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a b s t r a c t

This paper presents a 2-D semi-analytical model for the vibration analyses of a plate with a
power-law-profiled thickness variation, referred to as an Acoustic Black Hole (ABH) plate.
The proposed model, along with the associated wavelet-based solution procedure, is
intended to overcome major technical difficulties which are specific to ABH structures: the
non-uniform wavelength distribution and ABH-induced wave compressions at the high
frequency range in a realistic structure of finite size. Under the general Rayleigh-Ritz
framework, Daubechies wavelet (DW) scaling functions are chosen as the admissible
functions to decompose the transverse displacement of the plate with ABH indentations
featuring a thickness variation along one direction of the panel. Modal and forced vibration
analyses are carried out with results compared with those obtained by the FEM. It is shown
that the model allows an accurate prediction of various vibration parameters and a realistic
description of the typical ABH phenomena. Meanwhile, the use of Daubechies wavelet
functions allows enhancing the effectiveness of the Rayleigh-Ritz method to reach the high
frequency range, where systematic Acoustic Black Hole (ABH) effects are expected. Nu-
merical analyses also reveal the potential of using strip ABH indentations in a plate to
achieve a light-weight design with appealing vibration reduction properties. Analyses on
the ABH-induced damping enhancement demonstrate the dominant effect of the local
structural modes within indented area, which exhibit lower-order deformations (con-
taining typically half and one wave along the direction in which the thickness is tailored).

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Research on acoustic black holes (ABHs) [1] has been attracting a growing attention in the last decade [2e8]. The phe-
nomena, applicable to the propagating bending waves inside a thin-walled structure, features unique dynamic properties
which promise great potential in applications such as vibration damping enhancement [9], energy harvesting [10] and sound
radiation control [3,4] etc. through the use of light-weight structures.

Take a 1D case as an example, an ABH beam features a taper with a power-law profiled thickness variation, i.e., hðxÞ ¼ εxg,
where ε is a positive constant and g a power law index, equal or larger than two [1]. Given an incident flexural wave travelling
along the tapered beam, its phase velocity gradually reduces along the taper. In the ideal scenario, wavewould stop travelling
).
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at the zero-thickness tip of the taper without reflections, thus creating a strong energy concentration through wave com-
pressions. In practical cases where a zero-thickness tip is not achievable, various measures to reduce wave reflections and to
enhance energy dissipations have been extensively discussed in the literature [9,11].

The design of effective ABH structures relies on a good understanding of the underlying physics and ameticulous setting of
the design parameters, be it material or geometrical. This can only be achieved with the help of efficient simulation and
optimization tools. Up to now, extensive work has been carried out, predominantly using numerical tools such as finite
element methods and experiments [2e4,12]. To a much less degree, effort has also been made to develop more physical
models, aimed at capturing the fundamental features of the ABH phenomena using basic configurations. Typical examples
include geometrical acoustics approach [13], graded impedance method [14], transfer matrix techniques [15], and impedance
matrix techniques [16] etc. Pros and cons of these methods have been extensively discussed in previous works [17,18], among
which geometrical and boundary restrictions of the structure as well as the applicable frequency range are themain concerns.
More recently, structural modelling which considers more realistic structural features such as finite size, realistic structural
boundaries and added-on damping layers has also been attempted, but mainly limited to 1D cases [18].

Themodelling of the ABH structures is technically challenging due to the ABH-specific features, which aremainly twofold:
a) structural wavelength varies significantly over a structure with embedded ABH elements. At any given frequency, bending
waves experience a continuous wavelength variation and are severely compressed inside the ABH cells, while remaining
relatively even over the uniform part of the structure; b) ABH effects start to systematically show only above the so-called cut-
on frequency [4] or characteristic frequency [19], when the structural wave length starts to be comparable with the char-
acteristic dimension of the ABH cells. Therefore, simulation methods should be able to reach the relatively high frequency
rangewhile being able to accommodate the significant wavelength variations over the structure. Alongwith these challenges,
there is also the need in accommodating various structural changes such as add-on damping layers [18] or energy harvesting
elements [10], as well as a better versatility and flexibility in coping with the structural design and optimizations. All these
add further difficulties to the modelling task.

