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Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping
enhancement and noise attenuation, have been drawing increasing attentions of many
researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH
structures, it is important to understand the wave propagation and attenuation process
in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper,
an analytical expression of the wave reflection coefficient in a modified one-dimensional
ABH is derived and a time-domain experimental method based on a laser excitation tech-
nique is used to visualize the wave propagation. In the experimental studies, the flexural
waves in the ABH were excited by a scanning pulse laser and measured by a Laser
Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from
the measured original wave field and the decrease of the wave velocity in the ABH was
exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the
reflected wave to that of the incident wave for different ABH parameters and different
thicknesses of the damping layer. The measured reflection coefficients were used to iden-
tify the unknown coefficients in the theoretical formula. The results confirm that there
exists an optimal thickness for the damping layer, which leads to the minimum wave
reflection. Based on the laser-induced visualization technique and various signal process-
ing and feature extraction methods, the entire process of the wave propagation in a non-
ideal one-dimensional ABH structure can be visualized and scrutinized.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, acoustic black holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise
attenuation, have drawn the attention of many researchers. The concept of the ABH was initially proposed by Mironov and
Krylov in one-dimensional plates containing a power-law-profiled wedge, towards which the propagating flexural waves are
slowed down [1–3]. When the power-law thickness profile, hðxÞ, satisfies
hðxÞ ¼ exm ðm P 2Þ; ð1Þ
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in which x is the distance from the edge, e is a constant scale factor, and m is a rational number, the flexural wave cannot
reach the sharp edge and be reflected back in the ideal zero-thickness scenario. This leads to a drastic wave compression and
energy trapping within the tapered wedge area. This phenomenon has been exploited to achieve efficient damping for flex-
ural waves in plate-like structures using both one-dimensional and two-dimensional ABHs with a very small amount of
damping materials covering the sharp edges [4]. The benefit of the wave manipulation through ABH effect is obvious. In
terms of the energy utilization, the strong energy concentration facilitates and enhances the efficiency of the energy harvest-
ing [5,6]. In terms of vibration and noise suppressions, it would be more advantageous and efficient to apply energy dissi-
pation means such as coated damping layers only to the specific energy concentration areas, which is especially important in
light-weighted structures used in aeronautical and automotive applications [7–11].

However, an ideal ABH structure is difficult to be realized due to the existing machining capability. Even in the ABH struc-
tures of composites, which are usually manufactured by layering up prepreg, ideal profiles are still difficult to be realized due
to the thickness of prepreg. On the other hand, ideal ABHs are not suitable for real-world structures due to their intrinsic
weakness in structural integrity and strength. Fabricated real-life wedges are always truncated to a certain residual thick-
ness, which adversely affects their performance as ‘black holes’. Without additional damping treatment, the typical values
of the reflection coefficient in such materials as steel can become as large as 50–70%, which makes it impossible to use such
wedges as practical vibration dampers. Although the situation can be improved by covering the wedge surfaces near the
edges by thin absorbing layers [12–16], methods, be it theoretical or experimental, allowing for systematic analyses and
the time-domain wave visualization are still very much limited.

Among existing theoretical and numerical studies, the geometrical acoustic approach was first proposed to analyze the
flexural wave propagation in tailored wedges and to calculate the reflection coefficients under the hypothesis that the influ-
ence of the stiffness and the mass of the damping layer on the local dynamics of the ABH is negligible [17]. Under the
umbrella of the geometrical acoustics, the reflection coefficient was analytically expressed as simplified formulae to taking
into account the effect of a thin absorbing film for different power-law profiles of order m=2, 3, 4 and for a sinusoidal profile
[12–14]. A different approach which is not limited by the hypotheses of the geometrical acoustics has been proposed by
Georgiev et al. for beam structures using an impedance method [18], which in turn leads to a Riccati equation. This approach
can only deal with a semi-infinite structure with the ABH on the edge, which is obviously different from the practical struc-
tures with finite size and real boundaries. On the other hand, most existing approaches consider the effect of a thin damping
layer through Ross-Unar-Kerwin (RUK) model [19], which assumes the thickness of the damping layer is much smaller than
that of the wedge. In practice, however, the thickness of even an extremely thin damping layer would be comparable to that
of the wedge tip, where ABH effect is the largest, which suggests the importance of considering more practical cases. Besides,
the optimal damping layer thickness depend on many factors, such as the tip thickness, the location, and the size [12–16]. In
this regard, Tang et al. [20] show that the full coupling between the damping layers and the ABH taper can be taken into
account using a semi-analytical model based on a Euler-Bernoulli beam. By using Mexican hat wavelet functions to approx-
imate the flexural displacement, the governing equations are obtained using Lagrange’s equations. The proposed model pro-
vides an efficient way to study the ABH feature and the effect of damping layers using a more realistic ABH-featured beam.
However, in almost all the above works, frequency-domain approaches were used.

