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A B S T R A C T

The tuning of an acoustic resonator, in terms of its Helmholtz frequency and the internal resistance, is in-
vestigated for the control of a narrowband noise in an acoustic enclosure. This paper extends our previous work
on the resonance control to a more general scenario in which the noise generated may be either close to, far
away from, or in-between the resonance frequencies of the enclosure. Based on a theoretical model, energy
radiation and dissipation of the resonator and its interaction with the acoustic enclosure are scrutinized.
Numerical studies show the possibility of using mistuned resonators to maximize the noise reduction, as well as
the tuning level required for different narrow frequency bands of interests. The effects of the internal resistance
of the resonators as well as its dominance levels in the energy dissipation process are also demonstrated. Part of
the numerical findings are validated through experiments.

1. Introduction

Researches on Helmholtz resonators (HRs) have been conducted for
over a century since Helmholtz first developed the theory on acoustic
resonators [1], as evidenced by a large amount of work reported in the
literature. As an efficient noise control device, HR has been extensively
used in various systems such as double panels [2–4], small enclosures
[5–9] and cylindrical shells [10]. In such applications, HRs are mainly
used to suppress the lower-order system resonances which are difficult
to deal with using classical sound absorption materials. The control
performance of the HR, when deployed in an acoustic system, depends
not only on the characteristics of the HR itself but also on its coupling
with the acoustic modes of the system.

Van Leeuwen [11] conducted an analysis on the damping effect of a
HR on the eigen-tones of a small room using an electrical circuit ana-
logy based on the examination of the coupling between one room mode
and the HR. Improvement on similar topic was made by Fahy and
Scofield [12] using a fully coupled model that accounts for the inter-
action between multiple modes of an enclosure and a resonator. By
assuming that the averaged separation between the resonance fre-
quencies of the enclosure greatly exceeds the average modal band-
width, the coupling between one enclosure mode and a resonator was
studied analytically. It was found that, unlike the case of a resonator
coupled to a free space in which the maximum power absorption is
determined by the matching between the sound radiation and the

internal resistance of the resonator, the maximum power absorption is
simply inversely proportional to the internal resistance of the resonator.
This is because that the resonator, acting like a secondary source, re-
radiates acoustic energy into the enclosure, thus resulting in an effec-
tive interaction with the original acoustic field produced by the primary
acoustic source. Cummings [13] extended Fahy and Scofield’s model to
multiple resonators through analyzing the coupling between multiple
enclosure modes and a resonator array. In that work, the HRs were
assumed to behave like small pulsating spheres and the averaged
acoustic pressure on the surface of each sphere was calculated by
avoiding the singularity problem of the point source assumption.
However, a relatively large discrepancy was observed between the
coupled frequencies obtained from Cummings’s pulsating sphere model
and those obtained from the measurement, due to the pulsating sphere
assumption. This problem was overcome by Li and Cheng [14] by di-
rectly solving the fully coupled equation arising from the interaction,
inherent in the enclosure-resonator system. Later on, Yu et al. [15] used
this model to study the working mechanism of a resonator for the
control of the enclosure noise within different bandwidths. Analyses
show that, for the narrowband noise control, the radiation of the re-
sonator dominates; whereas with the increasing band, the energy dis-
sipation of the resonator becomes important.

The aforementioned work mainly focused on abating noise at or in
the vicinity of the resonance frequency of an enclosure. In practice,
however, a good design should prevent the system from major
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resonances, especially at low frequencies. Occasions arise in which
noise can be generated within a narrow frequency band, away from any
resonance frequency of an enclosure mode. A representative noise
source is the rotating machinery which produces noise at its blade
passing frequency. In such cases, the extent to which previous resonator
design principles can be utilized remains unknown. This motivates the
present work, and to that end, the acoustic resonator design strategy is
revisited in a broader context to include off-resonance narrowband
control based on the tuning of two resonator parameters, i.e. Helmholtz
frequency and the internal resistance.

