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a b s t r a c t

The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide
an economic solution for vibration suppressions if the absorber is properly designed and
located onto the structure. A common design of the DVA is a sprung mass because of its
simple structure and low cost. However, the vibration suppression performance of this
kind of DVA is limited by the ratio between the absorber mass and the mass of the primary
structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for
minimizing the resonant vibration of a general structure. The vibration suppression per-
formance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and
length of the beam. In comparison with the traditional sprung mass DVA, the proposed
beam DVA shows more flexibility in vibration control design because it has more design
parameters. With proper design, the beam DVA's vibration suppression capability can
outperform that of the traditional DVA under the same mass constraint. The general
approach is illustrated using a benchmark cantilever beam as an example. The receptance
theory is introduced to model the compound system consisting of the host beam and the
attached beam-based DVA. The model is validated through comparisons with the results
from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is
then employed to derive the analytical expressions for the optimum tuning ratio and
damping ratio of the proposed beam absorber. A design guideline is then presented to
choose the parameters of the beam absorber. Comparisons are finally presented between
the beam absorber and the traditional DVA in terms of the vibration suppression effect. It
is shown that the proposed beam absorber can outperform the traditional DVA by
following this proposed guideline.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

A Dynamic Vibration Absorber (DVA), also known as the tuned mass absorber, is a mechanical device designed to be
attached to a primary dynamic structure in order to reduce its vibration or sound radiation. A traditional passive vibration
absorber consists of a single degree-of-freedom (SDOF) mass-spring-damper system. The DVA can be used to reduce the
unwanted vibration due to a resonant mode or the forced vibration of the primary structure. When properly tuned to deal
with the vibration at the targeted frequency, the vibration energy can be transmitted efficiently from the primary structure to
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the DVA, leading to a reduction in the vibration of the primary structure. DVAs have been extensively applied in civil engi-
neering [1e3] to strengthen the resistance of slender tall buildings subjected to wind loads or seismic excitation.

Many criteria can be found in the literature for the optimal design of tuning frequency and damping ratios of the DVA to
maximize its vibration suppression performance [4e7]. The most commonly used one is the H∞ criterion to minimize the
maximum vibration amplitude of the primary structure. Commonways of achieving the H∞ optimal design of the traditional
DVA is to apply the fixed-points theory proposed by Den Hartog in 1928 [4]. The theory states that there exist two fixed points,
independent of the damping, in the frequency response spectrum of an undamped SDOF primary system connected with the
traditional DVAs. The optimum tuning ratio is determined by making the two fixed points equally high in the spectrum and
the optimum damping ratio is determined by making the two fixed points to be the highest points in the response spectrum.
The H∞ design strategy works well for the narrow band control. To tackle the broadband problem like the random excitation,
the H2 optimization criterion can be applied.Warburton [5,6] derived the optimum tuning ratio and damping ratio in order to
minimize the mean square values of the vibration displacement or kinetic energy over a frequency band under various types
of external excitations. Asami et al. [7] introduced the damped SDOF primary system and derived the series solution for the
H∞ optimization and the analytical solution for the H2 optimization of the absorbers parameters. They confirmed that their
solution of the optimal absorber parameters could be degenerated to the existing value by Den Hartog's method [4] when the
primary system's damping is assumed to be zero.

There are many research works done to extend the fixed-points theory for global vibration control of continuous struc-
tures [8,9] and the optimization of variant design of DVA [10]. The limitations of the traditional mass spring DVA aremainly in
three aspects. a) Their vibration suppression performance is limited once the mass ratio is fixed. Without sufficient absorber
mass, the vibration suppression effect is not significant. Due to physical or practical constraints, the absorber mass is seldom
larger than 20% of the mass of the primary structure. b) The stiffness of the spring can neither be too high or too low. The
spring stiffness can't be too low or else the static displacement will become very large, rendering it difficult to be imple-
mented in practice. If the spring is too hard it can't achieve vibration control at low frequency. c) Their vibration control
performance is undermined if the resonance frequency deviates from the targeted value for which they are designed (also
known as detuning effect). The solutions to the last question have been attempted bymany researchers. The methods include
developing active, semi-active or hybrid control devices [11e14] or adaptive vibration absorbers [15] whose stiffness varies
with the excitation frequency. These devices are usually bulky and need external energy input. Acar and Yilmaz [16]
developed a adaptive absorber consisting of a string-mass system equipped with negative stiffness tension mechanism. Their
design allows the absorber's natural frequency to be varied within a certain frequency range by using a small tuning actuator
force. This kind of device provides a solution for the bulky and energy-consuming problem in the design of adaptive absorber.
However, most of the adaptive absorbers with other physical mechanisms still have the size and energy problems. Mean-
while, strategies involving multiple tuned vibration dampers (MTVD) [17,18] are also investigated to overcome the detuning
effect.

As far as the authors know, there is still a lack of effort to address the challenges in a) and b). A beam type DVAwhich can
have better vibration suppression performance under the same mass constraint as compared to the traditional spring mass
DVA is proposed. Moreover, this type of DVA can easily control low frequency vibration by using a long beam as the absorber.
Aida et al. [19] has reported the optimization of a beam type DVA connected to the host beam through spring and damping
element. Under the same boundary constraints, the beamDVA and the host beam can be reduced to a 2-DOF system, and then
the fixed-points theory is used to obtain the optimum tuning ratio and damping ratio. In their optimization method, the
vibration control effect of the beam type DVA is still dependent on the mass ratio between the two beams. Moreover, the
spring and damping element are required to be accurately manufactured to their optimum value. On the other hand, the
proposed beam DVA of this paper doesn't require any extra stiffness element and its vibration control effect is not solely
dependent on the mass ratio. The working principle of the proposed beam DVA is described in Sections 3 and 6 of this paper.

