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The high-order waveguide modal theory, usually used in electromagnetics and acoustics, is adopted to
investigate the propagation properties of shear horizontal waves in a periodic stubbed plate. Beyond
the sub-wavelength regime, higher-order modes are included to calculate the exact band structures
caused by the stubs. Theoretical solutions are obtained in a closed form, in which both the dynamic
governing equations and the boundary conditions are strictly satisfied. It is shown that the proposed
modelling approach exhibits good convergence and accuracy, in agreement with results obtained from
the finite element method. After a systematic investigation on the influence of the stub on the evolution
of the band structures, the so-called rainbow trapping phenomenon of SH waves is revealed and explored
in a graded stubbed plate with monotonously increasing height or width of the stubs, featuring an
obvious reduction of the group velocity and blocking of the wave propagation at different locations for
SH waves of different frequencies. The proposed model is expected to provide a useful theoretical tool
for the physical mechanism exploration, structural design and eventually system optimization to guide
various engineering applications of SH waves.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

As artificially structured composite materials, acoustic metama-
terials (AMs) and phononic crystals (PCs) exhibit anomalous phys-
ical properties that cannot be found in nature. Typical examples
include absolute band gaps (BGs) [1–3], directional BGs for unidi-
rectional transmissions [4], negative refractions for wave focusing
[5], zero-angle refraction for wave collimations [6] and so forth.
The diverse functionalities of the AMs and PCs are being explored
for various applications, such as cloaking [7], phase manipulation
[8], sound absorption [9] and active control [10,11]. The ultimate
aim is to be able to manipulate wave propagations through
structural design. Conventional PCs and AMs usually consist of
two-phase or multi-phase components to create an impedance
mismatch as a result of the differences in material properties.
Alternatively, the impedance mismatch can also be generated
through varying the structural shape or other geometric parame-
ters [12–14]. Acoustic black hole (ABH) structures with the struc-
tural thickness tailored in a particular form is a typical example,
in which bending waves can be controlled artificially [15,16].
Another example is the periodically corrugated structures made
of the same material in one piece [17], which provides a simple
and potential substitution for wave devices, since less design
parameters are involved. The advent of new manufacturing
capabilities such as 3D printing also makes it possible to fabricate
structural components with more complex geometries. Such
designs also avoid the joints betweenmulti-phase materials, which
are not desirable in manufacturing, assembly and applications.

For the control and the manipulation of elastic waves in a
geometry-induced inhomogeneous medium, the primary task is to
be able to accurately predict the band structures expressed in terms
of the frequency spectrums.Mathematically, it can be expressed in a
general form as G(f) = 0, in which G stands for an explicit or implicit
functionof the frequency f. From themechanical viewpoint, the gen-
eralized formofG(f) can be deducedby satisfying the dynamic equa-
tions and the corresponding Bloch theorem as the necessary
boundary conditions between the unit cells in a periodic structure.
However, mathematically, the full dynamic equations describing
the elastic wave propagation in solids are governed by the displace-
ment vector, in which the inherent mode coupling needs to be con-
sidered. This creates a tremendous challenge for the establishment
of the theoretical model allowing for analytical solutions. Hence,
most investigations on elastic waves in AMs and PCs have been
based on numerical simulations and experiments [12,13,18].
Theoretically, the band structures caused by geometry-induced

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultras.2017.11.010&domain=pdf
https://doi.org/10.1016/j.ultras.2017.11.010
mailto:li.cheng@polyu.edu.hk
https://doi.org/10.1016/j.ultras.2017.11.010
http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


P. Li, L. Cheng /Ultrasonics 84 (2018) 244–253 245
mismatched impedance can be calculated via the revised plane-
wave-expansionmethod [16,19,20], in which virtual vacuum layers
need to be added in order to satisfy the traction-free surfaces over
the structural portion where geometrical changes take place. In so
doing, solutions depend on the thickness of the vacuum layers,
and the convergence of the solution is sometimes rather poor.
Besides, homogenizationmethods [21,22] can also be used to obtain
the band structure through calculating the effective constitutive
parameters of the complexmaterials, which is known as an efficient
tool only for long wavelength approximation. Therefore, theoretical
or semi-analyticalmodels, capable of accurately describing the elas-
ticwavepropagation inAMsandPCs, arehighlydesirable. Thismoti-
vates the present contribution.