In addition to the theoretical studies, experimental investigations on ABH have also been conducted using a variety of
beam-like and plate-like structures [4,9,11,15,21–23]. Bowyer investigated the effects of the different manufacturing pro-
cesses and the tolerances on the vibration damping in structures with power-law-profiled edges [24]. Two-dimensional
structures like rectangular plates, elliptical plates and circular plate with tapered indentations (pits) of power-law profile
machined on the plates were also experimentally investigated [7,8–13]. Until now, with nearly no exception, all the exper-
imental investigations on ABHs are carried out in the frequency domain, based on metrics such as frequency response func-
tion or point mobility. These experimental studies have confirmed the high efficiency of ABH for vibration damping
enhancement. Although the ABH effect on the steady vibration response can be illustrated, the wave propagation process,
which is very important for understanding the energy trapping process as well as the influence of various geometrical
and structural imperfections of the structure, cannot be revealed. Despite the popular use of frequency-domain methods
in engineering applications, time-domain methods are more attractive and insightful in revealing time-varying phenomena.
Besides, as a more direct indicator of the ABH phenomenon, the reflection coefficient can provide invaluable information on
the design of practical ABH structures, if it can be directly measured experimentally. One of the possible ways is the use of
laser-based wave generation technology [25–28]. Yan investigated the effect of ABH structure on Lamb modes using laser-
generated Lamb waves [27]. Huang also researched the wave energy focalization in a modified ABH structure using laser
excitation technique [28]. The time-domain technique using laser excitation not only helps to understand the energy trap-
ping effect of ABH qualitatively, but also provides a quantitative means to evaluate the ABH effect and to study the influence
of parameters. A Kundt-like method was proposed by Denis for measurement of the reflection coefficient of a beam termi-
nation, but it cannot be used to show the wave propagation process of the ABH effect [29].

In order to achieve better understanding of the ABH effect and the calculation of the reflection coefficient directly, a time-
domain experimental method is proposed to study some fundamental issues, including wave velocity decrease, wave pack-
age compression, edge reflection and attenuation along the propagation path. In the proposed method, the flexural wave in
the ABH is generated by a scanning pulse laser and measured by Laser Doppler Vibrometer (LDV). Signal processing on the
measured time-domain is then carried out for wave separations. Based on the laser-induced visualization technique and
various signal processing and feature extraction methods [30], the entire process of the wave propagation in a non-ideal
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one-dimensional ABH structure can be visualized and scrutinized. Owing to the unique feature of the proposed methodology,
investigations of some key aspects in the ABH realizations, such as structural interaction between the damping layers, tip
thickness of the ABH and the host structure, become possible. For example, it is shown that there exists an optimal thickness
for the damping layer, to strike a balance between the energy focalization due to the ABH effect and the energy dissipation
[12,16]. The excessive use of the damping layer may compromise or even jeopardize the ABH-induced energy focalization
due to its dynamic interference with the host structure, leading to a reduced energy dissipation by the same token. In addi-
tion, the spatial evolution of the wave reflection coefficient can also be displayed, which could provide invaluable guidance
to the design of practical ABH structures. The paper is organized as follows. An analytical expression of the reflection coef-
ficient of wave in a modified one-dimensional ABH structure is derived in Section 2. The experimental system is then
described and the measurement method is introduced. In Section 3, experimental results are presented to show the charac-
teristics of one-dimensional ABH effect and evaluate the influences of various parameters on the reflection coefficient.
Finally, conclusions are drawn in Section 4.