The idea of the beam-based dynamic vibration absorber proposed in this paper was inspired by the work of Tso et al. [14]
as shown in Fig. 1, in which a hybrid DVA capable of achieving the global control in a broadband vibration of a primary beam
structure is established. This hybrid DVA has a passive control part consisting of a rotational beam structure with a lumped
Fig. 1. A cantilever beam carrying the proposed HVA at the end of the beam [14].
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mass. Similarly, the passive dynamic vibration absorber used in this paper consists of a rotational beam structure with viscous
damping which is optimized based on the fixed-points theory. This basic configuration lays the foundation for developing
more complicated absorbers based on the continuous beam structure, by attaching a lumpedmass at the free end of the beam,
adding constrained damping layer to the beam, etc.

The layout of this paper is arranged as follows. In Section 2, the receptance theory is introduced to derive the receptance
expression of a general structure attached with a general DVA. To illustrate the verification of the receptance theory, the
detailed modeling of the L-shaped compound system is presented in Section 3. The receptance of beam absorber, is defined as
the ratio of the rotational angle from the attached point to the moment transferred to the primary beam. The continuous
conditions at the connecting point include the equivalence of the rotation angle, shear force and moment at the connecting
point. The receptance expression of the cantilever primary beam according to similar procedure in Section 2 can be derived. In
Section 4, a specific case study is used to validate the modeling method by comparing the results with these from Abaqus and
Transfer Matrix Method(TMM). In Section 5, the fixed points are shown to exist, which are independent of the damping ratio
in the beam absorber. The fixed-points theory is then used to obtain the analytical formula of the optimum tuning ratio and
damping ratio. In Section 6, the relationship of the tuning ratio with the physical parameters of the compound system is
demonstrated. A guideline for designing the beam absorber is then given. In Section 7, a comparison of the beam absorber and
the traditional DVA in vibration suppression performance is conducted. It is shown that the beam absorber can outperform
the traditional DVAwhen the geometry is properly designed. Conclusions are presented with future work being discussed in
Section 8.
2. Receptance theory of a general dynamic structure connected with a discrete DVA

In this Section, a brief review of the receptance theory is presented first and then the receptance theory is applied to obtain
the displacement response of a multimode system connected with a traditional DVA (i.e., mass-spring-damper) under
external harmonic force excitation.
2.1. Modal receptance of a dynamic structure

When a system is subjected to a general harmonic unit excitation, its vibration response is called the receptance [20]. The
so-called response can be defined as the complex harmonic displacement or rotation due to a unit real harmonic force or
moment.

Consider a multimode system subjected to a single harmonic force F cos ut at ðxs; ysÞ as shown in Fig. 2a.
The generalized equation of motion in the jth modal coordinate as shown in Fig. 2b is given by

mj €qj þ cj _qj þ kjqj ¼ Qj ¼ Re
h
Ffjðxs;ysÞeiut

i
(1)

wheremj; cj; kj are the modal mass, damping loss coefficient, and stiffness, respectively, corresponding to the jth mode of the

dynamic system. The right-hand side of Eq. (1) represents the real part of the complex dynamic response. fjðx; yÞ is the jth

mode shape function. Ffjðxs;ysÞ is the magnitude of the general force Qj exerting on the jth mode. The receptance of the jth

mode represents the complex displacement due to a unit real force in the decoupled jth mode system written as
Fig. 2. (a) The general structure subjected to a harmonic external concentrated force (b) The mass-spring-damper system in the jth mode coordinate.
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ajj ¼
1

mj

�
U2
j � u2 þ i2xjUju

� (2)

where Uj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kj=mj

q
; xj ¼ cj=2

ffiffiffiffiffiffiffiffiffiffi
kjmj

q
are the jth modal frequency and damping loss factor respectively.

Thus, the displacement at any point ðx; yÞ writes
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�mju

2 þ cjuiþ kj

3
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3
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2
4X∞
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Ffjðx; yÞajjfjðxs;ysÞeiut
3
5

(3)
2.2. The receptance of a dynamic structure connected with a DVA under external force

Consider the case when a traditional DVA is connected to the primary structure at ðxs; ysÞ with a harmonic external force
ReðFeeðiutÞÞ exerted at ðxe; yeÞ of the structure as shown in Fig. 3.

The reaction force of the DVA on the primary structure is �ReðFs exp iutÞ. Let aaux and Wðxs; ysÞ represent the receptance
of the DVA and the complex displacement at the connecting point ðxs; ysÞ, respectively. The displacement Wðxs; ysÞ can be
related to the magnitude of the reacting force Fs as

Wðxs; ysÞ ¼ �aauxFs (4)
According to Eq. (2), the displacement of the primary structure at point ðx; yÞ due to the reaction force of DVA, ReðFseiutÞ,
and the external force ReðFeeiutÞ can be written as

Wðx; yÞ ¼
X∞
j¼1

fjðx; yÞajjfjðxs;ysÞFs þ
X∞
j¼1

fjðx; yÞajjfjðxe;yeÞFe (5)
The complex displacement of the primary structure at the connecting point ðxs; ysÞ is therefore written as
Fig. 3. A dynamic structure connected with a mass-spring- damper.
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Wðxs; ysÞ ¼
X∞
j¼1

fjðxs; ysÞajjfjðxs; ysÞFs þ
X∞
j¼1

fjðxs; ysÞajjfjðxe;yeÞFe (6)
Substituting Eq. (4) to Eq. (6) gives the complex displacement at point ðxs; ysÞ written as