This paper is organized as follows. In Section 2, a theoretical model
describing the coupling between one resonator and an enclosure will be
recalled. Based on the model, the energy dissipated and radiated by the
resonator are separately quantified, and an acoustic energy reduction
index is defined to evaluate the control performance. In Section 3, the
tuning strategy of the Helmholtz frequency is investigated for both
resonance and off-resonance cases. In Section 4, the internal resistance
of the resonator is investigated to reveal the working mechanism of the
resonator in different frequency regions, formulating recommendations
for choosing proper internal resistance to improve the noise control
performance. Experiment validations are then presented in Section 5.

2. Theoretical model

The system under investigation comprises a rigid-walled enclosure
and a classical HR, shown in Fig. 1. The HR consists of a cavity volume
VR, a neck of area SR and effective length lR. Throughout this paper, the
superscripts and subscripts E, R and S indicate variables associated with
“enclosure”, “resonator” and “source”, respectively.

2.1. Acoustic interaction between an enclosure and one resonator

The acoustic pressure inside the enclosure is governed by the in-
homogeneous wave equation [16]

∇ − = − −r r r rp t
c

p t ρ q t δ( , ) 1 ¨ ( , ) ̇( ) ( ),2
2 0 0 (1)

where q ṫ ( ) is the source volume velocity per unit volume; c is the sound
speed; and −r rδ ( )0 is the Dirac delta function. The primary acoustic
field inside the enclosure is excited by a harmonic source with qS lo-
cated at point rS; while the resonator with an equivalent source volume
velocity per unit volume qR, located at point r R (center of the resonator
orifice), forms the secondary acoustic source. Using the acoustic

impedance of the resonator at its orifice Z [17], qR is given by
= rq t p t Z( ) ( , )/R . Eq. (1) becomes
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The acoustic pressure rp t( , ) can be decomposed over the enclosure
modes as = ∑ =r rp t t φ( , ) Ψ ( ) ( )j

J
j j1 , in which tΨ ( )j is the time-dependent

modal response of the jth mode, rφ ( )j is the jth eigenfunction and J is
the maximum number of the truncated mode series. Assuming all the
time dependent variables are harmonic and applying the orthogonality
property, the analytical solutions of the velocity of the equivalent vo-
lume source ∼Q R directed outward from the resonator orifice into the
enclosure and the jth modal response Pj of the enclosure-resonator
system are, respectively,
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∼Q S is the velocity of the primary volume source, obtained from
= ∼q t Q e( )S S iωt ; VE is the volume of the enclosure; γj

E is the jth complex
eigenvalue of the enclosure expressed as = +γ ω iCj

E
j
E

j
E, in which the

real part is the angular frequency and the imaginary part is an
equivalent ad-hoc damping coefficient; ∫= rφ dV VΛ [ ( )] /j V j

E2 2
E ; ∼ rφ ( )j

S

is the averaged rφ ( )j
S over the volume of the primary acoustic source; Ri

is the specific acoustic resistance of the resonator; and
=ω c S L V( / )R R R R is the Helmholtz frequency of the HR.
Eq. (4) provides the analytical solution to the acoustic response of

the enclosure in the presence of a single resonator. It implies that the
acoustic field comprises two parts: the primary acoustic source field and
the secondary acoustic source field. The latter is attributed to the re-
sonator radiation and arises from the coupling between the resonator
and multiple enclosure modes. The resistance of the resonator is also an
important factor which determines the acoustic interaction. On one
hand, it governs the dissipation capability of the vibrating fluid in the
neck of the resonator; on the other hand, it affects the extent to which
the resonator radiates energy into the enclosure.