2. Analysis of decay and reflection of flexural wave in ABH

2.1. Wave equation and its solutions based on geometrical acoustics

Flexural waves in a one-dimensional ABH structure satisfy the following governing equation [2]:
@2

@x2
DðxÞ @
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@x2

 !
�x2qhðxÞw ¼ 0 ð2Þ
wherew is the transverse deflection of the structure, q is the density, DðxÞ ¼ Eh3ðxÞ=12ð1� m2Þ is the bending stiffness, and m
and E are Poisson’s ratio and Young’s modulus, respectively. Based on the geometrical acoustic approximation, wðxÞ can be
expressed as [1,2,13]:
wðxÞ ¼ AðxÞeiUðxÞ ð3Þ
where AðxÞ and UðxÞ are the amplitude and accumulated phase, respectively, kp ¼ x=cp and cp ¼ 2ctð1� c2t =c
2
l Þ

1=2 are, respec-
tively, the wave number and the velocity of quasi-longitudinal wave in the plate, cl and ct are the phase velocities of the lon-
gitudinal and shear waves, respectively. The wave number can be expressed as [14]:
kðxÞ ¼ 121=4k1=2p h�1=2ðxÞ: ð4Þ

Since the increment of the phase angle in an infinitesimal distance dx is kðxÞdx, the accumulated phase angle, UðxÞ; from x0 to
x is expressed as
UðxÞ ¼
Z x

x0

kðxÞdx: ð5Þ
The above results are derived based on the assumption of the geometrical acoustic approximation that the variation of plate
thickness is sufficiently smooth, i.e.
dk
dx

1

k2 � 1; ð6Þ
stipulating that, physically, the variation of the flexural wave number must be small over a distance of wavelength order.
If the thickness hðxÞ satisfies Eq. (1) with m P 2 and x0 ¼ 0, then the accumulated phase angle U in Eq. (5) tends to infin-

ity, indicating that the flexural wave will not reach the edge at x ¼ 0 so that there is no reflection. That wedge, defined by Eq.
(1) with m P 2, is referred to as the ideal one-dimensional ABH in the literature, also to be adopted in the present paper.

2.2. Reflections of the flexural waves at the truncated edge

Real-life fabricated wedges always contain truncated edges with a residual thickness. Albeit very small, it may adversely
affect the acoustic black hole effect. For a wedge truncated at x ¼ x0, the lower integration limit x0 in Eq. (5) is not zero and
the accumulated phase angle will not be infinite. Therefore, as shown [1], wave reflections take place at the edge (x ¼ x0) and
the attenuation of wave inside the ABH can only be due to the viscosity of the ABH material. The viscoelastic property of the
ABH materials can be characterized by a complex modulus as:
E� ¼ Eð1þ jgÞ ð7Þ

where g is the loss factor of the material. In this case, the wave number is also complex. Because g is small, the terms in the
complex wave number that contain the high orders of g can be neglected and the imaginary part can be expressed approx-
imately in the following form [1,17]:
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ImfkðxÞg ¼ ðg=4Þ � 121=4k1=2p h�1=2ðxÞ ð8Þ
Since the attenuation of the flexural wave is induced by the viscosity property inside the ABH area, the reflection coefficient
at an arbitrary position x can be expressed in the following form:
R0 ¼ exp �2
Z x

x0

ImfkðxÞgdx
� �

ð9Þ
The reflection coefficient can be obtained by letting x ¼ xB where xB is the coordinate of the junction point between the uni-
form portion and the ABH portion of the structure, as shown in Fig. 1.

When covering the wedge surfaces near the edges with thin damping layers (see Fig. 1), e.g. by polymeric films, the sim-
plest way of solving this problem is to use the available solutions obtained for surface-coated or sandwich plates. Using this
approach [12,17], the imaginary part of a flexural wave number, Im k(x), after taking into account both the effect of thin
damping layers and that of the wedge material and the geometry, can be written as:
ImkðxÞ ¼ 121=4k1=2p

h1=2ðxÞ
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where l is the loss factor of the material of the absorbing layer, g is the loss factor of the wedge material. The additional
flexural wave attenuation caused by the absorbing layer, as described by the second term in Eq. (10), is proportional to
the ratio of the absorbing layer thickness d to the plate thickness h, and to the ratio of Young’s moduli, E2/E1, of the absorbing
layer and the plate, respectively.

2.3. Reflection coefficient inside an ideal ABH

Based on Eq. (8), the integration in the exponent of Eq. (9) for an ideal ABH with quadratic shape, i.e. with hðxÞ ¼ ex2, can
be expressed in the following form:
Z x

x0

ImfkðxÞgdx ¼ 121=4k1=2p g
4e1=2
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x
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� �
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Eq. (9) shows that the reflection coefficient, R0, at a point x inside the ideal ABH can be expressed as:
R0 ¼ ðx=x0Þ�K
; ð12Þ
where
K ¼ 121=4k1=2p g
2e1=2

: ð13Þ
Eq. (12) indicates that the reflection coefficient decreases according to an inverse power-law inside an ideal ABH.
If only one surface of the wedge is covered by a thin absorbing layer, the integration in the exponent of Eq. (9) becomes
Z x
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4e1=2

ln
x
x0

� �
þ 3� 121=4k1=2p md

8e3=2
E2

E1

1
x20

1� x20
x2

� �
ð14Þ
Obviously, the substitution of Eq. (14) into Eq. (9) gives a more complex expression of R0.

