)u(k − 4)

+ 0.6y(k − 1)u(k)u(k − 1) − 0.3y(k − 1)

× u(k − 2)u(k − 3), (43)

ỹ(k) = y(k) + v(k), (44)

where

c1(0) = 0.6, c1(2) = 0.2, c2(0, 1) = 0.6, d0,1(0) = −1,

d0,2(1, 2) = 0.4, d1,1(0, 1) = 0.6, d1,1(2, 1) = −0.1,

d1,1(4, 1) = −0.1, d2,1(0, 1, 1) = 0.6, d2,1(2, 3, 1) = −0.3.

The input is given as

u(k) = 0.3 sin (2πTsk) + 0.3 sin (4πTsk + π/2), (45)

where Ts = 0.025 s is the sampling time interval. In typical
structural health monitoring applications, the received signal
has a signal-to-noise ratio (SNR) around 60 dB [51]. Therefore,
the SNR of the white Gaussian noise v(k) is firstly set to be
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Fig. 2. Output spectrum Y (ω).

60 dB in the simulation. The effect of signals with different
SNR will be studied later.

Adopting least square method mentioned in Remark 5,
θ̂ = (ΘTΘ)−1ΘTε, and considering a simple case that only
identifies the first sub-system with If = 2 and Nf = 2, the ma-
trix ΘTΘ is singular. Therefore, the least square method is
unavailable.

Fig. 2 shows the output spectra, Y (ω), with and without noise,
respectively. It can be observed that there exist multiple harmon-
ics in the frequency range of Y (ω) (only the first 20 Hz range
is shown in Fig. 2 because the sampling time interval is 0.025 s
with a data length of 1 s) although only two frequencies are
involved in the input (shown in (45), i.e., 1 Hz and 2 Hz), due
to the nonlinearities involved in the first and second subsystems
(42)–(44). As the output frequency increases, the output spec-
trum without noise shows a downward tendency. For the noised
output case, the output spectrum follows the same descending
trend for the lower-order frequency components, before tending
to a constant as the output frequency increases. The reason is
that the noise in the numerical study is a Gaussian white noise,
which has a constant power spectra density.

Fig. 3 shows the identification results of the cascade dynamic
nonlinear system with three different initial model parameters.
The expectation of the noised output spectrum E(Ỹ (ω)) and
E(Ỹ (ω1)Ỹ (ω2)) in the proposed BGTA method are obtained
via 100 measurements. It can be seen that after several rounds of
negotiations, the estimated coefficients converge to their respec-
tive true values, which also indicates that the proposed BGTA
converges to the Nash equilibrium in the multi-objective opti-
mization.

Fig. 4 shows the comparison of the convergence perfor-
mance between the proposed BGTA and the gradient based
naive method mentioned in Remark 7. It can be seen that the
gradient based naive method has obvious ‘jump’ phenomenon
between two consecutive iterations (shown in the sub-figure),
i.e., the estimate error suddenly increases to a large error in the
iteration, which deteriorates the convergence performance of the
optimization. This is due to the fact that only local information

Fig. 3. Identification of the cascade dynamic nonlinear system based on the
bargaining game modeling with different initial model parameters.

Fig. 4. Comparisons of the convergence performance of the proposed BGTA
and the gradient based naive method.

is considered in the optimization (the gradient is employed).
This ‘jump’ phenomenon will be even worse when the estimate
error become smaller. As to the proposed BGTA with different
initial coefficients, Fig. 4 shows a much-improved convergence
behavior. In fact, the estimate error quickly reduces with the
increasing number of the iteration for all cases. Meanwhile, as
pointed out in remark 6, the proposed BGTA employs both the
local information and the global information in the optimization.
Therefore, no ‘jump’ phenomenon appears, which is also re-
sponsible for the improved convergence performance compared
with the gradient based naive method. It can also be observed
that when the proposed BGTA achieves the optimal strategy,
the gradient based naive method is still far from convergence.
The effectiveness, efficiency, and the superiority of the proposed
game theory algorithm can therefore be demonstrated.
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Fig. 5. Estimate error at some frequencies of interest.

It can be observed that the convergence rate (number of it-
erations to convergence) of the proposed BGTA may depend
on the given initial model parameters, e.g., case 3 converges
with 2 × 104 iterations, and case 1 with 5.4 × 104 iterations.
The given step �θ in (36) and the maximum utility Φtargeted in
Algorithm 1 (or the maximum estimate error acceptable at the
frequencies of interest) will also influence the number of itera-
tions to the convergence. It ranges from twenty to forty minutes
for the four numerical simulations in Figs. 3 and 4, which is
acceptable as an offline identification algorithm. To improve the
efficiency, either the L1-norm or L2-norm can be considered
to characterize the identification as a single-objective optimiza-
tion problem, which will only provide a total estimate error in
the whole frequency range instead of a tight estimate error at
the frequencies of interest that can be obtained by the proposed
BGTA method.