The use of wavelets under the Rayleigh-Ritz framework may provide a solution to cope with the aforementioned prob-
lems. In our previous work, a wavelet decomposed Rayleigh-Ritz method was proposed to model thin-walled structures with
a constant thickness [20]. Results showed that the wavelet-based model can reach a much higher frequency range than the
conventional Rayleigh-Ritz methods using admissible functions such as simple polynomials, Chebyshev series or trigono-
metric functions, which are prone to problems like numerical instability, ill condition or slow convergence [21,22]. Mean-
while, the unique features of the wavelets such as flexible scaling, compact support and strong fitting capability are shown to
be conducive to the handling of ABH-specific wavelength variations. The idea was tested on a 1D beam using Mexican Hat
Wavelets (MHWs) [18]. The formulationwas rather straightforward since 1D configuration is relatively simple andMHWs can
be analytically expressed. It was shown that the MHW-based Rayleigh-Ritz model allowed a good description of the ABH
phenomena by accurately predicting the system dynamics at relatively high frequencies. Up to now, however, semi-analytical
modelling of 2D ABH structures is scarce with the exception of a very recent work by O'Boy and Krylov [5]. That work follows
the same Rayleigh-Ritz framework using trigonometric series as the admissible functions. The reported frequency range,
however, is relatively low, typically covering the first twenty structural modes.

Inspired by our previous work on 1-DABH beams [23] and the success in high frequency simulation on uniform structures
[20], this paper proposes a 2D semi-analytical ABH model using Daubechies wavelet scaling functions. Compared with the
MHWs which are smooth and analytically expressible, DWs are expected to better respond to the local variations of the ABH
phenomena. However, as DW scaling functions have no closed form expressions, a proper recursive procedure needs to be
worked out to deal with various operations on the scaling functions. In the present work, the same configuration used in
O'Boy and Krylov [5] is adopted with an intention of improving that model to reach the effective ABH zone at much higher
frequencies. The present paper is organized as follows. The proposed semi-analytical model is first developed for a plate with
a strip ABH indentation in Section 2. In the formulation, DW scaling functions are chosen as the admissible functions for
flexural displacement decomposition under the general Rayleigh-Ritz framework. Solutions to the derivatives of DW scaling
functions and the connection coefficients are derived. In Section 3, numerical analyses on the first one hundred eigen-
frequencies of the plate with free edges are carried out and validated using different support lengths and resolutions.
Modal analyses and forced vibration analyses are then conducted for comparisons with the FEM simulations. In Section 4,
typical ABH phenomena are illustrated using the developed model. Vibration reduction effects of the ABH plates are
investigated with comparisons against a reference uniform plate. Changes in the modal loss factors are investigated and
linked up with typical ABH cell modes. The energy focalization capacities of a strip ABH and a circular ABH are investigated
and compared. Finally, conclusions are drawn.

2. Semi-analytical model and formulation

2.1. Modeling

As shown in Fig. 1(a), the investigated structure is a thin plate (with a dimension of a, b, and h), which contains a strip ABH
indentation, symmetrically coated with damping layers on both sides. Fig. 1(b) gives the top view of the plate and Fig. 1(c) the
cross-sectional thickness profile. The plate consists of two portions. The region containing the ABH strip is referred to as ABH
portion, and the one with a constant thickness the uniform portion. The ABH portion is bounded by the range ðx1; x2Þ and ðy1;



Fig. 1. Plate model: (a) Plate with symmetrical power-law thickness profiles; (b) ABH portion in vertical view; (c) Cross-section of the ABH portion; (d) Modeling
of the boundary conditions.
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y2Þ, centered at ðxc; ycÞ, featuring a thickness variation in x direction according to a power law realtion, i.e.
hðxÞ ¼ εðjx� xcj þ dÞg with ε being a constant, g a power law index and d a parameter which determines the termination
thickness in the thinnest middle part of the strip. Along the center at x ¼ xc, the ABH indentation has the smallest thickness
h0 ¼ εdg. Damping layers with a thickness hd are coated within an area from xd1 to xd2 in x direction and from yd1 to yd2 in y
direction. The boundary conditions of the plate are shown in Fig. 1(d). A set of springs working in translation and rotation are
uniformly distributed along the edges of the plate [24] (ki for translational spring stiffness and ci for rotational spring stiffness
with i ¼ 1; 2; 3; 4 representing the edge number of the plate). The use of the springs allows various boundary conditions to
be simulated through adjusting their stiffness values. Meanwhile, it allows a flexible choice of the admissible functions which
are required to only satisfy the geometrical boundary conditions. The inherent material damping of the plate and that of the
damping layers are introduced through complex Young's modulus E0 ¼ E0ð1þ ih0Þ and Ed ¼ Edð1þ ihdÞ, respectively, where
h0 and hd are the corresponding loss factors.