2.4. Reflection coefficient inside ABH partially covered with absorbing layers

As discussed previously, an ideal ABH structure is difficult to be realized and difficult to be used in practice. The former is
due to the limited machining capability, thus resulting unavoidable alteration to ABH structures; while the latter being
related to the structural weakness and deficiency resulting from the stringent thickness requirement of the ideal ABH profile.
Fig. 1. Truncated wedge covered by thin absorbing layers.
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For this reason, many new kinds of modified thickness profile have been proposed [28]. In the present work, an ABH wedge
with one kind of modified thickness profile is considered. The modified profile is generally described by the following form:
hðxÞ ¼ ex2 þ h0 ð15Þ

which has a non-zero thickness h0 at x = 0. The integration in the exponent of Eq. (9) becomes:
Z x

0
ImfkðxÞgdx ¼ 121=4k1=2p g
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The reflection coefficient at any given point x inside the modified ABH can be expressed as:
R0ðxÞ ¼
ffiffiffiffiffiffiffi
ex2
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The variation of R0 is more complex in the modified ABH as compared with the conventional one.
With only one surface of the wedge covered, the integration term in the exponent of Eq. (9) becomes
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which results in
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where
K2 ¼ 3� 121=4k1=2p m
4e1=2

E2d
E1h0
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During the derivation of the above expressions of the reflection coefficient without and with damping layer, the reflection of
the edge is considered to be perfect. The attenuation is induced only by the materials, ABH structure itself and the damping
layer. Given an imperfect edge, its reflection characteristic can be symbolically represented by a coefficient RE < 1. The
reflection coefficient at any point x inside the modified ABH can then be expressed as
RðxÞ ¼ RE � R0ðxÞ: ð21Þ

If the modified ABH is partially covered with a damping layer in the area from x ¼ 0 to x ¼ xd, Eq. (19) holds for 0 6 x 6 xd. In
the range of xd 6 x 6 LABH, where LABH is the length of ABH, Eq. (19) should be re-written as:
R0ðxÞ ¼
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3. Experimental measurement of wave propagation

3.1. Tested plate with one-dimensional ABH

A rectangular steel plate incorporating a wedge with a modified one-dimensional thickness profile, as shown in Fig. 2, is
considered. The length L1, width L3 and thickness h2 of the plate are 350 mm, 240 mm and 6 mm, respectively. The one-
dimensional ABH, of 100 mm long, is machined through a milling process in the length direction. The minimum thickness
h1 at the edge tip is 0.1mm. In the coordinate system defined in Fig. 2, the thickness profile of the plate, hðxÞ, is expressed in
following form.
hðxÞ ¼ 0:006 0 < x 6 0:06
0:59ðx� 0:16Þ2 þ 0:0001 0:06 < x 6 0:16

�
ð23Þ
In which, e is set to 0.59, and m to 2. The dimensions and material properties of the plate are given in Table 1.
To investigate the influence of the damping materials on the reflection coefficient of the ABH, a damping layer was

bonded on the flat side of the taper in the range 0:145 m < x 6 0:16 m. The size of the damping layer is 0.015 m in the x
direction and 0.24 m in the width direction of the plate (the same width as the plate). The thickness of the damping layer
was varied and set to different values. The density of the damping layer is 318 kg=m3 and its loss factor is 0.18.



Fig. 2. The tested plate with a ABH profile.

Table 1
Material properties and dimensions of the plate and the damping layer.