2.2. Energy radiation from the resonator

The modal response Pj
R caused by the resonator alone writes
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where Ph can be obtained from Eq. (4) by replacing the subscript j with
h. The generalized amplitude of the acoustic pressure induced by the
resonator radiation can be calculated as

̂ ∑=
=
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j

J

j
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j
1 (6)

The energy emitted from the resonator orifice in a time period of T can
be expressed as

= +E w w ,radiation
R

d (7)

where w is the time-averaged acoustic energy inside the enclosure,Fig. 1. A damped classical Helmholtz resonator.
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including both the potential energy and kinetic energy, and wd is the
time-averaged energy dissipation inside the enclosure, which is ap-
proximately determined by the Q-factor of the enclosure QE as

=w π
Q

w2 .d E (8)

The time-averaged acoustic energy w over the enclosure volume V is
calculated by [15]:
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in which the two terms in the square bracket are the time-averaged
kinetic energy and potential energy, respectively. When the integrated
volume V is the entire volume of the enclosure VE, Eq. (9) writes
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2.3. Energy dissipation by the resonator

The energy dissipated by the resonator within a period T writes
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Under the lumped mass assumption, the energy dissipated by the re-
sonator is calculated from
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Substituting Eq. (12) into Eq. (11) and replacing T by π ω2 / yield
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If only the jth enclosure mode is considered, the power dissipated by the
resonator at the resonance frequency, i.e. = =ω ω ωR

j, is simplified
from Eq. (14) as
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From Eq. (15), the modal response of the jth enclosure mode can be
obtained as
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where kR is the wave number at the resonance frequency of the jth
mode, =Q ωρ L R/R R

i0 according to Eq. (16), and =Q ω C/2j
E R

j
E. In the

absence of the resonator, the normalized modal response of the en-
closure writes
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Substituting Eqs. (16) and (17) into Eq. (15), the power dissipated by
the resonator at the resonance frequency of the jth enclosure mode can
be obtained as
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where ̂P R0 is the amplitude of the acoustic pressure at r R without the

resonator. When only one mode is considered, Eq. (18) leads to the
same dissipated power expression as the one proposed in Ref. [12].

2.4. Quantifications of the band-averaged performance of the resonator

To quantify the control performance of the resonator over a selected
frequency band, an acoustic energy reduction index is defined, which
will be used as the parameter to optimize the internal resistance of the
resonator. After obtaining the modal response from Eq. (4), the acoustic
energy inside the enclosure can be directly calculated from Eq. (10).
The averaged acoustic energy within the frequency band [ω1, ω2] is
defined as

∫=
−

E
ω ω

wdω1 .R
ω

ω

2 1 1

2

(19)

The frequency band ω ω[ , ]1 2 is usually selected based on the control
requirement, which may or may not contain any acoustic resonance of
the enclosure. When calculating w by Eq. (9), the volume V can be
either a portion or the entire volume of the enclosure, depending again
on the control requirement. The so-called acoustic energy reduction
index (ER) is defined as

= − E
E

ER 10log ,
R

10 0 (20)

in which ER and E0 are the acoustic energy with and without the re-
sonator, respectively.

3. Design strategy of the Helmholtz frequency

In this section, the tuning of the Helmholtz frequency on the re-
duction of the narrowband noise in an enclosure is investigated. A
rectangular enclosure with Lx = 976mm, Ly = 695mm, Lz = 1188mm
is used in the calculation. An acoustic monopole source and an observer
point are located at (100, 59, 0)mm and (816, 70, 1028)mm, respec-
tively, both being arbitrarily chosen. The number of the enclosure
modes considered in the simulation is 216 (6 for each direction), which
is proved to be sufficient to ensure the convergence of the calculation
result. For the sake of convenience, simulations are conducted for an
acoustic source having uniform source strength across the entire fre-
quency spectrum while the narrowband effect of the resonator is ac-
counted for by integrating the system response over a selected fre-
quency region. The Sound Pressure Level (SPL) at the observer point is
calculated within a frequency band and shown in Fig. 2, with four re-
sonance frequencies tabulated in Table 1.
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Fig. 2. Predicted baseline SPL at the observer point (816, 70, 1028)mm.
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3.1. Tuned and mistuned resonators