The system is assumed to be symmetrical with respect to the midplane of the plate. According to the Love-Kirchhoff thin
plate theory, the displacement field of the system can be written as:

fu; v;wg ¼ �
�

z
vw
vx

;�z
vw
vy

;w
�

(1)

in which vector fu; v;wg contains the three displacements of a point, in either the plate or the damping layer.
Employing dimensionless coordinates x ¼ x=a and h ¼ y=b, the transverse displacement w can be approximated by:

w ¼
Xp
i

Xq
j

aijðtÞ4iðxÞ4jðhÞ (2)
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where 4iðxÞ and 4jðhÞ are the assumed admissible functions and aijðtÞ are the unknown complex coefficients; p and q are the
truncation order representing the number of terms of admissible functions to be kept in the computation; aijðtÞ are the
generalized coordinates in the Euler-Lagrange equations which result from the stationary state of the system:

d
dt

 
vL

v _aijðtÞ

!
� vL
vaijðtÞ

¼ 0: (3)

where L is the Lagrangian operator written as:

L ¼ Ek � Ep þW (4)

in which Ek and Ep are the kinetic energy and the potential energy of the system, respectively; and W the work done by
external forces. Neglecting small quantities of higher orders, these terms are expressed as:
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where r is the density, m the Poisson's ratio and ðxf ; hf Þ the location of the excitation force. Integrals in Eq. (5) should be
evaluated for the whole system, including both the plate and the damping layers. Application of Eqs. (4) and (5) to Eq. (3)
leads to a set of linear equations, expressed in a matrix form as:

M€aðtÞ þ KaðtÞ ¼ FðtÞ (6)

whereM and K represent the global mass and stiffness matrices (complex due to viscoelasticity of the material), respectively.
The entire structure is divided into five parts. The formation of K and M is given in Appendix A.

Considering a harmonic excitation, Eq. (6) can be cast into the standardmatrix form. Dropping the excitation terms yields a
standard eigenvalue problem for free vibration analyses, whose solution gives the natural frequencies of the system along
with the corresponding mode shapes. As K is complex, the natural angular frequencies are also in a complex form as:

u2 ¼ u2
nð1þ ihnÞ (7)

where un are the natural angular frequencies and hn the corresponding modal loss factors. hn is an important parameter to
characterize the energy dissipation of individual resonant modes resulting from the ABH effects, which will be described later
on.

2.2. Daubechies wavelet scaling functions

As shown in Appendix A, expressions of the stiffness matrix K and mass matrix M require the handling of some finite
integral terms involving the DW scaling functions and their derivatives. This is worked out in this Section. For the benefit of
the readership, Daubechies wavelets are briefly recalled and discussed. DWs are a compactly supported and orthogonal set
which can be scaled to accommodate both localized and smooth variations [25]. Each DW member is governed by an even
integer L and a set of wavelet filter coefficients fpl; l ¼ 0;1;2;…L� 1g through a two-scale relation:
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4ðxÞ ¼
XL�1

l¼0

pl4ð2x� lÞ (8)

and

jðxÞ ¼
X1
l¼2�L

�ð 1Þlp1�l4ð2x� lÞ (9)

where 4ðxÞ is the scaling function and jðxÞ the mother wavelet. Note 4ðxÞ and jðxÞ are completely localized in the interval ½0;
L� 1� and ½1� L=2;L=2�, respectively. The conditions that the coefficients pj need to satisfy can be found in Ref. [25].

The constructed jðxÞ possesses the following property:

Zþ∞

�∞

xkjðxÞdx ¼ 0 k ¼ 0;1;…; L=2� 1 (10)

which indicates that the elements of the set f1; x;…; xL=2�1g can be a linear combination of 4ðx� kÞ, translated from 4ðxÞ by k.

Also, the nth derivative of the scaling function 4ðnÞðxÞ exists for n ¼ 0;1;…;L=2� 1. Employing Eq. (8), an analogous form of the
two-scale relation for 4ðnÞðxÞ can be obtained as:

4ðnÞðxÞ ¼ 2n
XL�1

l¼0

pl4
ðnÞð2x� lÞ (11)

ðnÞ j ðnÞ
Eq. (11) allows the calculations of the values of 4 ðxÞ for all dyadic points at x ¼ k=2 , when 4 ðkÞ are known at the
integer points k ¼ 1;2;…;L� 2. Substituting these integer points into Eq. (11) gives a system of linear equations as:

2�nF ¼ PF (12)

where
F ¼
h
4ðnÞð1Þ;4ðnÞð2Þ;…;4ðnÞðL� 2Þ

iT
(13)

in which superscript T denotes the transpose and P is a ðL� 2Þ � ðL� 2Þ matrix:
P ¼ �p2l1�l2



1�l1 ;l2�L�2 (14)

with l1 and l2 being the row and column indices, respectively. VectorF, the eigenvector, can be uniquely determined with the

following normalization condition [25]:

XL�2

k¼1

�ð kÞn4ðnÞðkÞ ¼ n! (15)

ðnÞ ðnÞ j j
Upon getting values of 4 ðkÞ at k ¼ 1;2;…;L� 2, values of 4 ðxÞ at x ¼ k=2 for k ¼ 1;3;5;…;2 ðL� 1Þ � 1 and j ¼ 1;2;…
can be determined by using the relation:

4ðnÞ
�
k
2j

�
¼ 2n

XL�1

l¼0

pl4
ðnÞ
�

k
2j�1

� l
�

(16)

knowing that 4ðnÞðxÞ ¼ 0 for x � 0 and x � L� 1.