Fig. 5 shows the estimate errors at the frequencies of interest.
It can be observed that the maximum estimate error is −105 dB
at 11 Hz, which is consistent with that shown in Fig. 4. The
estimate error at all other frequencies are smaller.

Figs. 6 and 7 show the performance of the proposed BGTA
against different noise levels. When the SNR decreases from
40 dB to 30 dB, the estimated model parameters well converge
to the true values, demonstrating the robustness of the pro-
posed algorithm. The expectation of the noised output spectrum
E(Ỹ (ω)) in the proposed BGTA method are obtained via 100
measurements for all different noise levels. When the SNR is set
to be 20 dB, although some of the parameters, e.g., d0,2(1, 2),
slightly deviate from the true values, most of the parameters still
converge to the true values. Therefore, the result is still accept-
able. For a SNR lower than 20 dB, more measurements should
be used to calculate an accurate expectation of the noised output
spectrum E(Ỹ (ω)) to make the estimate results acceptable.

It is shown in Section II that the identification of the cas-
cade dynamic nonlinear systems can be transformed into the
identification of a double-input single-output Volterra system.
Although the identification of a Volterra system was widely stud-
ied in the literature, most of the studies focused on a single-input
single-output second-order or third-order Volterra model [34],

Fig. 6. Identification of the cascade dynamic nonlinear systems at different
noise levels.

Fig. 7. The convergence performances at different noise levels.

[35], which obviously cannot be directly applied to the present
cascade dynamic nonlinear models. In Fig. 8, we compare the
present BGTA method with a tensor based method that identifies
a multiple-input multiple-output Volterra model [52]. Fig. 8(a)
is the identification result of the first sub-system, and Fig. 8(b)
is that of the second sub-system. For the second sub-system, the
measured output spectrum Ỹ (ω) and the input spectrum U(ω)
are used to calculate the spectrum of the intermediate variable
|XBGTA(ω)|. Comparing |XBGTA(ω)| and |XTensor(ω)| with
the true spectrum, we can investigate the effectiveness of dif-
ferent methods on the identification of the first and second sub-
systems. It can be observed that results from the BGTA method
almost overlap with the true spectrum, |X(ω)|, outperforming
its tensor based counterpart. Plausible reasons are: 1) the tensor
based method is a time domain method, inevitably embracing
all the noise in the identification. On the contrary, the BGTA
method only takes into account the frequencies shown in Fig. 2
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Fig. 8. Comparison with the tensor based method [52]. |X (ω)| is the magni-
tude of the true spectrum of intermediate variable x(k), |XBGTA(ω)| is the
magnitude of the spectrum obtained by the proposed BGTA method, and
|XTensor(ω)| is the magnitude of the spectrum obtained by the tensor based
method. (a) First sub-system, and (b) second sub-system.

as the frequencies of interest. Therefore, only the noise at those
particular frequencies are involved in the identification; 2) a reg-
ulation term in the objective function exists in the tensor based
method, which may result in an additional error in the identifi-
cation. Furthermore, the tensor based method can only provide
a total estimate error that involves the error at each sampling in-
stance but cannot quantify and guarantee a tight estimate error at
the frequencies of interest. BGTA method makes this possible,
which is one of distinct contributions of the present work.

V. CONCLUSIONS

Cascade dynamic nonlinear systems can be used to model a
large class of nonlinear systems in engineering practices, but
very few efforts have been devoted to the identification of such
systems. The main difficulty comes from the non-convex na-
ture of the identification problem. This paper investigated this
problem based on a bargaining game theory model. Firstly, the
cascade dynamic nonlinear systems were rearranged and con-
verted into an equivalent DISO system, where the estimate error
was considered as the new output, and the system input and mea-
sured noised output as the new inputs. By the same token, the
identification of the cascade dynamic nonlinear systems was
transformed into a convex optimization problem. Secondly, in
order to guarantee the estimate error at the frequencies of in-
terest, the DISO identification problem was decomposed into a
set of sub-problems defined in the output frequency range. The
spectrum of the unbiased estimation error function was then
given, which was demonstrated to be a first-order polynomial
of the model parameters to be identified and with independent

coefficients. This characteristic relationship between the unbi-
ased spectrum and the model parameters to be identified greatly
facilitates the optimization in the frequency domain. Reach-
ing this step, the identification problem was transformed into
a multi-objective optimization problem. To ensure an effective
and efficient multi-objective optimization, the bargaining game
theory was employed to model the competitions and interactions
among the multiple objectives in the optimization. It was shown
that the consideration of both the global and local information in
the BGTA greatly improves the convergence performance of the
optimization. The proposed formalism allows the identification
of the cascade dynamic nonlinear systems to be conducted in
the frequency domain such that the nonlinear features can be
directly captured with the estimate error being guaranteed at the
frequencies of interest, conducive to numerous engineering ap-
plications requiring the extraction of nonlinear features related
to higher-order harmonics.
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