Inspired by works in electromagnetics and acoustics [23–26],
the high-order waveguide modal theory is utilized to establish a
theoretical model on the shear horizontal (SH) wave propagation
in a periodic stubbed plate. The model allows for an analytical
solution, in which the Bloch theorem is included automatically,
which provides much convenience for the mathematical deriva-
tion. In the proposed model, higher-order modes are included to
get the exact band structures caused by the stubs. The proposed
model and the solution show fast convergence by using a small
number of terms and high accuracy through comparisons with
the result from the finite element method (FEM). Numerical anal-
yses reveal the so-called rainbow trapping phenomenon of SH
wave in a graded stubbed plate with monotonously increasing
height or width of the stubs, featuring an obvious reduction of
the group velocity and blocking of wave propagation at different
locations for SH waves of different frequencies.

2. The high-order waveguide mode theory

Consider a periodic stubbed plate with two different additional
partial stubs on its upper and bottom surfaces. The plate is
assumed unbounded in the x3 direction, and only a cross section
of the unit cell from the stubbed plate is shown in Fig. 1. For con-
venience, the inhomogeneous plate is divided into three homoge-
neous regions. Region I is the middle flat plate between the two
stubs, whose thickness and periodicity are denoted by 2h and l,
respectively. Regions II and III correspond to the upper and bottom
stubs, occupying the region jx2j 6 0:5wup and jx2j 6 0:5wdown and
having a height of dup and ddown, respectively. When a SH wave
travels in the inhomogeneous plate, its propagation properties
are altered by the geometry-induced mismatched impedance,
which will be the focus of the analyses.

The dynamic equation governing the SH waves only involves a
displacement component in x3 direction u3 ¼ uðx1; x2Þ as
Fig. 1. Scheme of a unit cell from a periodic stubbed plate.
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in which l and q are, respectively, the shear modulus and mass
density, and t is the time. Given an incident harmonic SH plane
wave with an angular frequency x in the plate, the wave field in
the middle plate denoted by Region I can be expressed as [23–27]

u Ið Þ ¼
X1
c¼�1

Ac cos k1;cx1
� �þ Bc sin k1;cx1

� �� �
exp ik2;cx2

� �
; ð2Þ

in which Ac and Bc are the coefficients to be determined and the
common term, expðixtÞ, has been omitted for brevity. Here, the
incident wave field is dropped in Eq. (2), since the dispersion rela-
tion, instead of forced vibration, is of the primary concern. As a mat-
ter of fact, Eq. (2) can be regarded as the diffraction field caused by
the stubs, which is analogue to electromagnetics and acoustics. The
eventual inclusion of the incident wave field in Eq. (2) allows the
calculation of the reflection and transition coefficients in photonics
and phononics [23–26], in which 0-order waveguide mode is usu-
ally applied for the sub-wavelength regime. However, beyond the
sub-wavelength regime, sufficient higher-order modes should be
included in Eq. (2) in order to exactly describe the wave propaga-

tion properties of the SH waves. k1;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2SH0
� k22;c

r
stands for the

wave number in x1 direction with the bulk velocity cSH0 ¼
ffiffiffi
l
q

q
.

Meanwhile, considering the Bloch theory, the c-order diffraction
wave vector in x2 direction can be denoted by k2;c ¼ kþ c�2p

l with k
ranging from �p=l to p=l in the irreducible Brillouin zone [27,28].
Based on the solution, the shear stress component can be obtained
as

T Ið Þ
31 ¼

X1
c¼�1

lk1;c½�Ac sin k1;cx1
� �þ Bc cos k1;cx1

� �� exp ik2;cx2
� �

: ð3Þ

The displacement of the SH wave can be expressed by virtue of
trigonometric function expansion technique [27,29]. For the upper
and bottom stubs, the displacement fields can be written as

u IIð Þ ¼
X1

n¼0;1;2

Cn eiq
up
n hþdup�x1ð Þ þ e�iqupn hþdup�x1ð Þh i

cos aup
n x2 þ 0:5wupð Þ� �

ð4Þ

u IIIð Þ ¼
X1

m¼0;1;2

Dm eiq
down
m hþddownþx1ð Þ þ e�iqdown

m hþddownþx1ð Þh i
� cos adown

m x2 þ 0:5wdown� �� �
; ð5Þ

where Cn and Dm are the coefficients to be determined. aup
n ¼ np

wup and
adown
m ¼ mp

wdown are the wave numbers in x2 direction for the upper and
bottom stubs, respectively. Different m and n stand for different
modes, symmetrical when n ¼ m ¼ 0;2;4; . . . and anti-
symmetrical when n ¼ m ¼ 1;3;5; . . .. Actually, the expressions of
u(II) and u(III) embrace the principle of the modal superposition
method. It should be noted that the traction free boundary condi-

tions T IIð Þ
32 ¼ 0 at x2 ¼ �0:5wup and T IIIð Þ

32 ¼ 0 at x2 ¼ �0:5wdown are
automatically satisfied in this case. The wave numbers in the upper
and the bottom stubs in x1 direction can be obtained as

qup
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
SH0

� aup
nð Þ2

r
and qdown

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
SH0

� adown
m

� �2r
by ensuring that

Eqs. (4) and (5) satisfy the dynamic governing Eq. (1). Correspond-
ingly, the stress components can be obtained as
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T IIð Þ
31 ¼

