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Modelling and numerical simulation – based on the framework of the Local Interaction Simulation
Approach – was developed to have more insight into nonlinear attributes of guided ultrasonic waves
propagating in fatigued metallic materials. Various sources of nonlinearity were considered in this mod-
elling work, with particular emphases on higher-order harmonic generation and accumulation of nonlin-
earity along wave propagation. The material hyper-elasticity was considered in the model using an
energy density approach based on the Landau–Lifshitz formulation; and the ‘‘breathing” motion pattern
of a fatigue crack in the material was interrogated using a spring model. Upon the successful validation
with the model prepared in the commercial software based on the Finite Element Methods, two scenarios
were comparatively investigated, i.e. the lower and higher frequency regime. In the first case propagation
of a basic symmetric mode pair was simulated using the model to observe a cumulative characteristic of
the second harmonic mode with nonlinear hyper-elastic material definition upon appropriate selection of
excitation frequency. In the second case, the higher-order symmetric mode pair was excited according to
the ‘‘internal resonance” conditions, revealing a strong dependence of manifested nonlinearity on numer-
ical parameters. Moreover, it was shown that with the use of the wave from the low frequency regime it
was easier to differentiate later stages of the crack development, being in contrary to waves in the high
frequency regime, which allowed to clearly observe early stages of the crack expansion. Such outcome
lays the foundation to develop the damage detection and monitoring scheme in the field of Structural
Health Monitoring based on utilising the nonlinear features of guided ultrasonic waves.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear attributes of Guided Ultrasonic Waves (GUWs) have
been studied intensively for the past few years. The highly antici-
pated advantage of nonlinear features over their linear [1] counter-
parts relates in particular to their exceptionally high sensitivity to
the presence of small-sized damage [2] and micro-changes in the
structural material properties [3,4]. This advantage can lead to
the development of new Non-Destructive Evaluation (NDE) and
Structural Health Monitoring (SHM) methods suitable for the
detection of damage at its embryo stage, i.e. fatigue cracks which
have not yet reached a perceptible degree. When GUWs are gener-
ated at specific frequencies and traverse an elastic medium, they
intrinsically interact with various nonlinear sources featured by
the medium, i.e. fatigue cracks [2,5–7], de-bonding at adhesive
joints [8–10], plastic zones of material [11–13], or material nonlin-
earity of the medium [4,14]. Such interactions result in the distor-
tion of the probing GUWs, shifting the wave energy from the
excitation frequency to the other different frequencies. Notably,
both material nonlinearity of the medium and the fatigue damage
are responsible for the majority of nonlinearities manifested in
captured GUW signals. Under cyclic loads, progressive degradation
of the medium or deterioration of damage in the medium further
intensifies these nonlinearities.

With such a premise, a diversity of NDE and SHM approaches
have been developed and deployed, represented by those using
high- [15–17] or sub- [18] harmonics, mixed frequency responses
[19] (e.g. nonlinear wave modulation spectroscopy), shift of reso-
nance frequency [20] (e.g. nonlinear resonant ultrasound spec-
troscopy), nonlinear surface waves [21,22], dual frequency
mixing [23], or time reversal [24]. All above-mentioned methods
have been surveyed comprehensively in [25]. The higher-order
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harmonic generation, i.e. a spectral feature of GUW signals has evi-
denced as energy transfer from the fundamental (excitation) fre-
quency x0 to the integer multipliers of the fundamental
frequency (2x0;3x0 and so on). Amongst these higher-order har-
monics, the second harmonic has been most widely exploited
due to its relative convenience and feasibility in acquisition as
compared with the other higher order counterparts.

There is a rich body of literature dedicated to understanding
and exploiting nonlinear attributes of GUWs. This includes theo-
retical derivation [4,26–29], numerical modelling and simulation
[14,30–33], as well as experimental validation [34–37]. Cost-
effectiveness of numerical simulation has gained an increased
interest and preference in these investigations. Recent studies
demonstrate that the burgeoning Local Interaction Simulation
Approach (LISA) [30,38–47] offers promising capabilities to model
accurately and efficiently propagation of GUWs. The LISA was first
introduced in the early 1990s to model the wave propagation in
media with linear material properties [38–40]. With its governing
equations based on a Finite Difference (FD) approximation and a
top-down modelling strategy, the computational capacity of LISA
is not restricted by the complexity of geometry or material prop-
erties (e.g. heterogeneous, anisotropic and nonlinear materials
with arbitrary shapes and structural complexities). Previous
research studies show that in some cases LISA outperforms con-
ventional numerical approaches, such as Finite Element (FE) and
Finite Difference (FD) methods, in terms of computational accu-
racy, efficiency and cost, as well as hardware requirements when
used to simulate propagating GUWs. In particular when GUWs
with short wavelengths and a small time increment in calculation
are taken into consideration [43]. Furthermore, LISA introduces a
Sharp Interface Model (SIM) to match the particle displacements
and stresses at the nodes where the high impedance ratio is pre-
sent between cells material. In such a way LISA – although being
based on the FD discretisation – outperforms the conventional FD
algorithms. The advantage of using SIM for modelling wave prop-
agation has been demonstrated in composite laminates [42] and
metallic structures [48]. Enhancement in computational accuracy,
efficiency and reliability for wave propagation modelling based
on LISA with SIM, when compared with the use of then tradi-
tional FD methods, has been already confirmed [39,44]. Further
work on enhancing the modelling capabilities of the wave propa-
gation within the LISA framework led to the introduction of non-
linear material definitions [49,50]. However, these initial studies
have not utilised any systematisation regarding the fundamental
development of the LISA iterative equations. Moreover, the linear
strain–displacement relation was assumed in those descriptions,
where in the current work the Green–Lagrange relation is used.
Another direction of developing LISA led to its spin-off known
as Spring Model (SM) [51], whereby a faithful depiction of the
‘‘breathing” connections between the interfaces of the two adjoin-
ing cells can be reached. Therefore, such a feature endows LISA
with additional merit to canvass structural damage. Most
recently, a new approach for modelling the crack-wave interac-
tion in the LISA environment was presented in [32], where a Cou-
lomb friction model along with the penalty method were
integrated to capture the stick-slip contact motions between the
crack surfaces.

In the present work, a new nonlinear model of wave propaga-
tion based on the LISA and SM framework is presented. A dedicated
numerical simulation tool is developed to scrutinise the higher-
order harmonic generation and accumulation of nonlinearity along
with the wave propagation in fatigued materials bearing a ‘‘breath-
ing” crack. Various sources of nonlinearity are considered in two
scenarios in which different wave mode pairs (consisting of a fun-
damental mode and its corresponding second harmonic mode) are
considered.
This paper is organized as follows. The theoretical background
of the nonlinear hyper-elasticity of elastic medium followed by
the description of the new version of LISA used for modelling
nonlinear wave propagation are discussed in Section 2. Section 3
outlines the approach used to simulate the ‘‘breathing” motion
of the fatigue crack. The ‘‘breathing” motion is explained based
on the higher-order harmonic generation. The SM is introduced
to model the ‘‘breathing” behaviour of the fatigue crack. Based
on LISA and SM, a dedicated approach for modelling the
higher-order harmonic generation and accumulation of nonlin-
earity in GUWs propagating in fatigued materials is developed
to interrogate three scenarios. First, the developed modelling
approach is validated in Section 4 with the model based on
the Finite Element Method (FEM) generated in the commercial
software ABAQUS�. Next, in Section 5 the symmetric S0–s0
mode pair at a lower frequency regime, in which case a cumula-
tive growth of the second harmonic magnitude might be
observed, and the S1-s2 mode pair at a higher frequency range,
which is known and widely used as a ‘‘internal resonance” mode
pair resulting with the cumulative increase of the second har-
monic with the propagation distance, are examined. The upper
case letter in the mode pair description corresponds to the first
harmonic mode (e.g. S0, S1) and the second harmonic mode is
identified with the lower case letter (e.g. s0, s2). Some discussion
on the obtained results is also presented in this section. Finally,
the conclusions are presented in Section 6.