2.3. Connection coefficients

Write the 2D wavelet base functions in the x and h directions as 4iðxÞ ¼ 2m=24ð2mx� iÞ and 4jðhÞ ¼ 2m=24ð2mh� jÞ,
respectively, where m is the resolution, i and j are the corresponding translations. To avoid the singularity when solving Eq.
(6), i and j should be confined to the range ½ � Lþ 2;…;2m � 1�. This leads to a total of number of terms given by p ¼ q ¼ 2m þ
L� 2. All the wavelet terms located within the interval ½0; L� 1� should be included in the displacement field.

For the purpose of illustration, 4iðxÞ with m ¼ 2 and i ¼ �3; :::; 3 is shown in Fig. 2.
As shown in Appendix A, constructing K and M for each part of the plate (numbered by q ¼ 1;2;…;5 in Appendix A)

requires the calculations of 2-D connection coefficients which are the finite integrals involving admissible functions and their



Fig. 2. Daubechies scaling functions with L ¼ 12; m ¼ 2; i ¼ � 3; :::; 3.
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derivatives. The terminology of the so-called connection coefficients has been widely used in the literature on various ap-
plications of wavelets [20]. In the present case, the general form of 2D connection coefficients writes:

Ir;i;s;j ¼
Zhq2

hq1

Zxq2
xq1

½hðxÞ�n4ðaxÞ
r ðxÞ4ðbxÞ

i ðxÞ4ðahÞ
s 4

ðbhÞ
j ðhÞdxdh (17)

where xq1 and xq2 are, respectively, the lower and upper limits in x direction for a given part of the plate q; and hq1 and hq2 in h

direction. n can be 1 or 3.
Due to the geometry of the strip ABH indentation, integrals in Eq. (17) are separable. Recalling x ¼ x=a and h ¼ y=b,

4ðaÞðxÞ ¼ ð1=aÞa,4ðaÞðxÞ and 4ðbÞðyÞ ¼ ð1=bÞb,4ðbÞðhÞ. The general forms of 1D connection coefficients, Ix and Iy in the x and y
directions, can be written as:

Ia;bx;r;i ¼ ð1=aÞa�1ð1=bÞb2ðaþbÞm
Zxq2
xq1

½hðxÞ�n,2m=2½4ð2mx� rÞ�ðaÞ,2m=2½4ð2mx� iÞ�ðbÞdx

Ia;by;s;j ¼ ð1=aÞað1=bÞb�12ðaþbÞm
Zhq2

hq1

2m=2½4ð2mh� sÞ�ðaÞ,2m=2½4ð2mh� jÞ�ðbÞdh

(18)

where 4ðaÞ and 4ðbÞ (with a;b ¼ 0; 1; 2) are the derivatives of the scaling functions, which can be obtained by following the
procedure described in Section 2.2. Finally, the 2D connection coefficients are decomposed as a tensor product of their 1D
counterparts Ix and Iy as:

I ¼ Ix5Iy (19)

where5 is the Kronecker tensor product symbol. Integrations in Eq. (18) can then be carried out using 1D Gauss integration
method.

It is relevant to note that the established formulation and the associated numerical scheme also apply to plates with
circular ABH indentations. In that case, the thickness of the plate is a function of both x and h. Therefore, Eq. (17) should be re-
written as:

Ir;i;s;j ¼
Zhq2

hq1

Zxq2
xq1

½hðx; hÞ�n4ðaxÞ
r ðxÞ4ðbxÞ

i ðxÞ4ðahÞ
s 4

ðbhÞ
j ðhÞdxdh (20)
As a result, terms involving x and h are inseparable and the integral should be calculated by the 2-D Gauss integration.



Table 1
Geometrical and material parameters.

Geometry Material

a¼ 0.56m y1 ¼ 0.056m E0 ¼ 200 GPa
b¼ 0.56m y2 ¼ 0.504m m0 ¼ 0.3
h¼ 6.4mm h0 ¼ 0.4mm h0 ¼ 0.01
x1 ¼ 0.16m ε¼ 0.25 r0 ¼ 7800 kg/m3

x2 ¼ 0.4m g¼ 2
xc ¼ 0.28m d¼ 0.04m
yc ¼ 0.28m
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3. Numerical implementations and model validations

3.1. Determination of DW parameters and model validations

The accuracy of the proposed model is first verified through comparisons with the FEM simulations. Wavelet parameters
are varied in order to determine a suitable combination to be used in the subsequent analyses for the maximum calculation
efficiency and the required accuracy. To this end, the eigen-frequencies of a typical ABH plate are calculated using different L
andm values. Geometrical and material parameters of the plate as well as those of the ABH indentation are tabulated in Table
1. The four edges of the plate are set to be free, by assigning a zero stiffness value to all the boundary springs. The FEMmodel
using COMSOL software is densely meshed with an element size of 0.005m to ensure the convergence of the solution. This
gives a total of 12544 plate elements.