The tested plate
Dimensions L1 0.35 m

L2 0.25 m
L3 0.24 m
h1 0.0001 m
h2 0.006 m

Material properties Young’s modulus E 210 GPa
Density q 7800 kg/m3

Poisson’s ratio m 0.3

The damping layer
Dimensions Length 0.015 m

Width 0.24 m
Thickness A variable (from 0.3 mm to 2 mm)

Material properties Loss factor 0.18
Density 318 kg=m3

24 H. Ji et al. /Mechanical Systems and Signal Processing 104 (2018) 19–35
3.2. Experimental system for wave visualization

Different from the traditional frequency-domain methods, a time-domain technique based on a laser-acoustic system
was used for the wave-field visualization and the identification of parameters such as the reflection coefficient. The time-
domain method has advantages in describing the wave propagation process both qualitatively and quantitatively. The video
visualization of the wave is one of the advantages of the time-domain technique in the qualitative aspect, which allows a
better understanding of the wave propagation and trapping process, as opposed to the frequency-domain approaches which
only give the end results. In the quantitative aspect, the variation of wave amplitude along the direction of propagation can
be measured and the reflection coefficient as a function of the location can be calculated. This is particularly important for
future applications where geometrical or manufacturing imperfections may occur and adversely affect the expected ABH
effects. Ultrasonic wave visualization technique based on a laser ultrasonic system provides new paradigms, which have
been extensively studied and widely used in various applications such as nondestructive evaluations (NDE) [30–33]. How-
ever, very few researches have been reported on applications of laser vibrometer on wave visualization in ABHs [25–28]. In
this study, an in-house system based on laser vibrometer is used for visualization of bending waves and estimation of the
reflection coefficient in an ABH structure. The system is similar to the one developed by the authors and used for Lamb waves
in anisotropic composite structures [28], using AE sensors for response measurement. The experimental set-up, shown in
Figs. 3 and 4, uses non-contacting excitation and sensing. Major components of the system include a pulse laser generator
(YAG laser, Ultra-100, Quantel corp., USA), a vibrometer sensor head (OFV-505, Polytec, Canada), a vibrometer controller
(OFV-5000, Polytec, Canada), a high-speed digitizer (PXI-5105, NI corp., USA) and an analog output module (cRIO-9263,
NI corp., USA) (TSH8203H, Century Sunny corp., China).

The measurement area over the plate is meshed into a grid with a fixed distance in both x and y directions. The laser gen-
erator generates laser pulses with a repeating frequency of 20 Hz and a maximum energy of 55 mJ. When the pulse laser is
irradiated at each grid point on the surface of the structure, it generates an impulse force and consequently excites the elastic
waves due to the thermo-elastic effect. Synchronized with the excitation, the plate response is measured by the laser Dop-
pler vibrometer at a fixed point on the structure. For the wave field visualization, the measurement process is repeated by
exciting all the grid points in the predetermined two-dimensional measurement area as displayed in Fig. 5. Changes of the
excitation point are achieved by rotating a two-dimensional mirror. On the basis of the reciprocal theorem in elastodynam-
ics, the location of the excitation and the location of the measurement point can be exchanged in the spatial area. For a given
time instant, the wave field at any specific moment can be displayed. Since the excitation force due to the laser irradiation is



Fig. 3. Schematic diagram of the laser ultrasonic system.

Fig. 4. Laser-ultrasonic system.

Fig. 5. The scanning path.
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a wideband signal, wavelet analysis is used to extract the signal in a given frequency range of interest. The response at each
scanning point can be plotted on an intensity snapshot map to represent the wave-field, successive display of which in a time
series gives the wave propagation pattern. Using this experimental system, a series of tests are conducted in time domain.

3.3. Generation of wave field

The experiment was conducted using the experimental set-up shown in Fig. 4. The scanning area was 0.16 � 0.04 m with
a spatial scanning interval of 0.001 m, giving a total of 6601 scanning points, as shown in Fig. 5. The starting point was the
origin of the coordinate system, while the measurement point of the laser Doppler vibrometer was fixed at 0.01 m from the
origin in the negative x direction and 0.02 m from the y axis. The LDV was used to collect the response signal with a fre-
quency limit under 100 kHz. The sampling frequency was set to be 1� 107 Hz to guarantee the precision of the wave-
field visualization and the sampling time was set to 800 ls (8000 sampling point) for each excitation to ensure that the
whole field of flexural wave propagation was recorded. The velocity signal measured by the laser Doppler vibrometer is
denoted by vðxi; yj; tlÞ, where ðxi; yjÞ; ði ¼ 1; . . . ;161; j ¼ 1; . . . ;41Þ are the coordinates of the excitation points and
tl ðl ¼ 1; . . . ;8000Þ are the sampling time of the response. According to the reciprocal theorem of elastodynamics,
vðxi; yj; tlÞ is equivalent to the discretization of the velocity field vðx; y; tÞ when a pulse excitation is applied at the sensing
point.