2. Simulation of nonlinearity of GUWs propagating in a
nonlinear material

Nonlinearities observed in ultrasonic waves propagating in iso-
tropic and homogeneous solids result frommaterial behaviour (e.g.
plasticity, inter-grain contacts, inclusions) and/or structural
defects(e.g. elastic effects, viscous-like or thermal loses at fatigue
cracks). Two nonlinear effects are important to consider when
guided ultrasonic wave propagation is modelled. These are: (i)
material hyper-elasticity and (ii) ‘‘breathing” motion of structural
damage. This section describes the theoretical background of the
nonlinear hyper-elastic material definition, which is the base for
developing the numerical tool shown in the later part.

2.1. Material hyper-elasticity model based on the Landau–Lifshitz’s
energy density relation

The nonlinear isotropic hyper-elasticity can be defined using
the Landau-Lifshitzs energy density relation [52]. Denoting the
deformation gradient as F ¼ IþH – where I is an identity matrix
and H ¼ u�r is the displacement gradient tensor – the Green–
Lagrange strain tensor – eGL – takes the form

eGL ¼ 1
2

FTF� I
� �

¼ 1
2

HþHT þHTH
� �

; ð1Þ

where superscript T signifies a transposed quantity. The energy
density U is subject to the third-order strain of eGL [52]:

UðeGLÞ ¼ k
2
I21 þ lI2 þ 1

3
AI3 þBI2I3 þ 1

3
CI31; ð2Þ

where

I1 ¼ trðeGLÞ;
I2 ¼ tr e2GL

� �
;

I3 ¼ tr e3GL
� �

:

ð3Þ

k and l are the Lamé constants. A;B and C are the Landau third-
order elastic constants and I1; I2; I3 are the first, second and third
isotropic invariants of strain tensor eGL , respectively (trð�Þ denotes
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the trace of the tensor in the above equation). Through differentia-
tion of the energy density U with respect to the strain tensor – eGL –
components, one receives the second Piola–Kirchhoff stress tensor
(T) as [36]

T ¼ @UðeGLÞ
@eGL

¼ ktrðeGLÞ þ 2leGL þ CðtrðeGLÞÞ2IþBtrðe2GLÞI
þ 2BtrðeGLÞeGL þAe2GL: ð4Þ

For a two-dimensional case, without loss of generality, the stress–
strain relation takes the form

Txx ¼ kþ 2lð Þexx þ keyy þ Aþ 3Bþ Cð Þe2xx
þ Bþ Cð Þe2yy þ Aþ 2Bð Þe2xy
þ 2Bþ 2Cð Þexxeyy;

Tyy ¼ kþ 2lð Þeyy þ kexx þ Aþ 3Bþ Cð Þe2yy
þ Bþ Cð Þe2xx þ Aþ 2Bð Þe2xy
þ 2Bþ 2Cð Þexxeyy;

Txy ¼ 2lexy þ Aþ 2Bð Þexxexy þ Aþ 2Bð Þeyyexy;

ð5Þ

where x and y coordinates correspond to the horizontal direction
and to the vertical direction, respectively. The eij with i; j ¼ fx; yg
are the components of the eGL. Subsequently, the Green–Lagrange
relation from Eq. (1) can be introduced to the above set of stress–
strain relations in order to receive the final stress–displacement
dependence, as detailed in Appendix A. The result forms the base
for developing the nonlinear iteration equations for LISA and SM
models in numerical simulations for wave propagation in nonlinear
media.

2.2. Modelling wave propagation in hyper-elastic medium using
Nonlinear LISA (NL–LISA)

The LISA discretises the analysed structure into a regular
grid of rectangular cells. Next, material properties are assumed
to be constant within each cell. However these properties may
differ between the cells. For the two-dimensional case, each
nodal point belongs to four cells. For any particular point –
before the equation for the displacement vector is established
– the solution is written and treated as continuous within each
cell. Then the so-called Sharp Interface Model (SIM) is used to
match displacements and stresses – as a result the LISA itera-
tion equations are derived. The SIM leads to more accurate
results when wave propagation problems in complex media
with large impedance mismatch at interfaces between different
materials are investigated. Since the explicit central difference is
used for the time domain discretisation, the method is well sui-
ted for parallel processing. The parallel algorithm of LISA –
implemented on graphical cards – has been proposed and
demonstrated in [53].

In order to acquire new iterative equations for the Nonlin-
ear LISA (NL–LISA), the general equation of the wave motion
in the nonlinear medium is required. This equation can be
obtained by substituting Eq. (1) into (5). After the space
derivation of the acquired relations, the simplified form of
the wave motion equation in two-dimensional structured can
be given as

ðkþ lÞuj;ji þ lui;jj þ f NLi ¼ qui;tt i; j ¼ x; yf g; ð6Þ
where a comma preceding a subscript denotes the differentiation
with respect to that subscript variable, q is the material density

and f NLi is a forcing term containing the higher-order terms related
to the nonlinear material description. Neglecting terms above the
second order in displacements allows one to transform Eq. (6) to
the matrix notation as
AW ;xx þ BW ;yy þ CW ;xy

þWF
;xD

xWNLF
;xx þWF

;yD
yWNLS

;xx

þWF
;xE

xWNLF
;yy þWF

;yE
yWNLS

;yy

þWF
;xF

xWNLS
;xy þWF

;yF
yWNLF

;xy ¼ q €W;

ð7Þ

where

A ¼ kþ 2l 0
0 l

� �
; B ¼ l 0

0 kþ 2l

� �
; C ¼ 0 kþ l

kþ l 0

� �
;

are the material matrices corresponding to the linear part of the
wave motion equation and

Dx ¼

kþ 2lþ 2A
þ6Bþ 2C

0 0 0

0
kþ 2l
þA

2 þB
0 0

0 0 A
2 þB 0

0 0 0 A
2 þB

2
666666664

3
777777775
;

Dy ¼

A
2 þB 0 0 0
0 2Bþ 2C 0 0
0 0 lþ A

2 þB 0

0 0 0
lþ A

2

þB

2
6666664

3
7777775
;

Ex ¼

lþ A
2

þB
0 0 0

0
lþ A

2

þB
0

0 0 2Bþ 2C 0
0 0 0 A

2 þB

2
666666664

3
777777775
;

Ey ¼

A
2 þB 0 0 0
0 A

2 þB 0 0

0 0
kþ 2l
þA

2 þB
0

0 0 0
kþ 2lþ 2A
þ6Bþ 2C

2
666666664

3
777777775
;

F x ¼

A
2 þ 3B
þC

0 0 0

0
A

þ2B
0 0

0 0
kþ lþ A

2

þ3Bþ 2C
0

0 0 0
kþ l

þAþ 2B

2
66666666666664

3
77777777777775
;

F y ¼

kþ l
þAþ 2B

0 0 0

0
kþ lþ A

2

þ3Bþ 2C
0 0

0 0
A

þ2B
0

0 0 0
A
2 þ 3B
þC

2
66666666666664

3
77777777777775
;

are the material matrices corresponding to the nonlinear part of the
wave motion equation. Finally,
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W ¼ u
v

� �
; WF ¼ u v 0 0

0 0 u v

� �
;

WNLF ¼

u

v
v
u

2
6664

3
7775; WNLS ¼

v
u

u

v

2
6664

3
7775;

ð8Þ

are the displacement vectors/matrices forms required for the matrix
notation of the wave motion equation.