Note that Eq. (10) involves the derivative terms of the DWs up to an order of L=2� 1. Therefore, L should be at least equal to
or larger than 10 [20]. Firstly, with L fixed at 12, the influences ofm are analyzed. Three typicalm values, 6, 7 and 8, are used in
the calculation which gives a total of 5476, 19044 and 70756 wavelet terms, respectively. The calculated eigen-frequencies of
the first 100 modes are compared with those obtained by FEM in Fig. 3. It can be seen that results withm¼ 7 and 8 agree well
with FEM results within the entire mode range, while more noticeable deviations in the higher-order modes appear when
m¼ 6. To quantify the calculation accuracy, the relative error, defined as jfmodel � fFEMj=fFEM � 100%, are calculated and shown
Fig. 3. Comparisons with FEM analyses for the first 100 eigen-frequencies: FEM (solid line); L¼ 12, m¼ 6 (short dash line); L¼ 12, m¼ 7 (short dot line); L¼ 12,
m¼ 8 (short dash dot line).

Fig. 4. Percent errors for the first 100 eigen-frequencies obtained by the present model with L¼ 12:m¼ 6 (circle dot);m¼ 7 (square dot) andm¼ 8 (triangle dot).



Fig. 5. Percent errors for the first 100 eigen-frequencies obtained by the present model with m¼ 7: L¼ 12 (square dot); L¼ 14 (circle dot) and L¼ 16 (triangle
dot).
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in Fig. 4. Results confirm the same trend as the one observed in Fig. 3. Typically,m¼ 7 or 8with L¼ 12 allows limiting the error
below 3% for a largemajority of modes. Clearly, a largerm (e.g. m¼ 8) leads to a better accuracy for higher ordermodes, except
for the first fewmodes. Similar phenomenonwas also observed in a previous study usingMHwavelets in 1D cases [18], which
can be explained by the scaling properties of the wavelets. This suggests that a larger m is preferable for higher order mode
prediction, which is themain frequency range of interest where systematic ABH effect is expected. Fixingm at 7 and varying L,
the calculation errors against FEM results are given in Fig. 5. As can be seen, the three cases give very similar accuracy, except
for the very low-order modes.

Apart from the accuracy, it is also relevant to consider the computation time which is mainly determined by the scaling
factorm. For example, for a fixed L, the computation time form¼ 8 is four times that of m¼ 7. Therefore, based on the above
analyses, a calculation scheme using L¼ 12 and m¼ 7 is taken as a good compromise, from both the accuracy and the
computation time perspectives. This will be used in the subsequent analyses.

Fig. 6 compares three arbitrarily chosen mode shapes, i.e., the 50th, 79th and 98th modes, obtained by the present model
and the FEM. It can be seen that, the proposed model allows a fine description of the vibrational details, including the local
deformation within the ABH indentation area. Both sets of results seem to agree well, further confirming the remarkable
ability of the proposed model in describing ABH-specific features even for higher-order modes.

A forced vibration analysis is further carried out. A unit harmonic excitation force is applied at point ðxf ; hf Þ ¼ ð1=7; 1=2Þ
on the uniform portion of the plate. The mean square velocities, spatially averaged over the ABH portion and the uniform
portion of the plate, respectively, are calculated and compared with the FEM results in Fig. 7. It can be seen that, with the L and
m combination suggested above, results calculated by the present model are in good agreement with those from the FEM
analysis.

To sum up, above comparisons show that the proposed model provides results which are consistent with FEM results, in
terms of bothmodal characteristics and forced vibration responses. Most importantly, themodel allows reaching the effective
high frequency range, relevant to the ABH investigations. In fact, the frequency range outreach of themethodwell exceeds the
conventionally reachable range using Rayleigh-Ritz models reported in the literature, demonstrating the attractiveness of the
Daubechies scaling functions as a global basis.
4. Numerical analyses and discussions