Wðxs; ysÞ ¼
X∞
j¼1

fjðxs; ysÞajjfjðxs; ysÞ
�
�Wðxs; ysÞ

aaux

�
þ
X∞
j¼1

fjðxs; ysÞajjfjðxe;yeÞFe

¼

P∞
j¼1

fjðxs; ysÞfjðxe;yeÞajj

1þP∞
j¼1

�
fjðxs; ysÞ

�2 ajj
aaux

Fe

(7)
Substituting Eq. (7) to Eq. (6) gives the complex displacement at point ðx; yÞ written as

Wðx; yÞ
Fe

¼
8<
:
X∞
j¼1

fjðx; yÞajjfjðxs;ysÞ
	
�Wðxs;ysÞ

aaux



þ
X∞
j¼1

fjðx; yÞajjfjðxe;yeÞFe

9=
;
,

Fe
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X∞
j¼1

fjðx; yÞajj

2
6664� fjðxs;ysÞ

P∞
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fkðxs;ysÞfkðxe;yeÞ
akk
aaux

1þP∞
j¼1

½fkðxs;ysÞ�2
akk
aaux
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3
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�
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akk
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(8)
From Eq. (8), it can be seen that the receptance of the primary structure connected with a DVA depends on both the modal
characters of the primary structure and the receptance aaux of the DVA. It should also be noted that although the DVA is
depicted as the traditional SDOF mass-spring-damper design in Fig. 3, its design can be generalized to include the proposed
continuous beam absorber as well. Hence, in the beam absorber case, the reaction force from the DVA is the turning moment.
The receptance of Eq. (4) should become the rotational angle of the connecting point divided by the reactional moment from
the DVA to the primary structure.

3. Analytical model of the L-shape beam system

Consider a L-shape beam system as shown in Fig. 4. The primary beam is excited by the distributed force rðtÞ covering area
gðx1Þ of the beam. In the following analysis, subscripts 1 and 2 stand for the primary beam and the beam absorber,
respectively. Coordinates x1 and x2 are along the axial directions of the primary beam and the beam absorber, respectively.

The equation of motion of the primary beam is written as

r1A1 €w1 þ E1I1w
0000
1 ¼ rðtÞgðx1Þ (9)
Based on the damping mechanism of the beam [21], the beamwith viscous damping is used to model the beam absorber
as:

E2I2
v44ðx2; tÞ

vx42
þ c

v4ðx2; tÞ
vt

þ r2A2
v24ðx2; tÞ

vt2
¼ �c _qðtÞx2 � r2A2

€qðtÞx2 (10)
The general flexural displacement of the beam absorber is

w2ðx2; tÞ ¼ qðtÞx2 þ 4ðx2; tÞ (11)



Fig. 4. The model of L shaped beam system.
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where qðtÞ is the rotational angle from the connecting point transmitted to the beam absorber and 4ðx2; tÞ is the deflection
due to strain deformation in the beam absorber. The beam absorber is modeled as a cantilever beam subjected to the
rotational motion from the clamped end. The detailed modeling of the beam absorber is given in Appendix A.

The continuous conditions at the connecting point between the primary structure and the beam absorber may be written
as in Ref. [22]:

8>><
>>:

w2ð0; tÞ ¼ 0
w0

2ð0; tÞ ¼ w0
1ðL1; tÞ ¼ qðtÞ

E1I1w
000
1 ðL1; tÞ ¼ m2 €w1ðL1; tÞE1I1w

00
1ðL1; tÞ ¼ MðtÞ

(12)

where m2 is the mass of the beam absorber and MðtÞ is the reaction moment exerted by the beam absorber on the primary
beam.

The mode shape functions of the primary cantilever beam structure satisfy the mass orthogonality and normalization
principle. They can be written as

f1iðx1Þ ¼ A1ifcosðbix1=L1Þ � coshðbix1=L1Þ þ r1i½sinðbix1=L1Þ � sinhðbix1=L1Þ�g
r1i ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ� (13)

ZL1 �

0

r1A1f1iðx1Þf1jðx1Þdx1 ¼ dij ¼ 1; i ¼ j
0; isj

i; j ¼ 1;2; 3/

E1I1

ZL1
0

f
00
1iðx1Þf

00
1jðx1Þdx1 ¼ U2

i dij

(14)
where cos bi cosh bi ¼ �1, and bi takes the values of 1.875, 4.694 and 7.855 for the first three modes of a cantilever beam.
Using Eqs. (9), (12) and (14), the response of the primary structure can be projected to the modal coordinate:

E1I1w
000
1ðx1; tÞf1jðx1Þ





 L10 � E1I1w
00
1ðx1; tÞf0

1jðx1Þ




 L10 þ

X∞
i¼1

ZL1
0

E1I1f
00
1iðx1Þf

00
1jðx1Þdx1q1iðtÞ

þ
X∞
i¼1

ZL1
0

r1A1f1iðx1Þf1jðx1Þdx1 €q1iðtÞ ¼ rðtÞ
ZL1
0

gðx1Þf1jðx1Þdx1

(15)
Using the boundary conditions in Eq. (12), Eq. (15) can be written as



Y. Hua et al. / Journal of Sound and Vibration 421 (2018) 111e131 117
X∞
i¼1

ZL1
0

E1I1f
00
1iðx1Þf

00
1jðx1Þdx1q1iðtÞ þ

X∞
i¼1

ZL1
0

r1A1f1iðx1Þf1jðx1Þdx1 €q1iðtÞ

þm2

X∞
i¼1

f1iðL1Þf1jðL1Þ€q1iðtÞ ¼ MðtÞf0
1jðL1Þ þ rðtÞ

ZL1
0

gðx1Þf1jðx1Þdx1

(16)
Applying Laplace transformation to Eq. (16) and making use of the orthogonality and the normalization conditions in Eq.
(14), Eq. (16) may be written as

h
U2
i þ ð1þ miÞs2

i
Q1iðsÞ ¼ ~MðsÞf0

1iðL1Þ þ RðsÞ
ZL1
0

gðx1Þf1iðx1Þdx1

mi ¼ m2f
2
1iðL1Þ

(17)

where ~MðsÞ ¼ LaplaceðMðtÞÞ (18)
The angular displacement of the DVA can be related to the reaction moment and written as