From this point the procedure to receive the final iteration
equations follows the one with linear material definition, which
is available in [39,53] and is omitted in this work due to its long
form. Details of the further steps are available in [54]. Hence, this
section covers modelling of the second harmonic generated due
to the nonlinearity of the material.

3. Simulating higher-order harmonic generation induced by a
‘‘Breathing crack

Another source of nonlinearity in guided wave propagation con-
sidered in this paper is the ‘‘breathing” crack phenomenon, which
can be exhibited by contacting faces of fatigue cracks. This section
presents how the SM can be used in the NL–LISA framework to
model the nonlinear ‘‘breathing” crack phenomenon.

3.1. ‘‘Breathing” crack

The ‘‘breathing” crack is a well-known phenomenon in nonlin-
ear dynamics. The simplest model of this phenomenon involves a
bi-linear spring that introduces different elasticmoduli for the open
and closed crack. More accurate physical models often involve the
contact of crack faces, friction, crack tip plasticity and even temper-
ature gradients near crack tips, as described in [55]. In nonlinear
acoustics – when ultrasonic waves are used for damage detection
– this nonlinear behaviour is known under the name ‘‘clapping”
or Contact Acoustic Nonlinearity (CAN) [25]. CAN involves the
interaction between propagating ultrasonic waves and imperfect
interfaces of fatigue cracks. As a result higher-order harmonics
are generated. A graphical illustration of the nonlinear ‘‘breathing”
crack phenomenon is demonstrated in Fig. 1. The crack closes when
the compressional part of the propagating wave reaches its inter-
face. When the crack faces are in contact (i.e. the crack is closed),
the undisturbed ultrasonic wave penetrates through the crack.
The tensile part of the propagating wave causes the opening of
the crack, leading to the partial wave reflection.

3.2. Modelling of ‘‘Breathing” crack using Spring Model (SM)

The SM is used in order to model the ‘‘breathing” crack phe-
nomenon. Wave propagation in this model is substituted by the
movement of the equivalent set of excited ‘‘tensorial” springs.
Fig. 1. Schematic diagram of a ‘‘breathing” crack (the compressional part of the propaga
The discretisation scheme and material definition in the SM follow
those of LISA. The major difference between the two approaches is
found in the nodal displacement analysis. In a two-dimensional
case in LISA, each nodal point belongs to four cells. On the other
hand, in SM each nodal point is divided into four sub-nodal points,
each of which belongs to a cell. As a result, the relations between
the sub-nodes are defined via ‘‘tensorial” springs and used for force
representation. Forces between the sub-nodes within one cell are
named external forces F and forces between the cells, introduced
in order to keep the continuity of the structure, are named internal
forces f. A graphical representation of discretisation schemes for
both methods is shown in Fig. 2.

Although the iteration procedure in the SMmethod differs from
the one of the LISA method, the same final result can be achieved
for both approaches, assuming that there is a perfect contact
between the cells of the structure. The final result will have a form

wtþ1 ¼ 2w�wt�1 þ ðDtÞ2
qe2

X4
k¼1

Fk; ð9Þ

where wtþ1;w;wt�1 are the respective iteratives of displacement in
time, Dt is the time discretisation step, q is the sum of the densities
of the cells around the node for which the displacement values are

calculated, e is the size of the element,
P4

k¼1F
k is the sum of the

resultant forces from the four cells (k indicates the cell number) sur-
rounding the analysed node. Eq. (9) corresponds to the arrangement
shown in Fig. 2a and the displacements are calculated for node P in
each time step.

Imperfect contact between the cell’s interfaces can be intro-
duced by the division of node P from Fig. 2a into four sub-nodes
P1�4, as illustrated in Fig. 2b. This approach redefines the final iter-
ation equations. Four independent equations for each sub-node can
be written in the form

wðkÞ
tþ1 ¼ 2wðkÞ �wðkÞ

t�1 þ
ðDtÞ2
qe2

Fk þ
X
l–k

�f ðpcÞkl

 !
;

k; l ¼ 1; . . . ;4ð Þ;
ð10Þ

where in order to maintain the continuity of the structure, the

internal forces �f ðpcÞkl for perfect contact are introduced in the form

�f ðpcÞkl ¼ qkFl � qlFk

q
; ð11Þ

where qk and ql are the densities of the cells between which the
internal force is determined. Here, Fk and Fl are the respective exter-
nal forces of each cell. This component allows one to extend the
model, so imperfect contact between the interfaces can be used.
This can be achieved by introduction of the contact quality factor
Qkl for each sub-node through the relationship

�f kl ¼ Qkl
�f ðpcÞkl : ð12Þ
ting wave is penetrating the fracture, while the tensile is not). Adopted from [25].



Fig. 2. Discretisation of the wave propagation model using: (a) LISA (adopted from [39]); and (b) SM (adopted from [51]).
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The Qkl factor may vary between 0 and 1, giving the possibility of
modelling different types of imperfections in the analysed struc-
ture. The contact quality factor may differ from one sub-node to
the other sub-node and – what is more important – different val-
ues can be defined for the x and y components of the internal
forces.

In this work, the changing state of the factor Qkl is used to
model the ‘‘breathing” crack phenomenon. The normal stress at
the x-direction between the cracks faces is calculated at every sim-
ulation time step and is used to determine of whether the gap
between the crack interfaces is opened or closed. Mathematically
this can be described using the following relation

rxx 6 0 Qkl ¼ 1;
rxx > 0 Qkl ¼ 0:

ð13Þ

When the compressional part of the propagating stress wave
reaches the crack surfaces, the perfect contact is imposed by setting
Qkl as 1; whereas for the tensile part of the wave it is set to 0. Thus,
through such action higher-order harmonics are imposed on the
propagating ultrasonic wave responses. Fig. 3 gives an example
illustrating the presence of the ‘‘breathing” crack in ultrasonic
response. Here, the displacement signals from the undamaged and
damaged (i.e. cracked) structures are compared in both, i.e. time
and frequency, domains.
Fig. 3. Ultrasonic response from structures with and without the ‘‘breathing” c
One can easily notice that the amplitude of the time domain sig-
nal in Fig. 3a for the damaged case is cut-off. This is equivalent to
the open state (Qkl being equal to 0) of the ‘‘breathing” crack. Below
that level the wave is undisturbed which suggests that at the speci-
fic period of time the crack is closed (Qkl being equal to 1). The
‘‘breathing” crack action has also an effect on the frequency repre-
sentation, where higher-order harmonics are generated, as shown
in Fig. 3b.