The effect of the Helmholtz frequency of the resonator is first ex-
amined on a selected resonance of the enclosure, e.g. the second one,
within a 3 Hz bandwidth centered at 176.6 Hz. Two resonators, one
tuned exactly to the central frequency of the narrowband (called tuned
resonator) and the other off the central frequency (called mistuned
resonator), are investigated, respectively. The resultant SPLs are com-
pared with the case without resonator in Fig. 3. It can be seen that both
resonators are effective in suppressing the resonance peak of the en-
closure, each giving rise to a pair of coupled peaks when the resonators
are added. The increase in the SPL due to the coupled peaks is beyond
the 3 Hz bandwidth. Using Eq. (20), the band-averaged energy reduc-
tion for the tuned resonator case is 16 dB, which is 2.4 dB lower than
the mistuned resonator case within the specified frequency band, im-
plying a better performance of the mistuned resonator in this case.

The advantage of using mistuned resonator in achieving a greater
noise reduction within a given narrow frequency band is also found
when considering a band away from any of the resonance frequencies of
the enclosure. This is evidenced by comparing two different frequency
regions: one slightly off the resonance frequency of the enclosure
(called transition region); and the other one approximately located in
the middle of two neighboring resonance frequencies of the enclosure
(called off-resonance region). Again, the control performances using
tuned and mistuned resonators are shown in Figs. 4 and 5, respectively.
For the transition region, as is shown in Fig. 4, the band-averaged en-
ergy reduction brought by the mistuned resonator is 10.1 dB, which is
4.4 dB better than the tuned case. For the off-resonance region, as is
shown in Fig. 5, the band-averaged energy reduction of the mistuned
resonator is 0.7 dB better than that of the tuned one, albeit the rather
small reduction produced in both cases (2.2 dB and 2.9 dB, respec-
tively).

3.2. Mistuning effect of the resonator

The above results imply that a resonator may be mistuned from the
central frequency of the narrowband noise to achieve a better noise
control performance. To further understand and assess the phenomena
observed above, the mistuning effect is examined with the narrowband
noise sweeping over a wide frequency range. For each targeted nar-
rowband, a frequency difference is defined as

= −f f fΔ ,tuned optimal (21)

where ftuned and foptimal are, respectively, the Helmholtz frequency of the
tuned resonator and the optimized Helmholtz frequency of the re-
sonator when the maximum band-averaged energy reduction is
achieved, which can be either a tuned or mistuned resonator.

Fig. 6(a) shows fΔ as a function of the central frequency of the
narrowband noise, with different line styles representing different
bandwidths, namely 3 Hz, 5 Hz, and 7 Hz, respectively. It can be ob-
served in Fig. 6(a) that the variation of fΔ exhibits a periodic pattern

Table 1
Computed natural frequencies of the enclosure.

Index Mode number (lmn) Natural frequency (Hz)

1 001 145
2 100 176.6
3 101 228.4
4 010 247.8

Frequency (Hz)
168 170 172 174 176 178 180 182 184 186

SP
L

 (d
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)

40

45

50

55

60

65

Fig. 3. Control performance of different resonators in the resonance region:
without resonator; with tuned resonator (176.6 Hz); with mistuned
resonator (178.0 Hz).

Frequency (Hz)
179 180 181 182 183 184 185 186

SP
L

 (d
B

)

30

35

40

45

50

55

60

Fig. 4. Sound pressure levels using two different resonators in the transition region:
without resonator; with tuned resonator (182 Hz); with mis-

tuned resonator (184.8 Hz).
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Fig. 5. Sound pressure levels using two different resonators in the off-resonance region:
without resonator; with critical tuned resonator (205 Hz); with