~qðsÞ ¼ aaux ~MðsÞ (19)

where ~qðsÞ ¼ LaplaceðqðtÞÞ (20)
Substituting Eq. (19) to Eq. (17), the flexural displacement of the primary beam can be written as
W1ðx1; sÞ ¼
X∞
j¼1

f1jðx1Þajjf0
1jðL1Þ ~M þ

X∞
j¼1

f1jðx1ÞajjRðsÞ
ZL1
0

gðx1Þf1jðx1Þdx1

¼
X∞
j¼1

f1jðx1Þajjf0
1jðL1Þ

~qðsÞ
aaux

þ
X∞
j¼1

f1jðx1ÞajjRðsÞ
ZL1
0

gðx1Þf1jðx1Þdx1

(21)

where a ¼ 1
.h

U2 þ
�
1þ m

�
s2
i

(22)
jj j j
The rotational angle at the attached point of the beam absorber can be written as

~qðsÞ ¼ �W 0
1ðL1; sÞ

¼ �
X∞
j¼1

f0
1jðL1Þajjf0

1jðL1Þ
~qðsÞ
aaux

�
X∞
j¼1

f0
1jðL1ÞajjRðsÞ

ZL1
0

gðx1Þf1jðx1Þdx1

¼ �

P∞
j¼1

f0
1jðL1Þajj

Z L1

0
gðx1Þf1jðx1Þdx1

1þP∞
j¼1

f0
1jðL1Þ2

ajj
aaux

RðsÞ

(23)
Substituting Eq. (23) to Eq. (21) gives

W1ðx1; sÞ
~RðsÞ ¼

�P∞
i¼1

"
f1iðx1Þaiif

0
1iðL1Þ

aaux

P∞
j¼1

ajjf
0
1jðL1Þ � aiif1iðx1Þ

P∞
j¼1

ajjf
0
1jðL1Þ2
aaux

� f1iðx1Þaii
#Z L1

0
gðx1Þf1iðx1Þdx1

1þP∞
j¼1

f0
1jðL1Þ2 ajj

aaux

(24)
The term aaux depends on the specific physical configuration of the beam absorber. Using modal decomposition in Eq. (10)
yields:
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u2
i q2iðtÞ þ 2xiui _q2iðtÞ þ €q2iðtÞ ¼ �r2A2

ZL2
0

x2f2iðx2Þdx2
�
€qðtÞ þ 2xiui

_qðtÞ
�

(25)

where f2iðx2Þ is the ith mode shape of the cantilever beam and satisfies the mass orthogonality and normalization condition

as follows

f2iðx2Þ ¼ A2ifcosðbix2=L2Þ � coshðbix2=L2Þ þ r2i½sinðbix2=L2Þ � sinhðbix2=L2Þ�g
r2i ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ� (26)

ZL2 �

0

r2A2f2iðx2Þf2jðx2Þdx2 ¼ dij ¼ 1; i ¼ j
0; isj

i; j ¼ 1;2; 3/

E2I2

ZL2
0

f
00
2iðx2Þf

00
2jðx2Þdx2 ¼ u2

i dij

(27)
The modal damping ratio xi is defined as

xi ¼ c=ð2r2A2uiÞ (28)
Applying Laplace transformation to Eq. (11), we may write

W2ðx2; sÞ ¼ ~qðsÞx2 þJðx2; sÞ
W2ðx2; sÞ ¼ Laplaceðw2ðx2; tÞÞ;Jðx2; sÞ ¼ Laplaceð4ðx2; tÞÞ

(29)
Applying Laplace transformation to Eq. (25), we may write

Jðx2; sÞ ¼
X∞
i¼1

f2iðx2Þ
gi
�
s2 þ 2xiuis

�
s2 þ 2xiuisþ u2

i

~qðsÞ (30)

ZL2

where gi ¼ �r2A2

0

x2f2iðx2Þdx2 (31)
The receptance of the beam absorber can be written as

1
.
aaux ¼ ~M

.
~q ¼ �E2I2W

00
2ð0; sÞ

.
~q ¼ �E2I2J

00 ð0; sÞ
.
~q

¼
X∞
i¼1

�E2I2f
00
2ið0Þ

gi
�
s2 þ 2xiuis

�
s2 þ 2xiuisþ u2

i

(32)
4. Validation of the modeling method

A numerical case is presented in the following to validate the accuracy of the proposed modeling method by comparing
the results with the finite element analysis using Abaqus and the TMMmethod. The material and geometric properties of the
primary beam and beam absorber are listed in Table 1.

In this validation study, both the primary and absorber beam dampings are set to zero. So xi ¼ 0 in Eq. (32). The primary
structure is subjected to a white noise signal at the middle of the span. So gðxÞ ¼ dðx� 0:5L1Þ in Eq. (24). Consider the first
three modes of the cantilever beam according to Eq. (24), the receptance at the end of the beam can be written as:
Table 1
The material property and geometry size of the primary and beam absorber.