X1
n¼0;1;2

liqup
n Cn �eiq

up
n hþdup�x1ð Þ þ e�iqupn hþdup�x1ð Þh i

� cos aup
n x2 þ 0:5wupð Þ� �

; ð6Þ

T IIIð Þ
31 ¼

X1
m¼0;1;2

liqdown
m Dm eiq

down
m hþddownþx1ð Þ � e�iqdown

m hþddownþx1ð Þh i
� cos adown

m x2 þ 0:5wdown
� �� � ð7Þ

Meanwhile, the traction free boundary conditions T IIð Þ
31 ¼ 0 at

x1 ¼ hþ dup and T IIIð Þ
31 ¼ 0 at x1 ¼ �h� ddown are also automatically

satisfied, which provide much convenience for the final solving
process. The continuity condition in terms of the displacement
and the stress in the regions of jx2j 6 0:5wup and jx2j 6 0:5wdown

at x1 ¼ �h writes

x1 ¼ h : T Ið Þ
31 ¼ T IIð Þ

31 ; jx2j 6 0:5wup

0; 0:5wup 6 jx2j 6 0:5l

(
ð8aÞ

x1 ¼ h; jx2j 6 0:5wup : u Ið Þ ¼ u IIð Þ ð8bÞ

x1 ¼ �h : T Ið Þ
31 ¼ T IIIð Þ

31 ; jx2j 6 0:5wdown

0; 0:5wdown 6 jx2j 6 0:5l

(
ð9aÞ

x1 ¼ �h; jx2j 6 0:5wdown : u Ið Þ ¼ u IIIð Þ ð9bÞ
Substituting the displacements and the stresses, i.e., Eqs. (2)–

(7), into the boundary conditions, i.e., Eqs. (8) and (9), yields

X1
c¼�1

k1;c �Ac sin k1;ch
� �þ Bc cos k1;ch

� �� �
exp ik2;cx2

� �

¼
X1

n¼0;1;2

2qup
n Cn sin qup

n dup� �
cos aup

n x2 þ 0:5wupð Þ½ �; jx2j 6 0:5wup

0; 0:5wup 6 jx2j 6 0:5l

8><
>:

ð10aÞ

X1
n¼0;1;2

2Cn cos qup
n dup� �

cos aup
n x2 þ 0:5wupð Þ� �

¼
X1
c¼�1

Ac cos k1;ch
� �þ Bc sin k1;ch

� �� �
exp ik2;cx2

� � ð10bÞ

X1
c¼�1

k1;c Ac sin k1;ch
� �þ Bc cos k1;ch

� �� �
exp ik2;cx2

� �

¼

X1
m¼0;1;2

� 2qdown
m Dm sin qdown

m ddown
� �

cos adown
m x2 þ 0:5wdown

� �� �
;

jx2j 6 0:5wdown

0; 0:5wdown 6 jx2j 6 0:5l

8>>>><
>>>>:

ð11aÞ

X1
m¼0;1;2

2Dm cos qdown
m ddown

� �
adown
m x2 þ 0:5wdown� �� �

¼
X1
c¼�1

Ac cos k1;ch
� �� Bc sin k1;ch

� �� �
exp ik2;cx2

� � ð11bÞ

Multiplying Eqs. (10a) and (10b) by expð�ik2;cx2Þ and
cos aup

n ðx2 þ 0:5wupÞ½ � respectively, and integrating the individual
equation from –l to l and from –0.5wup to 0.5wup, we can obtain
the following linear equations:
d0nþ1ð ÞwupCn cos qup
n dup� �¼ X1

c¼�1
Ac cos k1;ch

� �þBc sin k1;ch
� �� �

Mup
nc ;

ð12aÞ

k1;cl �Ac sin k1;ch
� �þ Bc cos k1;ch

� �� � ¼ X1
n¼0;1;2

2qup
n Cn sin qup

n dup� �
�Mup

nc ;

ð12bÞ
in which

Mup
nc ¼

Z 0:5wup

�0:5wup
exp ik2;cx2

� �
cos aup

n x2 þ 0:5wupð Þ� �
dx2

¼
2k2;c sin 0:5k2;cwupð Þ

k22;c� aupnð Þ2 ; n ¼ 0;2;4; . . .