mistuned resonator (205.8 Hz).
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with respect to the resonance frequencies of the enclosure (the four
resonance frequencies are marked by dotted lines in the figure). Taking
the 3 Hz bandwidth curve as an example, fΔ takes a smaller value when
the targeted narrowband is far from the resonance frequencies of the
enclosure, suggesting that the resonator should be tuned to a frequency
approximately equal or very close to the central frequency of the tar-
geted narrowband noise for maximum noise reduction. fΔ increases
when the targeted band approaches one of the resonance frequencies of
the enclosure, indicating a better control performance of a mistuned
resonator than a tuned one. The maximum fΔ , however, occurs at the
frequency slightly away from the resonance frequencies of the en-
closure. The phenomenon can be explained by observing the control
effect of the resonator shown in Fig. 4, in which, with a tuned resonator,
the SPL experiences a decrease over part of the bandwidth and an in-
crease over the other part, resulting in a neutralized band-averaged
energy reduction. To avoid this, the resonator has to be mistuned away

from the central frequency of the noise to achieve a reduction in the SPL
within the 3 Hz bandwidth. After passing the maximum, fΔ drastically
drops to a relatively small value before starting the next cycle. If the
targeted band becomes broader, it can be observed that although the
three curves follow similar variation trend, they are different in terms of
the amplitude. In general, a wider frequency band requires a larger
degree of mistuning.

To examine the differences in the performance of the tuned re-
sonator and optimally tuned resonator, a band-averaged energy re-
duction difference ΔER is defined as

= −ΔER ER ER ,optimal tuned (21)

where ERoptimal and ERtuned are the energy reduction (ER) value
achieved by the optimally tuned resonator and the tuned resonator,
respectively. As observed in Fig. 6(b), the variation trends of the ΔER
are similar to that of fΔ . Near resonance frequencies, a mistuned re-
sonator is clearly more preferable to a tuned one. The largest ΔER
which can be achieved in the present case can be as high as 8 dB, nearly
twice as much as that achieved by the tuned resonator. However, it is
noted that the benefit of using an optimally tuned resonator becomes
less obvious when the frequency band enlarges, as evidenced by the
decrease in ΔER with the increase of the bandwidth, shown in Fig. 6(b).

The mistuning effect is a result of the coupling between the re-
sonator and multiple modes of the enclosure, as opposed to the ideal
case in which the resonator is assumed to be coupled to a single en-
closure mode. For the latter case, Fahy and Schofield [12] suggests that
the best performance occurs when the resonator is tuned to the re-
sonance frequency of the enclosure. Fig. 7(a) and (b) show fΔ as a
function of the number of the enclosure modes used in the simulation,
for a 3 Hz bandwidth narrowband noise, centered at 176.6 Hz and
205 Hz, respectively. The enclosure modes on the x-axis are arranged
according to their closeness to the central frequency of the narrowband
noise. It can be observed in Fig. 7(a) and (b) that fΔ converges only
when a sufficient number of enclosure modes are considered. For the
control of a narrowband noise in this frequency region, the resonator
generates an acoustic field to oppose to the primary acoustic field. The
resultant acoustic field in the enclosure, instead of being dominated by
a single enclosure mode, involves multiple modes of the enclosure, thus
requiring a tuning strategy different from that of the ideal case in which
the enclosure is assumed to be dominated a single mode. Particularly in
Fig. 7(a), where the narrowband noise is centered at the resonance
frequency of the enclosure, fΔ is zero when only one mode is con-
sidered, in agreement with the conclusion of Fahy and Schofield [12].

4. Tuning of the internal resistance of the resonators

The resonator internal resistance is another important parameter
affecting the noise reduction mechanism. Note that a tuning of the
acoustic resistance of resonators leads to a change in its damping which
subsequently affect the phase on the frequency response function curves
in the vicinity of the system resonances. It was found that, at a re-
sonance frequency, the energy radiation dominates the interaction
process when the target band is narrow, while it transits to an energy
dissipation domination as the target band becomes wider [1]. In what
follows, this issue is revisited in a much broader context to cover dif-
ferent frequency regions.