4.1. ABH phenomena and vibration benefit

Typical ABH phenomena, in terms of the compressed wavelength and increased vibration amplitude, are first analyzed
using the same free plate. Note the issue of addressing other types of boundary conditions using Rayleigh-Ritz method has
been extensively discussed in the literature [20]. It was observed (not shown here) that the boundary conditions do not
fundamentally change the typical ABH phenomena that will be reported hereafter using a freely supported plate. In this case,
the ABH strip covers the entire y direction of the plate. Fig. 8(a) shows a cross sectional viewalong the x-axis of a typical mode
shape (92th order) obtained by the present model. It can be seen that the wavelength begins to decrease at the interface
between the uniform portion and the ABH portion. Meanwhile, the vibration amplitude gradually increases, typical of the
expected ABH feature. After ABH cell modes cut on, the ABH cell is expected to interact with the incident bending wave to
create a significant vibration energy shift to the ABH portion. This is quantified by the ratio of the mean square velocity of the
ABH portion to that of the uniform portion, defined as G ¼ 10 log10

 
< v2ABH >

< v2uniform >

!
. A larger G signifies a greater energy con-

centration in the ABH portion. Fig. 8(b) shows a clear vibration energy shift from the uniform portion to the ABH portion as a
result of typical ABH effect, leading to a strong energy focalization within the ABH strip. This ABH-induced feature is



Fig. 6. Mode shape comparisons: Present model (left); FEM (right). (a) mode 50; (b) mode 79; (c) mode 98.
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conducive to energy harvesting and vibration reduction through local damping enhancement. Results also demonstrate that
the present model correctly captures the main ABH-specific features of the plate.

To investigate the potential of using a strip ABH for vibration reductions, damping layers are symmetrically placed with
respect to the central line of the strip (see Fig. 9(b)), from xd1 ¼ 0.25m to xd2 ¼ 0.31m and from yd1 ¼ 0 to yd2 ¼ 0.56m, with a
constant thickness of hd ¼ 2h0. The damping material has a Young's modulus Ed ¼ 5 GPa, a density rd ¼ 950 kg/m3 and a
Poisson ratio md ¼ 0.3. Plate parameters are the same as those used before, tabulated in Table 1. The total mass of the added
damping layers is 0.26% that of the plate. For comparisons, a reference flat plate of the same size (coated with the same
amount of damping layers at the same corresponding location, shown in Fig. 9(a)) is also considered.

Under the samemechanical excitation, the mean square velocities averaged over the uniform portion of the two plates are
compared in Fig. 10. It can be seen that the vibration level of the plate with the ABH indentation is generally much lower than



Fig. 7. Mean square velocity: ABH portion (left); Uniform portion (right).

Fig. 8. Typical ABH features: (a) Decreased wavelength towards the center of ABH portion; (b) Ratio of the mean square velocity between the ABH portion and
that of the uniform portion.
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that of its flat counterpart. Typically, peak levels differ by up to 12 dB. This shows the benefit of tailoring an ABH strip by
removingmaterials from a flat panel tomake the structure lighter andmore vibration appealing at the same time, as far as the
uniform part of the plate is concerned.

The aforementioned phenomena can be better explained by investigating the effects of the damping layers on each plate.
Fig. 11(a) shows that, due to the rather uniform energy distribution in the flat plate, the use of the small amount of damping
layers turn out to be insignificant, barely visible for some particular resonances. As to the ABH-featured plate, however, the
same amount of damping leads to a much more visible vibration reduction, as demonstrated in Fig. 11(b). The vibration
reduction is more obvious and systematic at higher frequencies, typically above the characteristic frequency of 500 Hz, where
incident flexural waves interact more effectively with the ABH indentation due to their shorter wavelengths compared to the
size of the ABH cell. This is also consistent with previous studies on 1D ABH wedges [8,17] which showed that the impaired
ABH effect caused by the thickness truncations can be well compensated by using a small piece of damping layer coated on
the tapered ABH region. The presence of the damping layers largely reduces the reflection coefficient, thus leading to a more
significant energy concentration and dissipation in the tapered ABH region.

4.2. Modal loss factors

The bi-dimensionality of an ABH plate is expected to exhibit different features as compared to a 1D ABH taper. This is
scrutinized by examining the overall modal loss factors of the strip ABH plate. Upon the deployment of the damping layers
over the strip ABH plate, same as above, Fig. 12 depicts the calculated modal loss factors for the first 100 structural modes.
Note that, as compared with the inherent material damping (0.01 for the plate), one notices a significant damping increase for
most modes, consistent with the observations made in 1D structures [18]. However, different from the 1D case where
damping enhancement is systematic for all modes with roughly the same enhancement level above the characteristic fre-
quency, the current 2D plate exhibits a muchmore scattered pattern in terms of damping enhancement. More specifically, the
cloud points in Fig. 12 seem to regroup into different clusters, each following a different variation trend with respect to the
increasingmode number/frequency. Typical mode shapes in each group are shown in Fig.12. The first group of modes seem to



Fig. 9. Reference plate and ABH plate coated with the same amount of damping layers. Coating area xd1~xd2 ¼ 0.25e0.31m, yd1~yd2 ¼ 0e0.56m and thickness
hd ¼ 2h0: (a) Reference plate; (b) ABH plate. Dark gray area denotes the area coated with damping layers.