It is important to note again that the contact quality factor Qkl

may vary between the nodes. Thus the condition of opening and
closing the crack is considered separately and independently for
each node. As a result, more complex interactions between crack
faces can be modelled when numerical simulations of wave prop-
agation are performed.

4. Validation with Finite Element Method (FEM)

First, the commercial software ABAQUS� – based on FEM – was
used to validate numerically the proposed NL–LISA/SM platform
for nonlinear wave propagation and wave interaction with dam-
age. Two model definitions were interrogated, i.e. (i) when the
nonlinear material definition was the only source of the higher-
order harmonics generations; and (ii) when two sources of nonlin-
earity were present, namely the nonlinear material and the
‘‘breathing” crack.
rack. The signals are presented in: (a) time domain; (b) frequency domain.



Fig. 4. Two-dimensional 2 mm thick beam model used for nonlinear Lamb wave
propagation modelling based on the proposed NL–LISA/SM platform and with FEMs.

Fig. 5. Lamb wave dispersion curves for the 2 mm thick aluminium beam used in
numerical simulations.
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The nonlinear material was modelled within the ABAQUS� with
the application of the VUMAT subroutine [11]. Aluminium was
chosen as the material in this analysis with the properties as sum-
marised in Table 1.

The thickness of the beam was set as 2 mm and the length was
equal to 1400 mm. Two structures were modelled, i.e. the undam-
aged beam and the beam damaged with a ‘‘breathing” crack. The
crack was introduced 300 mm from the left hand side of the beam
(as marked by the black vertical line in Fig. 4). The depth of the
crack was set to 50% of the beam thickness. The in-plane displace-
ment excitation was used, which was placed on the left hand side
of the beam and was uniformly distributed along the thickness of
the beam (as marked with green arrows in Fig. 4). This arrange-
ment allowed for selective excitation of the symmetric Lamb wave
mode.

The five-cycled sine burst signal – enveloped by the Hanning
window – was used as the excitation signal. The excitation fre-
quency was equal to 100 kHz. The amplitude of the excitation sig-
nal was set as 1 lm. Due to such choice of the amplitude, only
small but finite strains conditions are ensured to avoid plastic
deformation. The thickness of the beam and the selected excitation
frequency lead in theory to two Lamb wave modes propagating in
the analysed structure, as demonstrated in Fig. 5. However, in prac-
tice the selected excitation approach allows only for single S0
Lamb wave mode propagation; the amplitude of the second mode
is negligible. Lamb wave in-plane displacement responses were
collected at the distance of 850 mm from the left hand side of
the beam (marked with the red pointer in Fig. 4). The time discreti-
sation was set to 5 ns and the space was discretised with the 0.1
mm square elements.

Fig. 6 presents simulated Lamb wave responses in the time and
frequency domain collected from the models with only nonlinear
material definition. A very good agreement between the NL–
LISA- and FEM-based numerical simulations can be observed. In
the time domain responses in Fig. 6a are almost perfectly matched
and no major difference can be observed between the results from
two different methods. The frequency domain results in Fig. 6b also
display similar results for both methods investigated. Some minor
differences can be observed above 600 kHz. However, these differ-
ences are outside the frequency range of interest covering the first
and second harmonics.

Similar numerical simulations were performed again, however
this time the ‘‘breathing” crack model was additionally introduced
to the beam. Fig. 7 shows the collected and processed results in
both, time and frequency, domains. It can be noticed that the time
domain signals from two methods agree with each other with very
slight differences. That small difference is caused by the DC compo-
nent exhibited in the frequency spectrum in Fig. 7b (around 0 Hz),
which for the model in ABAQUS� is slightly higher than in the
model from NL-LISA/SM. Nevertheless, the relevant magnitudes
for the fundamental component and the second harmonic match
reasonably well. Higher-order harmonics exhibit larger differences
when the results from both simulation methods are compared.

To sum up, the initial nonlinear Lamb wave propagation results
from the proposed NL–LISA/SM-based numerical simulation plat-
form produce very good results in the time and frequency domains
when compared with the commercial FEM software. Arrival times
in the time domain and amplitudes of the first two harmonics in
Table 1
Material properties of aluminium used in nonlinear wave propagation.

Young’s modulus Poisson’s ratio Density

E t q

68.9 GPa 0.33 2700 kg=m3
the frequency domain do not exhibit significant differences when
the nonlinear model of material and crack are introduced to the
beam. The following section investigates the effect of material non-
linearity, damage severity, wave propagation distance and excita-
tion frequency on higher-order harmonic generations.
5. Proof-of-concept

This section demonstrates how the nonlinear material and
‘‘breathing” crack model – described respectively in Sections 2.2
and 3.2 – influence the wave propagation in different scenarios.

It is important to note that when higher-order harmonic gener-
ation is used for damage detection in Lamb wave propagation, the
experimental set-up (excitation frequencies in particular) should
be selected to enhance amplitude of higher harmonics due to dam-
age and to suppress this nonlinear effect due to material inheri-
tance. However, in this work due to the chosen frequencies, an
extreme approach is taken into consideration, namely, where both
‘‘breathing” crack and the nonlinear material have a significant
impact on the generated second harmonic. Such a choice of inves-
tigation gives an opportunity to clarify whether or not it is possible
to identify the presence and the stage of the fatigue ‘‘breathing”
crack in the structure with highly nonlinear material properties.
The results of this investigation can be used to obtain the knowl-
edge required to develop the new approach of the damage detec-
tion and identification in the fields of NDE and SHM. Therefore,
due to the successful validation of the developed NL–LISA/SM
modelling method, two following scenarios are investigated.

In the first scenario, the low frequency region in the Lamb wave
frequency–wavenumber space is investigated. The focus in these
investigations is on the symmetric S0-s0 (where S0 is the
Landau’s Third-Order Elastic Constants [56]

A B C

�320 GPa �200 GPa �190 GPa



Fig. 6. Nonlinear Lamb wave responses: (a) time domain; (b) frequency domain (logarithmic scale). Numerical simulations were performed for the undamaged beam and
nonlinear material model, using the NL–LISA platform and FEM.

Fig. 7. Results from the models prepared using NL–LISA/SM and FEM with nonlinear material definition and ‘‘breathing” crack compared in: (a) time domain; (b) frequency
domain (logarithmic scale). The signals are collected at the distance of 850 mm.
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fundamental mode and the s0 is its second harmonic mode) Lamb
wave mode pair. This mode pair is chosen due to the fact that in
the considered frequency band only two Lamb wave modes are
possible to propagate. Moreover, the fundamental symmetric
mode has almost non-dispersive characteristic. This desired prop-
erty has already come to the attention of some previous investiga-
tions on nonlinear Lamb waves [14,57]. In addition, both the
fundamental S0 mode and its s0 harmonic have approximately
the same phase and group velocities. The phase velocity matching
is particularly important, since it is generally accepted that the
cumulative amplitude increase of the propagating second har-
monic requires perfect matching of phase velocities and the non-
zero power flux between the considered Lamb wave modes. There-
fore, the wave propagation characteristics are investigated to find
out whether the S0-s0 mode pair can also be considered as a cumu-
lative synchronous mode pair. The same group velocity of both
harmonics simplifies the analysis of the considered wave mode
packages.