Density/kg/m3 Young's modulus/Gpa Length/mm Width/mm Thickness/mm

Primary beam 7890 206 515.75 12.7 4
Beam absorber 2766 69 177.8 12.7 3.05
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W1ðL1; sÞ
RðsÞ ¼

�P3
i¼1

"
f1iðL1Þaiif

0
1iðL1Þ

aaux

P3
j¼1

ajjf
0
1jðL1Þ � aiif1iðL1Þ

P3
j¼1

ajjf
0
1jðL1Þ2
aaux

� f1iðL1Þaii
#

1þP3
j¼1

f0
1jðL1Þ2 ajj

aaux

f1ið0:5L1Þ (33)

where 1=aaux is the summation of the first fifty terms in Eq. (32) and ajj is calculated according to Eq. (22).
The receptance at the end of the primary beam is calculated by three different methods: Abaqus, TMM and the receptance

theory in Section 3 and the numerical results are plotted in Fig. 5 for comparison. The receptance theory uses the first three
modes in the primary beam and the first fifty modes of the beam absorber as shown in Eq. (33). In Abaqus analysis, B21
element is used to model the L-shaped beam system. The direct steady state analysis is conducted to get the displacement
response at the end of the primary beam. The TMMmethod comes from the dynamic stiffness matrixmethod, which is briefly
introduced in Appendix B.

In this case, the first two natural frequencies of the primary beam are 12.4 Hz and 77.8 Hz. The first natural frequency of the
beam absorber is 77.8 Hz. Fig. 5 shows the typical phenomenon with the fundamental DVA theory that the original second
order resonance is suppressed at the cost of two newly appearing peaks.

In Fig. 5, the frequency responses by the three methods match very well at the resonant frequencies of the first and third
vibration modes and also at the antiresonant frequency. The resonant frequency of the second mode is found to be 52 Hz
using the receptance theory, and 54 Hz by both the Abaqus and TMMmethods. This difference may be due to the ignorance of
the axial deformation and the coupling between the axial and flexural movements in the host beam and beam DVA when
using the receptance theory. On the other hand, the TMM method and Abaqus both take the axial deformation and the
coupling between axial and flexural movement into account. In conclusion, besides the small difference, the receptance
theory can still be used to predict a good approximation of the frequency response of the compound beam system.
5. The optimum parameters of the fixed-points theory

When the Nth order resonance frequency of the primary beam is close to the rth order resonance frequency of the beam
absorber, Eq. (24) can be simplified to describe the contribution from the Nth order mode of the primary beam and aaux to that
from the rth order mode of the beam absorber. For the sake of convenience, all the receptance terms in Eqs. (22), (24) and (32)
are transformed to the dimensionless form.

aNN ¼ 1
.h

U2
N � ð1þ mNÞu2

i
¼ 1

.
U2
N

h
1� f 2

i
(34)
Fig. 5. Receptance magnitude jW1ðL1; sÞ=RðsÞj at the end of the primary beam with and without absorber.
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where
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The dimensionless form of the receptance in Eq. (36) can be written as

~Hðf Þ ¼
�
l2 � f 2 þ i2xrlf

�
h�
1� f 2

��
l2 � f 2

�
� ε f 2

i
þ i2xrlf

�
1þ ε � f 2

� (39)
To study the effect of the damping xr on the receptance ~Hðf Þ, three values of xr (0, 0.3 and∞) with ε; l and mN calculated

from Table 1 are used to calculate ~Hðf Þ using Eq. (39) and its magnitude



~Hðf Þ


 is plotted in Fig. 6. It can be observed from Fig. 6

that the dimensionless magnitude



~Hðf Þ


 has two fixed points which are independent of the damping ratio. It shows that the

fixed-points theory can be employed to obtain the optimum tuning ratio and damping ratio of the proposed DVA.
Fig. 6. Dimensionless magnitude of receptance



~Hðf Þ


 versus frequency at different damping ratios.
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Thus the magnitudes of the two fixed points are made equal.
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2 3 u

xr jf1 ¼ 4 ðεþ 1Þ2 � ðεþ 1Þ ffiffiffi

u
p

x2r jf2 ¼
3
4

u

ðεþ 1Þ2 þ ðεþ 1Þ ffiffiffi
u

p
(43)

where u ¼
�
ε
2 þ ε

�.
2 (44)
For convenience, the optimum damping ratio is chosen to be the root mean square value x2r jf1 and x2r jf2 using Eq. (43) and it
can be written as

xr opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ε

4εþ 8

r
(45)
6. Design guideline of the beam absorber

The optimum tuning ratio of the beam absorber in Eq. (41) and the damping ratio in Eq. (45) depend on the term ε as
shown in Eq. (38), which is different from the traditional discrete DVAs whose optimum tuning ratio and damping ratio
depend solely on the mass ratio [4]. In order to show the relationship of these optimum parameters with the physical pa-
rameters (i.e., dimensions and material property of the beam absorber) the dimensionless mode shape functions ~fiðzÞ are
introduced as

~fiðzÞ ¼ fcosðbizÞ � coshðbizÞ þ ri½sinðbizÞ � sinhðbizÞ�g; z2½0;1�
where ri ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ�:

(46)
It should be noted that the dimensionless mode shape function ~fiðzÞ in Eq. (46) is different from the mode shape
functions f1iðx1Þ and f2iðx2Þ defined in Eqs. (13), (14), (26) and (27). These mode shape functions are normalized
to the mass of the beam they belong to and thus they have the unit of kg�1/2. On the other hand, Eq. (46) is
dimensionless.
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The relationship of mass ratio mN and ε can be derived by substituting of Eq. (47) and Eq. (49) to Eq. (48).
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According to Eqs. (47)e(49), once the close resonant frequency orders N and r are determined, mN is proportional to the
mass ratio of the beam absorber. ε is proportional to the ratio of EI=L. From Eq. (48), the optimum tuning ratio square is
dependent on the mass ratio, ratio of EI=L and the length ratio. The relationship of ε and mass ratio is more pronounced in Eq.
(50). Under the samemass ratio, Eq. (50) has different sets of solutions of ε and L1=L2 that can be achieved by choosing proper
material and geometry parameters of the beam DVA. The proper design procedure should be setting ε first according to the
vibration reduction request. Then choose the materials for both beams. After that, put a chosen value of the mass ratio to Eq.
(48) and the length ratio is hence derived. The order of obtaining the length ratio and mass ratio can be changed. The three
variables, namely the length, width and thickness of the beam absorber, can then be calculated by solving the linear algebraic
equations (47)e(49). The detailed derivation of Eqs. (47)e(49) is presented in Appendix C.

7. Comparisons between the beam absorber and the traditional DVA

In this Section, the proposed beam absorber is compared with the traditional single degree-of-freedom spring-mass-
damper system. The two types of absorbers are shown in Fig. 7. The same primary cantilever beam is used again here. The
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geometry of the beam absorber is designed according to the guideline established in Section 6. The dimensionless magnitude
of the receptance of the primary beam attached to two types of absorbers are compared.

The receptance of the primary beam attached with a beam absorber as illustrated in Fig. 7a is written as
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RðsÞ ¼ f1NðxÞf1NðL=2Þ
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1þ ε� f 2

�

¼ f1NðxÞf1NðL=2Þ
U2
N

~Hðf Þ
(51)
The dimensionless response magnitude at the two fixed points can be shown to be
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(52)

where ε is the ratio of EI=L between two beams as illustrated in Eq. (49).
The receptance of the primary beam with a traditional DVA attached as illustrated in Fig. 7b is written as
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Fig. 7. (a) The primary beam connected with a beam absorber (b) The primary beam connected with a traditional DVA.
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un and x are resonance frequency and damping ratio of the traditional DVA, respectively. mN and UN have the same definition
as the case of beam absorber. Note lt and ft have different definitions from Eq. (37).

The optimum tuning ratio and damping ratio of the traditional DVA can be derived using the fixed-points theory as a
function of mN and written as [4].

lt opt ¼ 1
1þ mN

; xt opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3mN
8ð1þ mNÞ

s
(55)
The maximum response amplitude may be approximated by the amplitude at the two fixed points written as
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 ¼
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(56)
Using Eqs. (52) and (56), the condition required for the beam absorber to provide larger suppression than the traditional
DVA in the targeted mode can be written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

εðεþ 1Þ

s
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN þ 2
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Define the ratio of the maximum amplitude of the two types of DVA as f ðε;mNÞ written as

f ðε;mNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mN
εðεþ 1ÞðmN þ 2Þ

s
(58)
When f ðε;mNÞ<1, the effect of vibration suppression of the beam absorber outperforms that of the traditional DVA. Eq.
(47) shows that mN varies from 0.04 to 0.6 when the mass ratio varies from 1% to 15%. The contour plot of f ðε;mNÞ is presented
in Fig. 8. It is evident that once the mass ratio is fixed, the traditional DVA has fixed optimum value whereas the beam
absorber outperforms the traditional DVA by choosing ε above the threshold value as shown by the curve of f ðε;mNÞ ¼ 1 in
Fig. 8.

Take the primary beam in Table 1 as an example. Themass ratio is 0.1, then mN ¼ 0:4. From Fig. 8, the threshold of ε is close
to 0.3. Choose ε ¼ 0:3;0:35;0:4. The beam absorber has the same material properties as in Table 1. The related dimensions of
the beam absorber and the parameters of the traditional DVA are shown in Table 2. The dimensionless magnitude of primary
beam attached with the beam absorber and traditional DVA are shown in Fig. 9. The ratios of the maximum amplitude of the
two types of DVA f ðε;mNÞ are calculated for the three sets of ε¼ 0.3, 0.35, 0.4 using Eq. (58) to be 0.92, 0.84 and 0.77,
respectively. It can be seen that the proposed beam absorber offers further reduction of the resonant vibration of the primary
beam by 8%, 16% and 23% respectively, as compared to the traditional DVA. Eq. (50) shows that the higher ε is, the more
suppression can be achieved. Reviewing Eq. (48) or Eq. (50), it's fair to say the mass ratio is not a crucial factor in the design of
the beam DVA. A better performance of the proposed beam DVA at a fixed mass ratio can be achieved by choosing a higher
Fig. 8. The contour plot of f ðε;mNÞ.



Table 2
The optimum parameters of the beam absorber and the traditional DVA.

mN ¼ 0:4 Beam Absorber Traditional DVA

Length/mm Width/mm Thickness/mm modal damping ratio xopt Eq. (45) f ðε;mNÞ Eq. (58)
ε ¼ 0:3 170.4 16.2 2.7 0.31 0.92

m ¼ 0:0207 Kg;
k ¼ 2519:4 N=m;

c ¼ 4:725 N=ðms­1Þε ¼ 0:35 180.6 13.4 3.1 0.33 0.84
ε ¼ 0:4 189.6 11.4 3.5 0.35 0.77

Fig. 9. Dimensionless magnitudes of the receptance of the traditional DVA and that of the beam absorber with ε¼ 0.3, 0.35,0.4 and mN ¼ 0.4.
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value of ε and satisfying Eq. (48). Eq. (48) or Eq. (50) reflects the advantage of the proposed DVA. The mass ratio, length ratio
and ε of the beamDVA are related. Although the optimum tuning performance and parameters appear to be solely dependent
on ε as shown in Eq. (41), they are actually related to the mass ratio and length ratio as well. To some degree, the length ratio,
the bending stiffness ratio and the mass ratio involved in Eq. (48) all contribute to the optimum tuning performance by the
beam DVA. The presence of the other factors enhances the flexibility of the optimum tuning of the beam DVA. That's why the
beam DVA is superior to the traditional DVA under the same mass ratio constraint. Its optimum performance is not solely
dependent on the mass ratio as in the case of the traditional DVA.