Fig. 10. Mean square velocity of uniform portion: Reference plate with damping layers (dot line); Strip ABH plate with damping layers (solid line).

Fig. 11. (a). Mean square velocity of the uniform portion of reference flat plate: Without damping layers (solid line); With damping layers (dot line). (b). Mean
square velocity of the uniform portion of Strip ABH plate: Without damping layers (dot line); With damping layers (solid line).
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follow an obvious monotonically increasing trend with the frequency, with significantly topped-up damping. Mode shapes
show that these modes share the common feature of having a half-wave along the x-direction (thickness tailoring direction)
of the ABH strip, denoted as (1, n) modes. The following group with a moderate damping increase consists of (2, n) modes,
with a full wave contained within the ABH strip in the x-direction. With the further increase in the structural deformation
within the ABH cells along x-direction, the increase of the modal loss factors of the plate further diminishes. At the bottom of
the cloud points are these modes involving a global structural deformation of the plate. When this happens, the deployed
damping layers within the small ABH region cannot generate meaningful damping increase in the overall structure. There-
fore, the observed overall damping increase, brought up by the viscoelastic coating, as well as the vibration reduction
phenomena observed in Fig. 11(b), is mainly attributed to the significant damping enhancement of the lower order local ABH
modes, typically these involving a half and one wave in the direction in which the plate thickness profile is tailored.
4.3. Strip ABH versus circular ABH

It is surmised that bi-dimensionality properties of ABH plates would be better seen with a circular ABH indentation, since
its local thickness variation might generatemore pronounced coupling effects between the x and y directions of the plates. As
aforementioned, apart from some mathematically treatments which are specific to the calculation of the energy terms, the



Fig. 12. Modal loss factors of the strip ABH plate coated with damping layers: (1, n) ABH cell modes (dots with hollow lower part); (2, n) ABH cell modes (dots
with hollow upper part); Global modes (solid dots).

Fig. 13. Plates with two types of ABH indentations: Strip (left); Circular (right). Dark gray area denotes the area coated with damping layers.
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proposed modelling approach is also valid for plates embeddedwith a circular indentation, shown in Fig. 13. Using themodel,
a strip ABH plate and a circular ABH plate are compared in terms of energy concentration. While the local thickness variation
of the strip ABH being hðxÞ ¼ εðjx� xcjÞg þ h0, that of the circular indentation follows hðrÞ ¼ εrg þ h0, where r is the radial
coordinate of the circular ABH indentation. For comparisons, the dimensions of these two plates are chosen to be the same:
a ¼ 0:5m, b ¼ 0:5m, h ¼ 4:7mm. Parameters for both ABH indentation are ε ¼ 0:2, g ¼ 2 and h0 ¼ 0:2mm. The circular
indentation has a radius RABH ¼ 0.15m. To ensure the same area for both indentations, the dimension of the strip ABH is
determined, covering an area from x1 ¼ 0.1m to x2 ¼ 0.4m in x direction and from y1 ¼ 0:13225m to y2 ¼ 0:36775m in y
direction. Similarly, the same amount of damping material, 0.146% of the bare reference plate, is used around the center of
both ABH indentations. For comparison purposes, themean square velocity ratio Gand the overall loss factors of each plate are
calculated and compared.
Fig. 14. Comparison of the ratio of the mean square velocity between the ABH portion and that of the uniform portion without damping layers: Strip ABH plate
(solid line); Circular ABH plate (dot line).



Fig. 15. Comparison of the modal loss factors of the strip ABH plate and the circular ABH plate with damping layers: Strip ABH plate (square dot); Circular ABH
plate (circular dot).
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In the absence of the damping layers, Fig. 14 shows that, above the characteristic frequency (500Hz), the strip ABH plate
seems to be generally superior to its circular counterpart in terms of energy focalization. The overall ABH effect is also
confirmed by Fig.15 in that, upon using the damping layers, the overall loss factors of most the strip ABHmodes are alsomuch
larger than those of circular ABH.