The wave visualization uses the measured velocity field, vðx; y; tÞ. Although it is different from the displacement field
wðx; y; tÞ, they are considered to be proportional to each other for a given frequency. Hence all the results derived based
on the displacement field are still valid for velocity field when the frequency is fixed. Because the response is measured only
at one point, the obtained wave field vðx; y; tÞ has a circular wave front. The objective of this paper is to investigate the wave
propagation and attenuation process in non-ideal ABHs with a truncated edge in the presence of damping layers using a
time-domain approach. Therefore, the way that the wave varies inside an ABH and how the damping layer influences the
wave amplitude variation are the main focus of the paper. Hence, plane waves, the amplitude of which is independent of
the propagation distance in an undamped uniform media, is preferred, as opposed to circular waves whose amplitude
decreases with the propagation distance. To generate the wave pattern corresponding to the 1D plane wave incidence, a vir-
tual sensor approach was used to convert the wave field. To this end, it is assumed that multiple virtual sensors exist at
points ð�0:01;0:02þ kDÞ, where k ¼ �1; . . . ;�10 and D ¼ 0:001. The wave fields at the virtual sensor positions are then
obtained by shifting the wave field vðx; y; tÞ in the y direction, i.e, vðx; yþ jD; tÞ. A sketch showing the victual sensors is given
in Fig. 6. The one-dimensional wave field can be obtained from the following equation:
�vðx; y; tÞ ¼ 1
21

X10
k¼�10

vðx; yþ kD; tÞ ð24Þ
The wave field �vðx; y; tÞ is approximately one-dimensional in the region 0:01 6 y 6 0:03. For convenience, �vðx; y; tÞ will be
written as vðx; y; tÞ in the subsequent discussions. In the range 0:01 6 y 6 0:03, the wave field vðx; y; tÞ can be expressed
Fig. 6. Schematic diagram of virtual sensors.
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as vðx; tÞ, independent of y. The wideband vðx; tÞ is also converted to a single-frequency signal by using the wavelet method
before further processing is conducted.

3.4. Wave separation and extraction of the reflection coefficient

The reflection coefficient is an important indicator to evaluate the wave reflection by the truncated edge of ABHs. In order
to calculate the reflection coefficient, it is necessary to separate the incident wave and reflect wave from the measured wave
field, w(x, t), which can be converted to the one-dimensional wave field at each single-frequency using the wavelet method.
Obviously, w(x, t) contains both the incident wave and the reflected wave, expressed as:
wðx; tÞ ¼ wiðx; tÞ þwrðx; tÞ ð24Þ

or
wðx; tÞ ¼ AðxÞ cosðxt � kxÞ þ BðxÞcosðxt þ kxþ /Þ ð25Þ

wherewiðx; tÞ andwrðx; tÞ are incident and reflected wave, respectively,x ¼ 2pf is the angular frequency, / is the phase shift
between the incident and the reflected wave [30,31], the scalar coefficients A and B represent their respective magnitude.

The major difference between the incident and the reflected waves is the sign in front of the wavenumber k, negative for
the wave propagating in the positive x direction and vise versa. The 2D-FT can be used to separate the waves with opposite
propagation directions [34,35]. The spectrum in the wavenumber-frequency domain, Wðk;xÞ, can be obtained by:
Wðk;xÞ ¼
Z 1

�1

Z 1

�1
wðx; tÞ exp½�jðxt þ kxÞ�dxdt ð26Þ
where j is the imaginary unit. In the ðk;xÞ domain, the region of x > 0 is meaningful in physics, while the area of x < 0 is
the symmetrical component brought up by Fourier transformation, which cannot be ignored during inverse transformation
because it is the symmetrical image of the positivex components. As discussed above, the sign of wavenumber k determines
the direction of wave propagation. Hence, the sign of the product kx can be used to judge the direction of the wave prop-
agation and to separate the incident wave from the reflected wave, which is crucial for the topic investigated in this paper. In
the ðk;xÞ domain, the spectrum can be divided into four regions according to the sign of x and k. Therefore, the region with
kx > 0 represents the incident component, while region kx < 0 represents the reflected component. For the wave separa-
tion, two window functions, Fiðk;xÞ and Frðk;xÞ, are used as filters:
WiðrÞðk;xÞ ¼ Wðk;xÞFiðrÞðk;xÞ ð27Þ

where WiðrÞðk;xÞ denotes either the incident or the reflected wave in ðk;xÞ domain, with
FiðrÞðk;xÞ ¼ 1 kx > 0 ðkx < 0Þ
0 else

�
ð28Þ
The two-dimensional inverse Fourier transform (2D-IFT) is then applied to recover the time domain signals of these two
components as follows:
wiðrÞðx; tÞ ¼ 1
2p

Z 1

�1

Z 1

�1
WiðrÞðk;xÞ � exp½jðxt þ kxÞ�dxdk ð29Þ
This allows the calculation of the refection coefficient, defined as:
R0ðxÞ ¼ BðxÞ=AðxÞ: ð30Þ

Since the wave-field is defined at discrete points, both in time and space, the above Fourier transform can be realized by

fast Fourier transform (FFT).