In the second scenario investigated, the wave propagation char-
acteristics of the well-known synchronised S1–s2 (i.e. the funda-
mental symmetric S1 mode and the second harmonic symmetric
s2 mode) pair in the high frequency region of the Lamb wave fre-
quency–wavenumber space is considered. The S1–s2 mode pair is
of great interest to the ultrasonic community [26,27,29] when the
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cumulative effect of the generated second harmonic is investigated
for damage detection. Both numerical simulation scenarios aim to
investigate the effect of material nonlinearity, severity of damage
and wave propagation distance on damage detection.
5.1. S0–s0 Lamb wave mode pair

Firstly, the nonlinear behaviour of the S0–s0 Lamb wave mode
pair was simulated for the undamaged and damaged beam. A
two-dimensional model presented in Section 4 with material prop-
erties from Table 1 was used in this section as well. Seven depths of
the fatigue crack were investigated as the percentage of the beam
thickness (from 0 to 60% every 10%). The excitation signal and fre-
quency was the same as described in Section 4. However, this time
a point-like excitation (indicated as a green arrow in the top-left
corner of the beam in Fig. 8) with the assigned in-plane displace-
ment was used in order to narrow the influence of the excitation
type on wave propagation characteristics. Finally, the sensing
space was chosen on the upper surface of the beam and the in-
plane displacement response was gathered every 50 mm starting
from the left hand side of the beam until 1200 mm. The sensing
area was intentionally smaller than the actual length of the beam
in order to avoid mixed direct incident and reflected (from the
edge of the beam) wave propagation components. Square elements
were used with the size equal to 0.1 mm and the simulation time
step was set as 5 ns to maintain the numerical stability of the
model. The schematic diagram of the beam model is shown in
Fig. 8.

Figs. 9a and b present numerical simulation results for the linear
and nonlinear material models, respectively. In both cases Lamb
wave response are presented in the time and frequency domains.
The results show that since the point-like excitation was used, both
Lambwavemodes – i.e. symmetric S0 and antisymmetric A0 –were
excited in the analysed structure. Furthermore, due to the interac-
tion of both modes with the fatigue ‘‘breathing” crack, converted
modes are generated and can be seen after the first S0 wave mode
package. At the end of the time responses the fundamental A0mode
interacts with the reflected S0 mode. A rectangular window – dis-
played in the upper parts of Figs. 9a and b – indicates the extracted
S0 mode that was used to obtain the frequency spectra given in the
lower parts of these figures. The results in the time and frequency
domains are given for different damage severities.

From the frequency representation of the first arrived S0 Lamb
wave mode packages extracted from the time signals one can
observe that the amplitude of the generated second harmonic
increases along with the crack depth. This observation can be made
for both cases investigated, i.e. linear and nonlinear material
model. Moreover, the magnitudes of the remaining higher-order
harmonics increase with the size of the crack as well. However,
please note that although these values of magnitudes may seem
close to the values of the second harmonic, they are in fact smaller
by an order. The misconception may be caused by the fact that the
results in the frequency domain are presented in the logarithmic
scale. As an example, the results from the beam with nonlinear
material definition and for the damage size being equal to 60% of
the beam thickness are presented: 1st harmonic 4.972e�4; 2nd
Fig. 8. Two-dimensional h ¼ 2 mm thick beam model used for the nonlinear crack–
wave interaction modelling based on the proposed NL–LISA/SM platform. The S0–s0
Lamb wave mode pair is considered in these investigations.
harmonic 1.582e�5; 3rd harmonic 8.378e�7; 4th harmonic
2.297e�6; 5th harmonic 4.055e�7; 6th harmonic 8.208e�7, etc.
Finally, an increase with the crack size can be also observed in
the case of the DC component (around 0 Hz). This effect results
from the internal resonance between the DC component, first
and second harmonic, as previously shown in [58]. Further investi-
gations are omitted as the characteristics of the DC component are
not in the scope of this paper.

The magnitudes of the first and second harmonics were esti-
mated from the frequency spectra. Exact points where the magni-
tudes were gathered are indicated by the black vertical lines in
Fig. 9. The relative acoustic nonlinear parameter b0 was calculated
as the ratio of the second harmonic magnitude to the square value

of the first harmonic magnitude (b0 ¼ A2=A
2
1, where A2 is the second

harmonic magnitude and A1 is the first harmonic magnitude). This
parameter is often utilised for the assessment of damage severity
when second-order harmonic generation is used for damage detec-
tion [11,31]. The first-, second-order harmonic and b0 magnitudes
were estimated for different wave propagation distances and dam-
age severities. The results are given in Figs. 10 and 11 for the linear
and nonlinear material models, respectively.

The analysis of results in Figs. 10 and 11 clearly shows that the
major difference in propagation characteristics are due to the def-
inition of the material. The results given in Figs. 10a and 11a
demonstrate that the magnitude of the fundamental harmonic
decreases with the severity of damage for the linear and nonlinear
material. In contrast, the magnitude of the nonlinear parameters
investigated increases with the severity of damage. Also, in both
cases investigated (i.e. linear and nonlinear material) the magni-
tude of the fundamental Lamb wave S0 mode does not change sig-
nificantly in Figs. 10a and 11a with the propagation distance.
Similarly, the second harmonic of the S0 Lamb wave mode (i.e.
the s0 mode) – generated by the crack – exhibits in Fig. 10b nearly
constant magnitude when the linear material model is used in
numerical simulations. As a consequence the relevant b0 parameter
in Fig. 10c also does not change with the wave propagation dis-
tance. The reason behind such behaviour lies in the local character-
istic of the analysed source of nonlinearity in the structure, i.e. the
‘‘breathing” crack. When the fundamental wave mode approaches
the crack interfaces, the second harmonic mode is generated from
the crack–wave interaction. This second harmonic mode continues
to propagate undisturbed as there are no additional nonlinear
events in the structure which could force the energy transfer from
the primary wave mode to the secondary wave mode.

In contrast, when the nonlinear material model is used in
numerical simulations, the magnitude of the second harmonic s0
mode and the relevant b0 parameter increase linearly with the
wave propagation distance in Figs. 11b and c, respectively. It is
important to note that this behaviour can be observed also for
the undamaged beam. Such phenomenon is caused by the defined
global nonlinearity (nonlinear material model) which forces con-
tinuous energy transfer between the fundamental and second har-
monic modes through the whole propagation distance. This
observation confirms that the S0-s0 mode pair can be treated as
the approximate synchronous one for the certain range of frequen-
cies, i.e. the almost non-dispersive frequency region with only two
Lamb wave (S0 and A0) modes being excitable. Furthermore, as the
fundamental wave approaches the ‘‘breathing” crack, after the
crack–wave interaction, another (or additional) second harmonic
is generated causing the increase of the resulting magnitude of
the second harmonic. This magnitude jumps up more for larger
damage severities and then continues to grow with the propaga-
tion distance.