A further remark is that theoretically there is no limit for the value of ε when the mass ratio is fixed. However, from Eqs.
(41) and (45) the higher the value of ε, the higher the damping ratio and tuning ratio will be. So in practice, the choice of ε
depends on whether the tuning and the damping ratios can satisfy Eq. (48) and Eq. (45), respectively.

8. Conclusions

A beam-based DVA is proposed and compared to the traditional discrete type of DVA (i.e, the mass-spring-damper sys-
tem). The proposed beam absorber can achieve more vibration reduction under the same mass ratio than the traditional DVA
due to the flexibility in the design of its geometry and physical properties. It can also address the vibration resonances at low
frequencymore conveniently by changing its geometry shape to attain the target low frequency. By combining the receptance
theory with the fixed-points theory, analytical expressions of the optimum tuning ratio and damping ratio of the continuous
beam-based DVA are derived to guide the absorber design. The traditional mass spring damper's optimal performance is
constrained by the mass ratio. However, this study shows that there exists a set of optimal material and geometry parameters
which allows the beam absorber to outperform its mass-spring-damper counterpart under the samemass ratio constraints. A
design guideline is established to choose thematerial and geometry parameters of the beam absorber. The proposed absorber
may be applied to suppress resonant vibrations of flexible robotic arms in the future.
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Appendix A

This appendix develops the analytical model of cantilever beam with support rotation.
The cantilever beam suffers from the support rotation is shown in Fig. A.1 and is modeled as a Euler-Bernoulli beam. E is

the elastic modulus, I is themoment of the beam,m is themass of per unit length, A is the cross-Section area and l is the length
of the beam. The total displacement of one point on the cantilever beam under the base excitation is defined as:

wðx; tÞ ¼ qðtÞxþ 4ðx; tÞ (A.1)

where 4ðx; tÞ is the deflection curve, qðtÞ is the rotation angle from the ground.
Fig. A.1. Cantilever beam under base rotation.

Fig. A.2. A small segment of beam.

Fig. A.3. Force analysis on the cross Section.
As illustrated in Ref. [21], one types of damping force are taken into consideration: external damping force which is
proportional to velocity and represented as�c vw

vt . Frommaterial mechanics, the bending strain and the deflection of the beam
is:

εb ¼ �y
v24ðx; tÞ

vx2
(A.2)
Then the total bending moment of the small segment is:

M ¼ �EI
v2wðx; tÞ

vx2
¼ �EI

v24ðx; tÞ
vx2

(A.3)
The shear force and the moment has the following relationship:

V ¼ vM
vx

¼
v
�
� EI v

24ðx;tÞ
vx2

�
vx

(A.4)
According to the force balance of the whole small segment, the dynamics equation of the small segment can be derived:
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V þ vV
vx

dx� V �
"
m

v2wðx; tÞ
vt2

þ c
vwðx; tÞ

vt

#
dx ¼ 0 (A.5)
Substituting the expression of wðx; tÞ in (A.1) into (A.5), Eq. (A.5) becomes:

vV
vx

dx�
"
m

v24ðx; tÞ
vt2

þ c
v4ðx; tÞ

vt
þm

v2qðtÞ
vt2

xþ c
vqðtÞ
vt

x

#
dx ¼ 0 (A.6)
Substituting the expression of V in (A.4)e(A.6) can yield the movement equation of the small segment under the base
rotational excitation and it is shown as:

EI
v44ðx; tÞ

vx4
þ c

v4ðx; tÞ
vt

þ rA
v24ðx; tÞ

vt2
¼ �c _qðtÞx� rA€qðtÞx (A.7)
Appendix B

This appendix presents the derivation of transfer matrix of Bernoulli-Euler Beam.
The dynamic equation of motion of the beam may be written as

EI
v4w
vx4

þ rA
v2w
vt2

¼ 0 (B.1)
Assume that the solution of harmonic oscillation can be written as

wðx; tÞ ¼ WðxÞeiut (B.2)
The non-dimensional characteristic equation of the equation is�
EID4

.
L4 � rAu2

�
WðxÞ ¼ 0;

D ¼ d=dx; x ¼ x=L
(B.3)
Assume that the solution of WðxÞ can be written as
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X4
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Rie
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Lvx
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v2W
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(B.4)

where ri is the root of the characteristic equation Eq. (B.5).
EIr4i
.
L4 � rAu2 ¼ 0 (B.5)

d ¼ fWð0Þ Qð0Þ Wð1Þ Qð1Þ g; d ¼ BR

F ¼ f Sð0Þ Mð0Þ Sð1Þ Mð1Þ g; F ¼ AR

(B.6)

F ¼ AB�1d ¼ Kd (B.7)
8>>Wð1Þ9>> 8>>Wð0Þ9>>
<
>>:

Qð1Þ
Sð1Þ
Mð1Þ

=
>>; ¼ T

<
>>:

Qð0Þ
Sð0Þ
Mð0Þ

=
>>; (B.8)

T ¼ �K�1K ; T ¼ K�1

11 12 11 12 12

T21 ¼ �K21 þ K22K
�1
12 K11; T22 ¼ �K22K

�1
12

(B.9)
Similarly, the transfer matrix of axial vibration rod can be obtained.
The dynamic equation of the axial vibration rod is
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r
v2u
vt2

� E
v2u
vt2

¼ 0 (B.10)
The axial force in the rod is

F ¼ EA
vu
vx

(B.11)

The sameway as we derive the transfermatrix of the transverse vibration of the beam, we can obtain the transfermatrix of

the axial vibration written as�

Uð1Þ
Fð1Þ

�
¼ T

�
Uð0Þ
Fð0Þ

�
(B.12)
So we can get the transfer matrix of a Euler-Bernoulli beam by taking axial deformation into consideration.8>>>>>><
>>>>>>:
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Fig. B1. The displacement and force relationship of the two beams at the connecting point.

In the 90� rotational angle, the displacement and force of the two beam satisfies the following:8>>>>>><
>>>>>>:
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So the whole transfer matrix in the L-shaped beam can be written as:8>>>>>><
>>>>>>:
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So we can get the displacement response at any point of the beam using Eq. (B.15).
Appendix C

This appendix presents the detailed derivation of Eqs. (47)e(49).
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f1iðx1Þ ¼ A1ifcosðbix1=L1Þ � coshðbix1=L1Þ þ r1i½sinðbix1=L1Þ � sinhðbix1=L1Þ�g
r1i ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ� (C.1)

ZL1

0

r1A1f1iðx1Þf1jðx1Þdx1 ¼ dij (C.2)
bi correspond to 1.875, 4.694 and 7.855 for the first three modes.

f2iðx2Þ ¼ A2ifcosðbix2=L2Þ � coshðbix2=L2Þ þ r2i½sinðbix2=L2Þ � sinhðbix2=L2Þ�g
r2i ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ� (C.3)

ZL2

0

r2A2f2iðx2Þf2jðx2Þdx2 ¼ dij (C.4)
Assume that the mode shape function without coefficient can be written in the following form:

~fiðzÞ ¼ fcosðbizÞ � coshðbizÞ þ ri½sinðbizÞ � sinhðbizÞ�g
ri ¼ �½cosðbiÞ þ coshðbiÞ�=½sinðbiÞ þ sinhðbiÞ�
z2½0; 1�

(C.5)
Eq. (C.2) and Eq. (C.4) can be rewritten into the following form:

r1A1L1A
2
1i

Z1
0

~fiðzÞ~fjðzÞdz ¼ dij (C.6)

Z1

r2A2L2A

2
2i

0

~fiðzÞ~fjðzÞdz ¼ dij (C.7)

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0 Z1 1vuu

A1i ¼ 1 @r1A1L1

0

~f
2
i ðzÞdzAut (C.8)

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0 Z1 1vuu

A2i ¼ 1 @r2A2L2

0

~f
2
i ðzÞdzAut (C.9)
From Eq. (17), we can derive mN based on ~fN:

mN ¼ r2A2L2f
2
1NðL1Þ ¼ r2A2L2A

2
1N

~f
2
Nð1Þ

¼ r2A2L2
r1A1L1

~f
2
Nð1ÞZ 1

0
~f
2
NðzÞdz

(C.10)
From Eq. (31), gi can be written based on ~fi:

gi ¼ �r2A2

ZL2
0

x2f2iðx2Þdx2 ¼ �r2A2L
2
2

Z1
0

z~fiðzÞdz
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0

@r2A2L2

Z1
0

~f
2
i ðzÞdz

1
A

vuuut (C.11)
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f0
1kðxÞ ¼ ~f

0
kðx=L1Þ

,
L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0
@r1A1L1

Z1
0

~f
2
kðzÞdz

1
A

vuuut (C.12)

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0 Z1 1vuu

f

00
2rðxÞ ¼ ~f

00

rðx=L2Þ L22 @r2A2L2
0

~f
2
r ðzÞdzAut (C.13)
The Nth order natural frequency of the primary beam and the rth order natural frequency of the beam absorber can be
written as:

U2
N ¼ b4NE1I1

.�
r1A1L

4
1

�
u2
r ¼ b4r E2I2

.�
r2A2L

4
2

� (C.14)
From Eq. (38), ε is obtained based on ~fk; ~fr:

ε ¼ E2I2f
0
1NðL1Þgrf

00
2rð0Þ

.h
U2
N

i

¼
E2I2~f

02
N ð1Þ~f

00

rð0Þr2A2L
2
2

Z 1

0
z~frðzÞdz

�
r1A1L

4
1

�

L21

0
@r1A1L1

Z 1

0
~f
2
NðzÞdz

1
AL22

0
@r2A2L2

Z 1

0
~f
2
r ðzÞdz

1
Ab4NE1I1

¼ E2I2=L2
E1I1=L1

~f
02
Nð1Þ~f

00

rð0Þ
Z 1

0
z~frðzÞdz

b4N

0
@Z 1

0
~f
2
NðzÞdz

1
A
0
@Z 1

0
~f
2
r ðzÞdz

1
A

(C.15)
From Eq. (48), we can derive the tuning ratio:

l2opt ¼ u2
r

.
U
2
N ¼u2

r ð1þ mNÞ
.
U2
N

¼ b4r
b4N

E2I2=L2
E1I1=L1

r1A1L1
r2A2L2

L21
L22

ð1þ mNÞ ¼ 1þ ε

(C.16)
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