4.1. Off-resonance region

A 3Hz bandwidth centered at 195 Hz, which is in an off-resonance
region, is first investigated. Fig. 8(a–c) show the band-averaged dis-
sipated energy, radiated energy from the resonator and the corre-
sponding ER when the internal resistance of the resonator is varied
from 0.01 to 50 mks Rayls. A maximum ER reduction of 1.9 dB is ob-
served in Fig. 8(c) when Ri=0.01 mks Rayls, which can be referred to
as the optimal resonator resistance. A similar variation trend is

(a)

(b) 
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Fig. 6. (a) Difference in Helmholtz frequency between an optimally tuned and a tuned
resonator as a function of the central frequency of a narrowband noise; (b) Difference in
energy reduction between an optimally tuned and a tuned resonator as a function of the
central frequency of a narrowband noise. Targeted bandwidth: 3 Hz;
5 Hz; 7 Hz.
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observed in Fig. 8(b), indicating that the noise reduction process is
dominated by the resonator radiation in the present case. Despite the
dominance of the radiation effect of the resonator in both the resonance
and off-resonance regions, the energy radiated by the resonator in the
present case is found to be smaller than that in the resonance region. In
the present case, the energy radiated by the resonator is 9470 J, which
is approximately half of that in a same bandwidth centered at a re-
sonance frequency, and the dissipated energy is around 20% of its
counterpart [15].

Analyses are then conducted for different bandwidths centered at
195 Hz. The bandwidth varies from 0.2 Hz to 10 Hz. For each frequency
band, two optimal internal resistances of the resonator are calculated.
One is obtained by maximizing the ER and denoted as the optimal re-
sistance Ropt . The other one is obtained by maximizing the energy
dissipation by the resonator and denoted as Rdis. The comparison be-
tween Ropt and Rdis in terms of the bandwidth is shown in Fig. 9. It is
observed that Ropt remains small as the bandwidth increases, suggesting
that the noise reduction in the enclosure is dominated by the radiation
effect of the resonator and this working mechanism is independent of
the bandwidth of interest.

To depict the overall picture of the working mechanism of the
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Fig. 7. Effect of the modal coupling on fΔ with a 3 Hz bandwidth centered at: (a)
176.6 Hz, (b) 205 Hz.
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resonator across different frequency regions, the optimal resistance for
ER has been calculated for different central frequencies from 170 Hz to
235 Hz, across two resonance frequencies 176.6 Hz and 228.4 Hz.
Results are shown in Fig. 11 for different bandwidths. For each fre-
quency band that is analyzed, the optimal resistance is obtained based
on the optimally tuned resonator so as to develop a systematic design
strategy, with which the two most important parameters of the re-
sonator, the Helmholtz frequency and the internal resistance, can be
taken into account simultaneously.

It can be seen in Fig. 10 that the optimal internal resistance of the
resonator undergoes different variations in two typical frequency re-
gions: resonance and off-resonance regions as defined previously. In the
resonance region, the bandwidth excises an obvious influence on the
optimal values of the resistance. The optimal resistance takes small
values when the frequency band is very narrow (3Hz), demonstrating
the dominance of sound radiation from the resonator in this case. It
then undergoes obvious increases when the bandwidth is increased (to
5 Hz) before losing the momentum when the bandwidth becomes larger
(above 5 Hz). Within this resonance region, the resonator needs to be

strongly coupled to the dominating resonance mode to ensure an ef-
fective noise reduction, which is sensitive to the internal resistance of
the resonator. Changes in the optimal internal resistance of the re-
sonator reflects the balance that needs to be stricken between the sound
radiation and the energy dissipation of the resonator in order to achieve
the maximum sound reduction in the enclosure. In the off-resonance
region, the optimal internal resistance is kept low and not sensitive to
the bandwidth, indicating the dominant radiation effect produced by
the resonator.