Due to the presence of the approximate phase velocity match-
ing it is possible to observed a beat–period of the second harmonic



Fig. 9. Simulated time- and frequency-domain (logarithmic scale) Lamb wave responses collected at the distance of 850 mm from the excitation site. Numerical simulation
were performed for seven different damage severities. The work involved: (a) linear material model; (b) nonlinear material model.
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magnitude within the domain of the propagation distance as
exhibited in [59]. In the mentioned article, the beat–period appears
around 4500 mm from the excitation site, which can be considered
as a very long distance for the propagating Lamb waves. With
respect to the case presented in this paper, the model required to
illustrate the beat–period would be much longer than the one pre-
sented by Wan et al. It is therefore questionable to perform such
analysis considering both the physical (attenuation and amplitude
changes along the propagation path, hardly possible experimental
validation) and numerical aspects (error accumulation due to time
integration and numerical spectral properties). Instead, a curve fit-
ting procedure was performed on the available data of the second
harmonic magnitude pattern in the domain of propagation dis-
tance. The data points were acquired from the intact model with
nonlinear material (Fig. 11b marked as ‘‘intact”). Subsequently,
parametrized sine function was used as a base to extrapolate the
numerical data in order to receive the values of second harmonic
magnitude at longer distances from the source. For the process of
curve fitting, the MATLAB Curve Fitting application was used. A
sine function was used for extrapolation as
y ¼ a1 � sinðb1 � xþ c1Þ, where x is the propagation distance and
y is the magnitude of the second harmonic. Parameters
a1 ¼ 2:046e� 05; b1 ¼ 0:0002085 and c1 ¼ 0:005705 were gener-
ated with the MATLAB Curve Fitting application. The results are
presented in Fig. 12. The full circles in the presented plot are the
values from numerical model and the solid line depicts the extrap-
olated response. One can observe that the approximate linearity of
the second harmonic growth can be assumed for distances below
4000 mm from the source of excitation.

From the presented curve fitting procedure, the length of the
beat–period will have approximately 15600 mm. On the other
hand, an analytical way to investigate the beat–period is available
by calculating the dispersion length – as shown in [27] – with the
form Ln ¼ 1= j k� � 2k j. The k� is the wavenumber of the second
harmonic mode and k is the wavenumber of the first harmonic
mode. From the above equation the length of the beat–period for
the chosen S0–s0 mode pair is approximately 16580 mm, which
gives a good agreement with the numerical value obtained from
the curve fitting.

Further analyses of the results presented in Figs. 10 and 11
demonstrate that for the S0-s0 Lamb wave mode pair the (in-
phase) positive interaction between the second harmonic s0 mode



Fig. 10. Nonlinear parameters from undamaged and damaged beam models in the propagation distance domain: (a) First harmonic magnitude; (b) Second harmonic
magnitude; (c) b0 magnitude. The results were obtained for the S0–s0 mode pair and linear material model.

Fig. 11. Nonlinear parameters from undamaged and damaged beam models in the propagation distance domain: (a) First harmonic magnitude; (b) Second harmonic
magnitude; (c) b0 magnitude. The results were obtained for the S0–s0 mode pair and nonlinear material model.
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generated from the local nonlinearity (‘‘breathing” crack) and the
second harmonic s0 mode generated from the global nonlinearity
(nonlinear material model) takes place, resulting in increased mag-
nitudes. A better insight into the above described phenomena can
be obtained when the results for the linear and nonlinear material
models and simulated for the intact (i.e. undamaged) and 60%
cracked–beam are given in Fig. 13.

The results presented in Fig. 13b confirm the earlier stated
explanation regarding the in-phase magnitude summation of the
second harmonic s0 modes generated from two different sources
of nonlinearities. It can be clearly seen that the results for the dam-
aged case in the model with nonlinear material definition (dashed
red line with the description of ‘‘60% damaged – nonlinear mat”) is
a sum of the intact nonlinear model (dashed blue line with the
description of ‘‘intact – nonlinear mat”) and the damaged case with
the linear material definition (solid red line with the description of
‘‘60% damaged – linear mat”).

When the results for the two different material models are com-
pared (Fig. 13a) the influence of the global material nonlinearity
can be observed. The first harmonic magnitudes – resulting from



Fig. 12. The beat–period of the second harmonic magnitude obtained through the curve fitting process to the numerical data. The data is from the intact model with
nonlinear material definition and propagating S0–s0 mode pair.

Fig. 13. Dependence of the nonlinear parameters on the propagation distance (S0–s0 mode pair), collected from both – i.e. linear and nonlinear – material models: (a) First
harmonic magnitude; (b) Second harmonic magnitude; (c) b0 magnitude. The results are given only for the intact (undamaged) beam and 60% cracked–beam.
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the nonlinear material model – are lower than the relevant magni-
tudes for the linear material model. This behaviour is caused by the
unceasing energy shift from the first to the second harmonic, as
already mentioned above. Finally, the nonlinear b0 parameter
shown in Figs. 10c, 11c and 13c exhibits similar pattern to the sec-
ond harmonic magnitude. This is due to the fact that the changes of
the first harmonic magnitude are not significant with the propaga-
tion distance.

Some comments are needed regarding the characteristics of all
analysed parameters in the area before the ‘‘breathing” crack (dis-
tance from 0 to 300 mm). For the second harmonic and b0 param-
eter magnitudes an increasing peak can be observed whereas for
the first harmonic a drop of the magnitude is maintained in the
vicinity of the crack. These features result from mixing of incident
and crack-reflected wave packages, as observed and described in
[46,47]. Furthermore, it is mentioned in [47] that within the close
area of the damage a significant increase of the first harmonic mag-
nitude should be observed. No such phenomena is visible in the
results presented in this article. It is due to the chosen step
between the sensing points (50 mm) which is large enough to
make impossible to observe such a characteristic.

Finally, the dependence of the analysed parameters on the size
of the crack is scrutinised. In order to achieve this, the simulated
results are collected from the point at the distance of 850 mm from
the left hand side of the beam and are presented in the crack size
domain in Fig. 14.
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An exponential growth of the second harmonic magnitude and
the relative acoustic nonlinear parameter b0 with damage severity
can be observed for both – i.e. linear and nonlinear – material mod-
els (Figs. 14b and c). The second harmonic generated by the global
hyper-elastic nonlinear material model is higher than generated by
the local nonlinear crack, as discussed above. The results also show
that as the damage severity increases, the magnitude of the second
harmonic (and consequently the magnitude of the b0 parameter)
get closer for the linear and nonlinear material models. With the
growth of the crack depth, the influence of the material nonlinear
characteristic on the generated second harmonic becomes less sig-
nificant. The S0–s0 mode pair is more suitable for detection of lar-
ger cracks (crack depth larger than 20% of the beam thickness). It is
easier to differentiate their influence on the generated second har-
monic than the near-surface cracks (up to 20% of the beam thick-
ness). Last but not least, the magnitude of the fundamental
harmonic decreases nonlinearly with the damage severity, as
expected. The material model does not have a significant effect
on this characteristics.

5.2. S1–s2 Lamb wave mode pair

This section reports the results obtained from numerical simu-
lations of another synchronous Lamb wave mode pair, i.e. the
higher-order symmetric S1–s2 mode pair. This mode pair offers
good synchronisation, guarantees cumulative amplitude over
propagation distance of the second harmonic and therefore has
been widely explored for nonlinear Lamb wave propagation
[11,27,28,60].