2ik2;c cos 0:5k2;cwupð Þ
k22;c� aupnð Þ2 ; n ¼ 1;3;5; . . .

8>><
>>:

ð13Þ

in which the bar above the symbols represents the conjugate oper-
ation. Applying the similar operation to Eqs. (11a) and (11b) yields

ðd0m þ 1ÞwdownDm cos qdown
m ddown

� �

¼
X1
c¼�1

Ac cos k1;ch
� �� Bc sin k1;ch

� �� �
Mdown

mc ð14aÞ

k1;cl Ac sin k1;ch
� �þ Bc cosðk1;chÞ

� �
¼

X1
m¼0;1;2

� 2qdown
m Dm sin qdown

m ddown
� �

�Mdown
mc ; ð14bÞ

with

Mdown
mc ¼

Z 0:5wdown

�0:5wdown
expðik2;cx2Þ cos adown

m x2 þ 0:5wdown� �� �
dx2

¼
2k2;c sin 0:5k2;cwdownð Þ

k22;c� adown
mð Þ2 ; m ¼ 0;2;4; . . .

2ik2;c cos 0:5k2;cwdownð Þ
k22;c� adown

mð Þ2 ; m ¼ 1;3;5; . . .

8>><
>>:

ð15Þ
Furthermore, Eqs. (12) and (14) can be simplified as

X1
c0¼�1

Xup
cc0 cos k1;c0h

� �þ k1;cl sin k1;ch
� �

dcc0
h i

Ac0
n

þ Xup
cc0 sin k1;c0h

� �� k1;cl cos k1;ch
� �

dcc0
h i

Bc0
o
¼ 0;

ð16aÞ

X1
c0¼�1

�Xdown
cc0 cos k1;c0h

� �� k1;cl sin k1;ch
� �

dcc0
h i

Ac0
n

þ Xdown
cc0 sin k1;c0h

� �� k1;cl cos k1;ch
� �

dcc0
h i

Bc0
o
¼ 0;

ð16bÞ

where

Xup
cc0 ¼

X1
n¼0;1;2

qup
n tan qup

n dup� � 2Mup
ncM

up
nc0

d0nþ1ð Þwup

Xdown
cc0 ¼

X1
m¼0;1;2

qdown
m tan qdown

m ddown
� � 2Mdown

mc0 Mdown
mc

d0mþ1ð Þwdown

8>>>><
>>>>:

ð17Þ

Eqs. (16a) and (16b) contain 2c + 1 linear algebraic equations
with 2c + 1 undetermined coefficients, containing the frequency
f ¼ x=2p. Generally speaking, Eq. (16) contains a set of transcen-
dental equations wherein an explicit expression between the
wavenumber k and the frequency f cannot be obtained explicitly.
Therefore, a suitable computation method should be developed
to solve the problem. For a fixed wavenumber k locating in the
region of [�p/l, p/l], the determinant of the coefficient matrix with



Table 1
Frequencies (kHz) of first several modes in a stubbed aluminum plate with d = 0.2 l and w = 0.2 l for different truncations.

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

143.69005 133.48111 133.04403 132.91915 132.95037 132.91915 132.85671
N/A 161.54789 160.76739 160.39275 160.14299 160.11177 160.11177
274.18965 236.81931 229.23285 227.60941 227.60941 227.35965 227.04745
N/A 350.89719 326.45193 322.83041 322.73675 322.26845 321.58161
380.83717 353.48845 352.83283 352.55185 352.36453 352.33331 352.33331
461.07257 462.47747 439.81175 437.28293 437.25171 436.90829 436.43999

Table 2
Frequencies (kHz) of first several modes in a stubbed aluminum plate with d = 0.8l and w = 0.5l for different truncations.

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

75.322933 64.04783 64.76589 64.45369 64.60979 64.51613 64.57857
87.854641 80.00125 80.03247 79.72027 79.81393 79.72027 79.75149
171.920735 177.68863 175.28469 176.37739 175.94031 176.25251 176.09641
N/A 178.53157 178.68767 178.65645 178.71889 178.71889 178.75011
251.210169 234.91489 235.32075 234.88367 235.07099 234.91489 235.00855
300.977971 305.12867 303.41157 302.78717 302.75595 302.56863 302.59985
N/A 321.83137 321.26941 321.20697 321.20697 321.17575 321.17575
N/A 326.38949 324.89093 324.95337 324.85971 324.89093 324.85971
N/A 355.92361 355.64263 356.11093 356.01727 356.14215 356.11093
372.465527 378.62055 378.68299 378.68299 378.71421 378.71421 378.71421
N/A 409.93421 401.44237 402.22287 401.72335 401.97311 401.78579
N/A 426.44959 416.77139 417.89531 417.11481 417.52067 417.20847
468.192291 452.14365 448.11627 446.39917 446.92991 446.46161 446.71137
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Ac and Bc as unknowns is evaluated after an initial value of f is
introduced. Then, a small increment is added to the frequency until
the value of the determinant changes its sign. The ‘‘bisection meth-
od” is applied finally to locate the root correction.