4. Results and discussions

4.1. Visualization of the wave field and energy distribution

As introduced above, when the flexural waves propagate along a one-dimensional ABH structure, their vibration ampli-
tude will increase while the phase velocity will decrease gradually, generating energy focalization. In this section, these fea-
tures will be investigated in time domain using experimental data to show the influence of the ABH effect on wave
propagation process and to verify the feasibility of the proposed experimental method.

According to many past studies, the effective frequency range of ABH effects actually depends on the structural size as
well as that of the ABH taper. When linear vibration theory holds, simple scaling laws exist which allow the prediction of
the wave propagation and vibrational characteristics of a structure when its geometric dimension is scaled by a certain scal-
ing ratio. Therefore, we would expect the effective frequency range of the ABH effects to be reduced if the structural size
(along with the ABH taper size) is large enough, to eventually approach the application range for automotive and aero appli-
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cations. Other means to ensure low-frequency ABH effects have also been proposed in the literature [36,37]. However, this
issue needs a more systematic analysis and quantification before conclusions can be drawn. Since the objective of the pre-
sent work is to examine the wave propagation and focalization based on an experimental technique, and it was difficult to
experimentally test a structure of large size, we prefer not to include this low-frequency issue in the present paper.

Bending waves are dispersive in nature and the relationship between the wavenumber k and frequency in a wide range of
frequencies can be used to characterize the wave dispersion characteristics. Since the fundamental mechanism of the energy
trapping is the same for any frequencies above the cut-on. In the present work, signals extracted from the original wave field
at specific frequency are used. The reasons to filter the broadband signals are twofold. The first reason is linked to the need of
calculating the reflection coefficient at a specific frequency due to its frequency dependent nature. Second, bending waves
are inherently dispersive, that is, waves of different frequencies travel at different group velocities. Hence, it is impossible to
calculate the attenuation of wave amplitude if the signal is wideband. As a representative example, 30 kHz is selected for the
visualization of the wave field and energy distribution. The reason for choosing 30 kHz is that, at this frequency, the signal-
to-noise ratio is relatively high so that better results can be obtained. Signals extracted from the original wave field at 30
kHz, with the wave field at t ¼ 0:14 ms shown in Fig. 7 are used. The time t ¼ 0:14 ms is chosen to avoid the wave reflection
from the boundary within this time. It can be seen that the vibrational amplitude in the sharp edge is indeed much larger
than that in the flat region and the wavelength of flexural wave becomes shorter and shorter as it approaches the edge. This
demonstrates the energy concentration near the sharp edge as predicted by the theory. The whole process of wave propa-
gation and energy concentration can be better visualized in the form of a movie by arranging wave field of time instance in a
chronological order.

To better quantify the phenomenon, the corresponding displacement signal along the line y ¼ 0:02 m at t ¼ 0:14 ms is
extracted from the result in Fig. 7 and is explicitly shown in Fig. 8. It is obvious that when the flexural wave propagates
in the ABH region toward the sharp edge, both the wave amplitude and the wave number increase, consistent with the
expected ABH effect.
4.2. Decrease of the wave velocity in the ABH area

Because c ¼ x=k, using the wavenumber in Eq. (4) the phase velocity can be written as:
cp ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pfh

p E
12qð1� v2Þ
� �1=4

ð31Þ
Substitution of Eq. (23) into Eq. (31) gives the theoretical relationship between the phase velocity cp and the location x. In
the flat region of 0 < x 6 0:06 m, the phase velocity is constant, while in the ABH area with 0:06 < x 6 0:16 m, the theoretical
phase velocity varies as a function of position x:
cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
3

p f ½0:56 � ðx� 0:16Þ2 þ 0:0001�
r

E
qð1� m2Þ
� �1=4

: ð32Þ
Obviously, the phase velocity depends also on the frequency of the wave.
The theoretically predicted phase velocity and the experimentally measured one are compared. The signal wðx; tÞ at

y ¼ 0:02 m is plotted in Fig. 10 with time t as the horizontal axis and position x as the vertical axis. Defined as the derivative
of the distance x with respect to time t, the phase velocity equals to the slope of the fringes, which have the same phase. As
shown in Fig. 9, one of the fringes was selected for calculation of phase velocity.