Again, a two-dimensional aluminium beam with material prop-
erties given in Table 1 was used to examine wave propagation and
wave interaction with damage of the S1–s2 mode pair. This time
the thickness h of the beam was increased to 4 mm in order to
maintain good numerical stability of the selected modes and most
importantly in order to reduce the influence of numerical disper-
sion common to higher-order Lamb wave modes, as demonstrated
in [49,58]. Fig. 8 gives the geometry of the beam together with
Fig. 14. Nonlinear Lamb wave parameters vs. damage severity for the linear and nonline
(c) b0 magnitude. The results were obtained for the S0–s0 mode pair and linear materia
damage and sensors placing. As in the previous modelling scenario,
in-plane displacement responses were collected on the distance of
1200 mm from the left hand side of the beam every 50 mm
(marked with red dots in Fig. 8). The selected distance and length
of the beam guarantee long propagation and avoids undesired
interactions of the incident wave with the edge–reflected compo-
nents. Furthermore, seven damage severity cases were prepared
with the size of the crack increasing from 0% to 60% of the beam
thickness (step between the sizes was set to 10%). The crack was
positioned 300 mm from the left side of the beam. The excitation
was imposed on the top-left corner of the beam a in-plane dis-
placement with the amplitude as in the previous sections. The dis-
cerisation in the time and space domain was the same as in the
numerical simulations reported in Sections 4 and 5.1.

The excitation frequency was selected following previous
research studies [26,29] in order to meet the synchronism condi-
tion. For the aluminium beam with material parameters stated in
Table 1 the synchronism condition occur at 3.57 MHz �mm for
the S1 fundamental mode and 7.14 MHz �mm for the second har-
monic s2 mode, resulting in the frequencies of 892.5 kHz and
1.785 MHz, respectively for the 4 mm thick beam. Both frequencies
of interest are marked on the dispersion curves presented in Fig. 15
to illustrate the synchronisation condition. One can clearly see that
both chosen frequencies correspond respectively to the S1 and s2
symmetric modes and the phase velocity matching condition is
also satisfied.

A twenty-cycle sine wave burst signal – enveloped by the Han-
ning window – was used as the excitation. The excitation fre-
quency was equal to 892.5 kHz. Two (linear and nonlinear)
material models and seven damage severities were investigated,
as explained in Section 5.1.

The dispersion characteristics given in Fig. 15 shows that four
Lamb wave modes will be excited in the beam for the selected
excitation frequency. In addition, converted modes will be also
excited in the beam as a result of the crack–wave interaction, as
explained in the previous section. Thus the classical spectral
analysis – used in Sections 4 and 5.1 to obtain frequency domain
ar material models: (a) First harmonic magnitude; (b) Second harmonic magnitude;
l model.



Fig. 15. Lamb wave dispersion curves for 4 mm thick aluminium beam used in numerical simulations.
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characteristics – is not sufficient to extract amplitudes of the fre-
quency components of interest. Thus, the Short-Time Fourier
Transform (STFT) was applied to separate all modes and extract
amplitudes of the S1 and s2 modes. Fig. 16 gives an example of
the STFT plots for the responses collected 800 mm from the left
hand side of the beam.

The results for the undamaged beam in Figs. 16a and c show
that the second harmonic is generated only in the response for
the beam with the nonlinear material. In contrast, when the beam
is damaged the second harmonic s2 is exhibited for both – i.e. lin-
ear and nonlinear – material models and the amplitudes of this
Fig. 16. Short Time Fourier Transform contour plots for the in-plane displacement signa
with the linear material model; (b) damaged beam (severity of damage equal to 20%) with
(d) damaged beam (severity of damage equal to 20%) with the nonlinear material mode
harmonic are much stronger. Since the second harmonic can be
generated also in the response from the undamaged beam (e.g.
Fig. 16c), it is clear that in practice converted modes will also have
to be analysed in order to detect damage.

By processing all of the collected signals with the use of STFT,
the magnitude profiles in time domain are extracted at the fre-
quencies of the particular interest, i.e. 892.5 kHz and 1.785 MHz
(marked with dashed white line in Fig. 16). Due to the fact that
at the chosen frequencies both S1 and s2 modes arrive first accord-
ing to their dispersion characteristics, the maximummagnitudes of
the first packages in the respective frequencies are obtained for all
ls captured at 800 mm from the left hand corner of the beam: (a) undamaged beam
the linear material model; (c) undamaged beamwith the nonlinear material model;
l. Please note that contour plot magnitudes are plotted in a logarithmic scale.
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damage and material definitions cases and are presented in prop-
agation distance domain in Figs. 17 and 18. As in the previous sec-
tion, the relative acoustic nonlinear parameter b0 is also calculated
and shown in the propagation distance domain.

Some interesting observation can be made when the reported
magnitudes/parameters are analysed for different material models
investigated. The results in Fig. 17b show that when the cracked
beam is modelled using the linear material the second harmonic
(mode s2) of the S1 mode is generated after the crack–wave inter-
action. This mode (second harmonic) continues to propagate in the
beam and its amplitude remains relatively unchanged. Some
amplitude increases in this case could be attributed to post-
processing (i.e. magnitude extraction) of the contour plots with
the use of STFT. These slight changes of magnitude could be con-
sidered as negligible if compared with the results given in
Fig. 18b, where the same simulation results for the cracked beam
were obtained using the nonlinear material model. Two sources
of nonlinearity – i.e. ‘‘breathing” crack and material – generate
the second harmonic with strongly increasing magnitudes over
the wave propagation distance. The S1–s2 mode pair is synchro-
nised also for the undamaged beam for which the magnitude of
the second harmonic also increases with the propagation distance.
However, the obtained magnitude growth trend is not linear. This
observation can lead to the conclusion that the selected frequen-
cies correspond rather to the approximate phase–velocity match-
ing condition than to the exact phase-velocity matching, as
explained in [28]. In other words, the analytical condition for syn-
chronisation – defined in [26,28,36] – is met but not necessarily
fulfilled by the numerical model. Previous result reported in
[49,61] demonstrate that numerical dispersion characteristics
strongly depend on mesh parameters. Therefore, even though
numerical parameters satisfy stability conditions, it is possible that
the numerical and analytical dispersion characteristics are differ-
ent. As a result, even if the selected mode pair satisfies the analyt-
ical synchronisation condition, there is no guarantee that this
condition will be met by the numerical model.

When the fundamental harmonic magnitude is analysed in
Figs. 17a and 18a no significant difference can be observed in the
reported plots. The magnitude of this harmonic decreases over
Fig. 17. Nonlinear parameters from undamaged and damaged beam models in the p
magnitude; (c) b0 magnitude. The results were obtained for the S1–s2 mode pair and lin
the wave propagation time for the linear and nonlinear model for
all damage severities, as expected. The magnitude reduction is
mainly due to the dispersion of the S1 mode and, in the case of
models with nonlinear material, the energy transfer from the fun-
damental to the second harmonic s2 mode.

Finally, the relative acoustic nonlinear parameter b0 exhibits
some interesting features. Especially for the beam with the linear
material model for which an increase of parameters’ magnitude
with the propagation distance can be noticed. This is not caused
by the synchronisation condition of the S1–s2 mode pair, since
the ‘‘breathing” crack is a local nonlinearity and the cumulative
mechanism of magnitude increase over propagation distance does
not apply in this case. This behaviour results rather from the steep
magnitude decrease of the first harmonic that is highly dispersive
if compared with second harmonic (see Fig. 15); the b0 parameter is
inversely proportional to the square of the first harmonic magni-
tude and not of much use for damage detection in this case. How-
ever, the usefulness of calculating the b0 comes handy in the case of
the models with nonlinear material and ‘‘breathing” crack. This
conclusion is well depicted in the following figure. Similarly to
the analysis performed in Section 5.1, Fig. 19 presents the values
of all analysed parameters against damage severity.