Focusing on a periodic plate with only one stub on the upper
(dup = 0 or wup = 0) or bottom (ddown = 0 or wdown = 0) surface, the

dispersion relation can be derived by letting Xup
cc0 or Xdown

cc0 in Eq.
(16) equal to zero. As a special case, If dup = ddown = 0 or wup =
wdown = 0, i.e. the plate is flat without stubs, Eq. (16) can be simpli-
fied as

c ¼ cSH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp

2hk2;c

	 
2

þ 1

s
; ðm ¼ 0;1;2; . . .Þ ð18Þ

which is the classical phase velocity equation describing the SH
wave propagation in a homogeneous plate with its upper and bot-
tom surfaces traction free [30]. When m = 0, the phase velocity of
the fundamental SH wave, i.e., SH0 wave, is cSH0, which depends
on the material properties but is frequency-independent.
3. Numerical simulations

An aluminium plate with a shear modulus l = 26.32 GPa and a
mass density q = 2700 kg/m3 is considered [31]. For simplification,
the same stubs are attached on the upper and bottom surfaces of
the plate, i.e., wup = wdown = w and dup = ddown = d, which means
that the stubbed plate is symmetric about x2-axis, allowing the
classification of modes into symmetrical and anti-symmetrical
ones. In the simulations, l = 1 cm and 2 h = 0.5 l.

The convergence of the series is firstly examined. Tables 1 and 2
respectively show the frequencies of first several modes in the
periodic stubbed plate, solved via Eq. (16), for different truncations
of the series when kl = p. The same truncation order N is used in
Eqs. (2), (4) and (5). It can be seen from the tables that the 0-
order waveguide mode with N = 0 cannot exactly predict the shear
horizontal waves in solids, especially for the plate with larger
stubs. Therefore, higher order terms need to be included. More
specifically, the solution undergoes relatively fast convergence
when N increases in the frequency range of interest. A small num-
ber of terms, such as 3, are already sufficient to ensure an accept-
able computational accuracy, which will be used in the following
simulation. The high-order waveguide modal theory can be viewed
as the generalized modal superposition method. Mathematically,
the application of the high-order theory is equivalent to the
increased number of basis functions, so that the band structure
can be accurately described. Physically, it may be understood as
an increase in the wave energy transport, carried by the high-
order waveguide modes up to a certain order. A suitable truncation
order, such as N = 3 in the present case, can be applied to guide
practical engineering designs of such structures.

The frequency spectrum calculated via Eq. (16) with different
stubs is shown in Fig. 2. Meanwhile, results from the Finite Ele-
ment Method (FEM) with periodic boundary conditions using
Comsol Multiphysics software are also given, denoted by circles
and triangles for symmetrical and anti-symmetrical modes, respec-
tively. The abscissa with the non-dimensional wave number kl/p,
ranging from 0 to 1, represents the first Brillouin zone (the region
[�1, 0] is symmetric with that of [0, 1], and has been ignored for
simplification). Results of both the symmetrical and anti-
symmetrical modes, calculated via Eq. (16), are in good agreement
with these from the FEM quantitatively, which validates the estab-
lished model and the proposed numerical procedure.

Some BGs caused by the stubs emerge, exemplified by five abso-
lute BGs below 500 kHz in Fig. 2(a). Within these bands, the
mechanical vibrations in the x2 direction are suppressed and the
propagation of SH waves is prohibited. The corresponding non-
dimensional ratio fl/cSH0 for the central frequency of the first BG,
ranging from 132.6 kHz to 160.2 kHz, is 0.47, suggesting that the
formation of the BGs is due to the Bragg scattering effect to some
extent. A convex stub, equivalent to an abrupt thickness variation,
generates significant impedance mismatch at the joints, which
thus creates wave reflections and interferences, and further pro-
hibits the SH wave propagation. When the width of the stub
increases to 0.6l for a fixed height shown in Fig. 2(b), the first BG
is enlarged and the second BG shrinks. On the other hand, if the