5. Experiment validations

The proposed design strategy is validated using a multi-cavity
system, which consists two sub-cavities as shown in Fig. 11(a). The
system was investigated as a simplified model of a spacecraft cabin
module. The cavity wall is made of 30mm thick acrylic panels and can
be considered acoustically rigid. Two circular holes are drilled at (1800,
50, 75) mm and (1090, 400, 150) mm in sub-cavity 2, used to connect
to a loudspeaker to excite the primary sound field in the enclosure and
to pass the wires of the measurement microphones, respectively. Two
microphones are installed at (1790, 50, 125) mm and (970, 150, 250)
mm in sub-cavity 2. The measured quantity is the transfer function of
the acoustic pressure measured at two microphone positions [18,19].
The transfer function of the empty cavity without resonator is shown in
Fig. 11(b). The resonators used in the experiments are T-shaped
acoustic resonators. A method to characterize the detailed properties of
the T-shaped acoustic resonator is documented in [20].

Two frequency bands [190,195] Hz and [325,330] Hz with a 5 Hz
bandwidth are considered, the former being close to the resonance
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frequency 202 Hz and the latter is relatively far from any resonance
frequencies of the system. The configurations and detailed dimensions
of the T-shaped resonator are shown in Fig. 12 and Table 2, respec-
tively.

For the frequency band [190, 195] Hz with a central frequency at
192.5 Hz, the control performances using two resonators located at
(768, 155, 39) mm inside sub-cavity 2 are compared. The two re-
sonators, denoted by TAR_192.5 and TAR_189 and shown in Fig. 13(b),
have their Helmholtz frequencies at 192.5 Hz and 189 Hz, respectively.
Control results are shown in Fig. 13(a). It can be seen that the tuned
resonator TAR_192.5 fails to reduce the SPL within the target frequency
band. However, the mistuned resonator TAR_189 achieves an ap-
proximately 9 dB ER within the target frequency band, in agreement
with the theoretical analyses. It also confirms the fact that a mistuned
resonator with a negative fΔ is necessary in this case, in agreement with
the previous numerical analyses as well. As for the other frequency
band [325, 330] Hz using TAR_328, shown in Fig. 14(b) and located at
the same point inside sub-cavity 2, Fig. 14(a) shows a 1.4 dB SPL re-
duction within the frequency band of interest, in agreement with the
theoretical analyses that no mistuning is needed in this case.

6. Conclusions

Based on an analytical development of an acoustic enclosure cou-
pled with a Helmholtz resonator, a tuning strategy in terms of
Helmholtz frequency and internal resistance is developed. Main con-
clusions are summarized as follows:

Fig. 12. Configurations of the T-shaped resonator.

Table 2
Physical dimensions of the T-shaped resonator.

Resonator Helmholtz
frequency
(Hz)

D1 (mm) S (mm) L1 (mm) L2 (mm) L3 (mm)

TAR_189 189 21 30×30 19 19 405
TAR_192.5 192.5 21 30×30 19 19 397
TAR_328 328 21 30×30 19 19 214
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(1) Noise reduction can be maximized through an optimal tuning of the
resonators, with their Helmholtz frequency mistuned from the
central frequency of the targeted frequency band. The mistuning
effect arises as a result of the multi-modal coupling within the en-
closure-resonator system. The optimal mistuning level fΔ , either
positive or negative, depends on frequency regions. In the re-
sonance region, fΔ , albeit small, should be carefully determined
due to the high sensitivity of the sound filed to the resonator. In the
off-resonance region, mistuning effect is insignificant. In the tran-
sition region, optimal fΔ can take a large value, which should be
meticulously determined through numerical simulations. As a
general rule, same extra care is needed in dealing with narrow-band
noise control.

(2) The optimal tuning of the internal resistance of the resonators de-
pends on the targeted frequency region and the bandwidth. Within
the resonance region, the optimal internal resistance should in-
crease with the bandwidth. In the transition and off-resonance re-
gions, only narrow band noise reduction (typically smaller than
5 Hz) can be achieved by using resonators with a low internal re-
sistance, as a result of enhanced radiation effect of the resonators.
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