First, attention should be directed to the results of the first har-
monic characteristics (Fig. 19a), as the features of the second har-
monic and the b0 parameter require to be analysed together. It can
been noticed that the first harmonic decreases in the domain of the
crack size, which is commonly accepted feature when analysing
the influence of the increasing size of the crack on the fundamental
amplitude of the wave, i.e. wave attenuation. Moreover, it can be
observed that the results from the models with nonlinear material
have lower values than from the linear ones. It confirms the previ-
ously stated observation regarding the higher energy transfer to
the second harmonic due to the presence of two sources of nonlin-
earity. On the other hand, a highly nonlinear dependence of the
generated second harmonic (Fig. 19b) and the resulting parameter
b0 (Fig. 19c) magnitudes on the size of the ‘‘breathing” crack can be
observed. One can notice that the second harmonic reaches its
maximum values for the damage size equal to 30% of the beam
thickness for the models with linear material and 20% for the beam
ropagation distance domain: (a) First harmonic magnitude; (b) Second harmonic
ear material model.



Fig. 18. Nonlinear parameters from undamaged and damaged beam models in the propagation distance domain: (a) First harmonic magnitude; (b) Second harmonic
magnitude; (c) b0 magnitude. The results were obtained for the S1–s2 mode pair and nonlinear material model.

Fig. 19. Nonlinear Lamb wave parameters vs. damage severity for the linear and nonlinear material models: (a) First harmonic magnitude; (b) Second harmonic magnitude;
(c) b0 magnitude. The results were obtained for the S1–s2 mode pair and linear material model.
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with the nonlinear model. The second harmonic decreases with the
size of the crack for larger crack depths. The nonlinear b0 parameter
reaches the maximum value for 40% and 30% crack depth, for linear
and nonlinear material models, respectively. Hence, the S1-s2
mode pair is well suited to detect near–surface fatigue cracks, as
concluded in previous research investigations [59,60]. As the crack
depth increases, values of nonlinear parameters go down and as a
result, damage detection becomes more difficult. This behaviour is
in contrast to the S0–s0 mode pair, as demonstrated in Section 5.1.
It can be noticed that for the S1–s2 mode pair the in-phase
summation between the second harmonics generated from the
nonlinear material and ‘‘breathing” crack occur only when the
cracks depth is between 0 and 20% of the beam thickness. For
larger sizes of crack the second harmonics decreases, as a result
of phase shift occurring between the respective second harmonic
modes generated from two different sources. Such a difference in
behaviour of the resultant second harmonic between the chosen
mode pairs – i.e. S0–s0 mode pair and S1–s2 mode pair – is caused
by the difference in complexity of the through–thickness mode
shapes of s0 and s2 modes. The amplitude of the s0 mode is almost
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uniformly distributed along the thickness, where the s2 mode has a
trend of the cosine function along with the thickness. Thus, in-
phase summation is more plausible to occur for S0–s0 mode pair
than for S1–s2 mode pair, when two sources of nonlinearity are
considered. Such outcome was also pointed out in [3].

5.3. Discussion

Interesting results are obtained from investigating the second
harmonics generation in both low and high frequency range of
the Lamb wave dispersion space. Both cases exhibit advantageous
features which can be used in developing a NDE or SHM damage
detection technique. The S0–s0 mode pair can be easily utilised
to monitor the damage state of the structure, where the high fre-
quency S1–s2 mode pair can be used to detect the embryo stages
of the possible fatigue cracks in the examined structure.

Although, in the former case, a linear increase of the second har-
monic magnitude is obtained from the analysis, one should be
aware of the approximate phase velocity matching between the
S0 and s0 modes. In the result, a beat–period will be observed in
the much further propagation distance, as it was pointed out in
[59]. Similar results were obtained in the presented paper, where
the beat–period appears far beyond the area of investigation.

In the latter case, although the pair is considered as the one sat-
isfying the ‘‘internal resonance”, an approximate behaviour is
observed instead. One can see such an outcome as a certain flaw
of the introduced numerical solution. However, having in mind
an increasing number of investigations focused on monitoring
the nonlinear aspects of the propagating wave using the numerical
solutions [31,32,60], such a flaw has to be emphasized and appro-
priate steps should be taken in order to compensate them. More-
over, such compensation should not be reached in the domain of
the excited frequency in order to achieve the ‘‘internal resonance”
as the chosen parameter will be only applicable to the specific
numerical approach (LISA, FEM, FDM, etc.) and will not be reflected
in the different numerical solver or in the experiment. Therefore,
the solution should be found in the defining new conditions for
choosing the numerical parameters. First attempt to such parame-
ters is shown in [58] and further steps should be taken in order to
enhance the numerical modelling in the high frequency range of
the Lamb wave dispersion curves.

6. Conclusions

Modelling and numerical simulation of nonlinear Lamb wave
propagation in intact and cracked beams was investigated. The
major focus was on the second harmonic generation caused by
two sources of nonlinearity, i.e. the nonlinear hyper-elastic mate-
rial and ‘‘breathing” crack. The cumulative effect of the second har-
monic generated in the low (only basic Lamb wave modes) and
high (higher-order Lamb wave modes) frequency range of Lamb
wave dispersion curves were investigated. A new modelling tool
based on NL–LISA and SM was proposed for all these tasks. The
proposed model of crack involved a new condition for opening/-
closing the gap between the cracks interfaces. This condition was
based on the normal stress evaluated between the cracks’
interfaces. The performance of the proposed NL–LISA/SM numeri-
cal tool was compared with the results based on the commercial
FE ABAQUS� Software.

Numerical simulations based on NL–LISA/SM involved different
material models (linear and nonlinear) and various severities of
damage (crack depth). The magnitude of the second order
harmonic generated by nonlinearities was investigated.

The simulation results demonstrate that the S0–s0 mode pair
(low-frequency range) fulfils the approximate synchronisation
condition and leads to cumulative second harmonic generation
when material is nonlinear. Further investigations reveal that this
Lamb wave generation of this mode pair can be used to detect and
monitor large crack severities. Moreover, when two sources of
nonlinearity (i.e. material and damage) are present, with the
increasing size of the crack material nonlinearity has less effect
on the generated second harmonic.

The cumulative growth of the second harmonic mode was also
observed when S1–s2 mode pair (high-frequency range) was used
for nonlinear Lamb wave propagation. The results demonstrated
that the S1–s2 mode pair is better suited to detect smaller crack
depths. The ‘‘internal resonance” – required for the synchronisa-
tion condition to achieve a linear growth of the second harmonic
magnitude – was met only approximately for this mode pair, lead-
ing to some discrepancies with respect to the magnitude beha-
viour. This is mainly due to numerical conditions that are
important to obtain good quality dispersion characteristics. Fur-
ther research work is required to investigate this problem.

Nevertheless, both synchronous mode pairs investigated offer
good potential for damage detection based on nonlinear Lamb
wave propagation. It is anticipated that the proposed numerical
simulation platform – based on NL–LISA and SM – will contribute
to further developments in this field, leading to new reliable non-
linear damage detection methods. Further experimental investiga-
tions should also be performed to confirm the observed
phenomena.
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