Fig. 2. Frequency spectrum of an infinite periodic stubbed plate: (a) d = w = 0.2l; (b) d = 0.2l and w = 0.5l; (c) d = 0.6l and w = 0.5l. The lines stand for the results calculated
using Eq. (16), and symbols with circles and triangles are the results from Comsol Multiphysics software.
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height of the stub is further increased for a fixed width, the first BG
in Fig. 2(b) is divided into two gaps by the lowest anti-symmetric
mode, such as Fig. 2(c). As a general rule, higher modes of the SH
waves in an infinite plate have cut-off frequencies which are inver-
sely proportional to the thickness. Therefore, more bands can be
seen in Fig. 2(c), compared with Fig. 2(b). As a whole, it can be con-
cluded that the size of the stub, including the height d and the
width w, has a great influence on the BGs as well as the SH wave
propagation.

In order to better show the effect of the stub on the SH wave
propagation characters in the infinite periodic plate, Figs. 3 and 4
respectively show the evolution of the BGs with respect to the
height d and the width w of the stub. It can be seen that some
new BGs can be opened up and gradually changed with increasing
d and w, pointing at the possibility of tuning BGs through changing
the height and width of the stub. Almost all the upper and bottom
edges of the BGs, except for the upper edge of the first BG, decrease
monotonously with the increase of d, attributed to the reduction in
the cut-off frequencies of the higher-order modes. For example, the
first BG in Fig. 3 originates from the frequency difference between
the fundamental SH mode and the first order lateral vibration
mode (referred to as 1-order LV mode), with corresponding mode
shapes illustrated in Fig. 3. When d increases, the frequency of
the 1-order LV mode hardly changes, whilst the frequency of the
1-order SH mode reduces, further cutting the first BG into two
parts (red and blue shadows in Fig. 3).

Changing w seems to be more beneficial for the SH wave prohi-
bition, since the width of the BGs in Fig. 4 is larger than that in
Fig. 3. For example, the broadest BG, ranging from 112.7 kHz to
181.5 kHz, can be achieved ifw is designed and fixed as 0.67l. Addi-
tionally, the first BG exists between the 0-order and 1-order SH
modes, and the corresponding bottom edge first decreases, and
then approaches to the lower limit when w is approximately 0.6l.
Owing to the dominance of the lateral vibration as shown in
Fig. 4, the lowest frequency of SH wave rebounds again and
increases when w further increases.

Generally speaking, the bottom edge of the first BG, i.e., the fre-
quency of the fundamental SH waves, changes continuously when
d and w increase. Besides, the corresponding vibration energy is
mainly focalized on the stubs, which can be seen from the mode
shapes, shown in Figs. 3 and 4. The trapped vibration of the stubs,
similar to what is called local resonances, generate wave-slowing
phenomenon. Theoretically, the group velocity of the SH waves is
reduced, which is evidenced by the relative flat dispersion curve
near the edge of the first Brillouin zone, i.e., kl/p = 1 in Fig. 2. Based
on this, an inhomogeneous rainbow trapping structure with graded
stubs is proposed in the following part, though which the SH waves
can be manipulated artificially and efficiently.
4. Rainbow trapping of the SH waves

An inhomogeneous plate with graded stubs, shown by the sha-
dow region in Fig. 5, is proposed, with the aims of separating SH
waves with different frequencies through phase velocity reduction
phenomena. Based on the results shown in Figs. 3 and 4 and the



Fig. 4. Evolution of the BGs with respect to w when d = 0.5l.

Fig. 3. Evolution of the BGs with respect to d when w = 0.5l.

Fig. 5. Schematic of the inhomogeneous plate with graded stubs. 100 pairs of stubs are uniformly distributed on the upper and bottom surfaces of the plate with d changing
linearly from zero to 0.8l in Case 1, and w changing linearly from zero to 0.6l in Case 2.
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discussions above, two types of structural scheme will be designed,
each including 100 pairs of stubs distributed on the upper and bot-
tom surfaces of the plate. In Case 1, for the fixed stub width w, its
height d is linearly changed from zero to 0.8l in the region 0 � x2 �
L. Case 2 involves the linear width variation from zero to 0.6l in the
same region, while keeping the height of the stubs constant.
Numerical simulations are carried out to show the SH wave trap-
ping phenomena in both frequency and time domains, with the
help of the Comsol Multiphysics software.