The dynamics of the circular ABH plate can be better understood by examining the local deformation of the ABH in-
dentations. Having understood the relationship between the damping loss factorwith the local mode shapes in the case of the
strip ABH plate, the same analysis is now carried out for the circular one. Similar to the strip ABH plate, Fig. 15 shows that the
largest damping increase also corresponds to the local ABH modes in the circular ABH plate. Different from the strip ABH
plate, for which (1, n) modes have larger modal loss factors than (2, n) modes, for the circular ABH plate, local ABH (1, 2) and
(2, 1) modes seem to provide very similar modal loss factors. Same applied to modes (1, 4) and (4, 1). This is naturally due to
the bi-dimensionality of the circular ABH indentation. In the case of the circular ABH indentation, as opposed to the strip case,
mode classifications seem to be more difficult, although results still suggest that significant damping enhancement is gov-
erned by the lower order local ABH modes.
5. Conclusions

In this paper, a semi-analytical 2D model is proposed for the vibration analyses of rectangular plates containing strip ABH
indentations with a parabolic thickness profile. Under the general Rayleigh-Ritz framework, Daubechies wavelet scaling
functions are employed to decompose the transverse displacement of the plate with ABH indentations featuring a thickness
variation along one direction of the panel. The proposed mathematical treatment establishes the general formalism of the
modelling, including the derivation and the calculation of the connection coefficients of the Daubechies wavelet scaling
functions which are not analytically expressible. Numerical analyses lead to the following conclusions:

1). The proposed model, as well as the associated wavelet-based solution procedure, is shown to be able to overcome
major technical difficulties which are specific to ABH structures: non-uniform wavelength distribution and ABH-
induced wave compressions in the high frequency range in a realistic structure of finite size. More specifically, com-
parisons with FEM simulations show that the proposed model can produce accurate results in terms of the natural
frequencies (with errors typically capped below 2e3%), mode shapes as well as the forced vibration responses, up to a
frequency range governed by roughly the first 100 modes. The accuracy, as well as the frequency outreach well exceeds
similar work reported in the literature. In that sense, this work offers a useful model which is conducive to the study of
ABH phenomena.

2). Numerical analyses show typical energy focalization and dissipation phenomena of a plate with embedded ABH
indentation covered by a small amount of damping materials, pointing at the possibility of designing light-weight
structures with better vibration reduction performance. It is shown that, above the characteristic frequency of the
panel, the ABH-induced damping enhancement phenomenon is mainly attributed to the local structural modes within
the ABH indentation. These modes exhibit lower-order deformations (typically half and one wave along the thickness
tailoring direction) for the strip indentation. Contributions to the damping increase by the higher-order local modes
along the thickness tailoring direction and global modes are trivial and negligible. Owing to the high structural modal
density, this turns out to be enough to produce an appreciable damping increase, and subsequent a vibration reduction
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of the entire structure. A circular indentation basically follows the same trend, except that dominant local modes apply
to both directions of the plate. For the same given indentation area, a strip indentation seems to outperform its circular
counterpart, in terms of both energy focalization and the overall damping enhancement.

As a final remark, Daubechies wavelets, including both highly localized and highly smooth members, are compactly
supported and orthogonal. These properties endow themwith the ability to capture local structural changes and details, even
when the ratio of ABH dimension to the overall structural dimension becomes small. In such cases, one should expect the
effective range of the systematic ABH effects to be increased. For a given problem, a possible optimization could be conducted
using the present modal to strike a balance between the optimal configuration of the ABH cells (number and size) and the
targeted frequency range of interest.
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Appendix A. formulas for M, K, and F

The plate structure is divided into five parts: uniform parts from 1 to 4 and an ABH part 5.

Fig. 16. Division of strip ABH plate.
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is the bending rigidity of uniform portion of the plate.
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Appendix B. Nomenclature
a
 Length of the plate

b
 Width of the plate

h
 Thickness of the uniform portion of the plate

hðxÞ
 Variable thickness of the ABH portion

ε
 A constant defining the thickness profile

g
 Power law index

h0
 Smallest thickness of the ABH identation

hd
 Thickness of damping layers on each side of plate

ki
 Translational stiffness of the boundary artificial springs

ci
 Rotational stiffness of the boundary artificial springs

E0
 Young's modulus of the plate

Ed
 Young's modulus of the damping layers

r0
 Mass density of the plate

rd
 Mass density of the damping layers

h0
 Loss factor of the plate

hd
 Loss factor of the damping layers

fu; v;wg
 Vector of displacement

x,h
 Dimensionless coordinates in x and y directions

aijðtÞ
 Generalized coordinates

p, q
 Truncation order

L
 Lagrangian operator

Ek
 Kinetic energy

Ep
 Potential energy

W
 Work done by external forces

f ðtÞ
 Excitation force

M
 Mass matrix

K
 Stiffness matrix

u
 Complex natural angular frequency

un
 Natural angular frequency

hn
 Modal loss factor

4
 Daubechies wavelet scaling function

j
 Mother wavelet function

pl
 Wavelet filter coefficient

L
 Even integer

m
 Resolution

I
 Connection coefficient

< v2ABH >
 Mean square velocity of the ABH portion

< v2uniform >
 Mean square velocity of the uniform portion

G
 Mean square velocity ratio

hðrÞ
 Thickness of the circular indentation

RABH
 Radius of the circular indentation
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