4.1. Frequency domain analyses

Frequency domain analyses can be viewed as a forced vibration
problem. In the simulations, a uniform harmonic shear displace-
ment at different frequencies is applied upstream of the stubbed
section of the plate, shown in Fig. 5. Additionally, two perfectly
matched layers (PMLs) are adopted over the extended domains
at the end of the finite plate in the ±x2 directions [9–11], to simu-
late the non-reflective infinite boundary conditions. Waves are
received at five locations, marked by A, B, C, D and E, with x2 =
0.2 m, 0.4 m, 0.6 m, 0.8 m and 1.1 m, respectively, with the corre-
sponding of displacement response shown in Fig. 6.

Taking Case 1 for instance (Fig. 6(a)), the response at location
E reaches and remains almost zero when the external frequency
changes from 64 kHz to 156 kHz, which means the inhomoge-
neous plate can be used as a wave filter in this frequency range.
This is understandable with the help of the band evolution shown
in Fig. 3. The first BG changes continuously and monotonously,
which means that the linearly distributed neighboring stubs are
simultaneously turned on to provide efficient wave blocking.
Assuming that the external frequency of the incident SH wave
is 120 kHz, the stubs with the height ranging from 0.18l to
0.46l and distributed from 0.23 m to 0.57 m in Fig. 5, have the
ability to prohibit the wave propagating simultaneously, which
is enough for the complete wave blocking. For the case E, all of
the stubs are available, so that the waves ranging from 64 kHz



Fig. 6. Amplitude of displacement response versus the incident frequency for: (a) Case 1; (b) Case 2.

Fig. 7. Displacement distributions of the SH waves at different frequencies for (a) Case 1, and (b) Case 2.
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to 156 kHz are prohibited. However, at other receiving positions,
such as B, only the stubs within the region 0 � x2 � 0.4 m take
effect, generating a low-pass effect only starting from 110 Hz.
Note this low-pass behavior takes place at different locations
along the structure, lower frequency traveling over longer dis-
tance and vice versa. But ultimately, wave stops propagating at
a certain location. This phenomenon can be referred to as fre-
quency separation or frequency shunting. The same phenomena
can be observed in Case 2, as shown in Fig. 6(b), with the chang-
ing width of the stubs. The displacement distribution along the
propagation direction for different frequencies is shown in
Fig. 7 for a few selected frequencies, which clearly depict this
phenomenon. From Fig. 6, we can observe the so-called inner res-
onance phenomenon, corresponding to the highest peak just



Fig. 8. Relationship between the wave frequency and the stop location defined for
the two cases.

Fig. 9. Some transient horizontal displacement signals for different conditions: (a

Fig. 10. Displacement profiles of the SH waves at some specific time instants to
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before the attenuation region, in agreement with the work by Cao
et al. [28] and Hussein et al. [32].

In order to quantify the observed frequency separation or fre-
quency shunting phenomenon, a non-dimensional ratio
dðx2Þ ¼ ju0ðx2Þj=juj is defined, in which juj is the amplitude of the
incident SH waves and ju0ðx2Þj stands for the amplitude of the
evanescent waves. Furthermore, a critical value, dc ¼ 0:01, is
adopted to quantify the wave-blocking location, which stands for
the longest distance that a SH wave can travel with 99% amplitude
attenuation. Smaller than dc, the incident SH waves are considered
as being stopped. Fig. 8 shows the relationship between the wave
frequencies and the stop location for the two cases discussed
above. Again, it can be seen that waves with lower frequencies
can travel a longer distance. For frequencies larger than about 90
kHz, SH waves in the stubbed plate with graded heights travel a
longer distance than their counterparts with graded widths. Due
to the wave slowing-down and energy trapping phenomena
around the stop locations, sensors or energy harvesters can be
designed and artificially arranged at these positions of the plate,
) Case 1, f0 = 80 kHz, and x2 = 0.4 m; (b) Case 2, f0 = 100 kHz, and x2 = 0.1 m.

illustrate the wave incidence and reflection for: (a) Case 1; and (b) Case 2.



Fig. 11. Calculated group velocities of the SH waves propagating along the inhomogeneous plate with graded stubs for: (a) Case 1; and (b) Case 2.
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so that the SH waves with different frequencies can be picked up
according to specific requirements.
4.2. Time domain analyses

In order to better show the slowing-down process of the SH
wave through the graded stubs, time domain analyses are per-
formed with a transient excitation. A Gaussian pulse with a fixed
central frequency f0, shown by the black lines (the first wave
packet) in Fig. 9, is imposed at x2 = �1.0 m. The plate domain used
in Fig. 5 is adjusted to eliminate wave reflections caused by the left
boundary of the plate within the computation time concerned. In
the FEM simulations, the finite mesh sizes in space are set to be
smaller than 1/20 of the smallest wavelength under consideration
and the time step smaller than 1/20f0 [33]. Besides, re-computation
is conducted using finer mesh sizes to make sure that the numer-
ical results are convergent and accurate.

Two wave response packets are captured inside the region with
graded stubs, shown by the red lines in Fig. 9 within the time win-
dow considered. The first response packet is the displacement
when an incident SH wave travels along the graded stubbed plate.
The maximum amplitude of the response packets is gradually
reduced, as compared with the incident excitation wave, which is
due to the reflection during the wave propagation. The second
response packet corresponds to the reflected signal caused by
Bragg scattering effect. The reflection can also be directly seen by
the Gaussian signal profiles snapshotted at several time points
depicted in Fig. 10. For example, compared with the displacement
profiles at t = 1.0 ms in Fig. 10(a), the SH waves are reflected and
propagate along �x2 direction at t = 1.45 ms.

Using the received signal at different positions, the group veloc-
ity cg can be calculated, with results shown in Fig. 11, which clearly
shows the slowing-down process of the SH waves for different fre-
quency components. For Case 1, the stubs have little effect on the
group velocity when the height is smaller than 0.12l. When x2 >
0.15 m, cg decreases evidently. However, for the stubs with graded
widths, the group velocity undergoes continuous reduction along
x2 direction. This difference can be explained by considering the
mode shapes shown in Figs. 3 and 4. For Mode A shown in Fig. 4,
most of the vibration energy is focalized within the stubs, which
means that the wave energy inside the plate is taken away by
the attached stubs and trapped temporarily when wave arrives,
leading to an obvious reduction in the group velocity. On the con-
trary, for Mode A in Fig. 3, the vibration energy is distributed in the
regions of short stubs and the connecting area of the plate. There-
fore, the lagging effect on the SH waves is less pronounced when
the height of the stubs is small, so that the group velocity almost
keeps unchanged. Additionally, with the reducing velocity, the
wavelength becomes shorter and compressed in the propagation
process. This leads to a strong energy concentration, which is con-
sistent with the time-domain signals picked up at t = 1.0 ms in
Fig. 10(a) and t = 1.45 ms in Fig. 10(b).

In summary, when a broadband SH wave packet propagates
through the graded stubbed plate, wave components with different
frequencies are slowed down in different ways, then spatially split,
stopped and trapped at different locations, in line with the so-
called the ‘‘rainbow trapping” in electromagnetics and acoustics
[34].

5. Conclusions

A theoretical model, which can simultaneously satisfy the gov-
erning dynamic equations and the boundary conditions for the SH
waves propagation in a periodic stubbed plate, is established in a
closed form based on the high-order waveguide modal theory
and the trigonometric function expansion technique. The model
allows for exact solutions. The convergence of the solutions is
demonstrated and the theoretical model is numerically validated
with the aid of the FEM results using a stubbed aluminum plate.
Systematic investigations are carried out to demonstrate the
influence of the stubs on the SH wave propagation, leading to the
design of a stubbed plate allowing for the realization of the so-
called rainbow trapping phenomenon. Major conclusions are
drawn as follows:

(1) The proposed high-order waveguide modal theory has been
proved to be effective and accurate for the simulation of the
SH wave propagation in an elastic plate with periodic stubs.
The approach guaranties fast convergence and computation
accuracy by using a small number of series terms.

(2) Bragg BGs are shown to exist. The size of the stub, including
the height and width, has a great influence on the formation
and the evolution of Bragg BGs. This allows for the SH waves
to be manipulated artificially in order to achieve specific
wave propagation effects.

(3) The rainbow trapping of the SH waves can be achieved
through graded stubs distributed on both surfaces of an elas-
tic plate, in which incident wave components with different
frequencies can be slowed down in different manners,
spatially split, stopped and trapped at different locations
along the propagation path. Due to the wave slowing-
down phenomena and energy trapping around the stop
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locations, sensors or energy harvesters can be designed and
artificially arranged at these positions of the plate, so that
the SH waves with different frequencies can be picked up
according to specific requirements.

It is relevant to note that, due to its relative simplicity, the pro-
posed theoretical model provides a flexible tool to guide the design
of such structures to cater for different engineering applications.
Not restricted to elastic media, the theoretical methodology and
the dynamic analysis framework presented in this paper can also
be extended to the transversely isotropic media straightforwardly,
e.g., piezoelectric and magneto-electro-elastic materials and struc-
tures. The issue of mechanical-electrical coupling and other com-
plicating factors such as nonlinear elastic waves in phononics
deserves a separate and systematic investigation in further work.
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