Using the geometrical and material parameters of the test sample in Eq. (32) yields the theoretical velocities at different
positions, which are plotted in Fig. 10 together with the experimental results. The material parameters used in the calcula-
tion are calibrated using the data obtained in the uniform region of the plate. As shown in Fig. 10, the theoretically calculated
and the experimentally measured velocities in the ABH region are in good agreement, with an error typically less than 5%.
The phase velocity indeed decreases as the wave packet propagates toward the sharp edge, in a quasi-linear manner.
Fig. 7. Wave field of 30 kHz at t = 0.14 ms.



Fig. 8. Relationship of vibrational amplitude and distance x.

Fig. 9. Signal vðx; tÞ at y ¼ 0:02 m and f ¼ 30 kHz plotted in the distance x – time t plane.

Fig. 10. Phase velocity cp as a function of position x.
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4.3. Reflection of the wave by the edge

To exact the reflection coefficient, the signal vðx; y; tÞ along the line y ¼ 0:02 m is used again, at the same frequency of 30
kHz. Using the same set of data (shown in Fig. 9), the incident and the reflected waves are separated from vðx; tÞ using the
method detailed in Section 3.4 and the results are shown in Fig. 11.

Since the amplitudes of the incident wave and the reflected wave vary with the coordinate x, it is necessary to select a
suitable value of x to define the reflection coefficient. In the present case, two representative positions are chosen. The first
one is the junction between the uniform portion and the ABH portion, at x ¼ 0:06 m. This position is important to evaluate
the wave attenuation induced by the whole ABH. The second point is located at x ¼ 0:145 m, corresponding to the boundary
between the ABH regions without and with the damping layer, to be considered in the next section.

The time traces of the velocities of the original, incident and reflected waves at x ¼ 0:06 m and x ¼ 0:145 m are extracted
from Figs. 9 and 11, and the results are shown in Figs. 12 and 13, respectively. Obviously, waves propagate in the form of a
wave packet, as a result of the pulse force excitation. Hence the maximum magnitude of the envelope of incident wave and
that of the reflected wave are defined as the amplitudes A and B, respectively, which can be obtained by using wavelet anal-
ysis of the signals as shown in Figs. 12 and 13. After A and B are obtained, the reflection coefficient R0 ¼ B=A can be calcu-
lated. Calculated R0 is 0.5338 at x ¼ 0:06m and 0.8934 at x ¼ 0:145 m, respectively. The difference in the two R0 values
indicates that a significant portion of the incident wave is reflected from the edge and part of the reflected energy is dissi-
pated during the propagation process inside the ABH. The result also confirms the fact that even a very small residual thick-
ness at the sharp edge has a significant impact on the reflection coefficient, destroying the zero-reflection character of ideal
one-dimensional ABH structure [3,12].

As shown in Section 3.4, the amplitude of the incident wave A and that of the reflected wave B are frequency dependent
due to the dispersive characteristics of the flexural waves. Therefore, the reflection coefficient is, in principle, also frequency
dependent. Fig. 14 shows the experimental result of the reflection coefficient versus frequency at x ¼ 0:145 m. The result
indicates that the frequency has only minor influence on the reflection coefficient.
4.4. Influence of the damping layer

Since even a small residual thickness at the sharp edge of an ABH can yield significant wave reflection [12–16], it is of
great importance to investigate the influence of the damping layer bonded on the surface of the ABH taper. On the other
hand, it is obvious that in a non-ideal ABH configuration, the wave energy is dissipated during the wave propagation process.
Hence the relationship between the reflection coefficient and its position inside the ABH needs to be investigated, to be com-
pared with the theoretical formulae derived in the Section 2.4. The configuration used is the one with a damping strip
bonded on the flat surface of the test sample in the range 0:145 < x 6 0:16, as shown in Fig. 2.

Obtained from the same experimental procedure and data processing, Fig. 15(a) and (b) show the incident wave v iðx; tÞ
and the reflected wave vrðx; tÞ at f ¼ 30 kHz and y ¼ 0:02 mwhen the bonded damping layer is 0.5 mm thick. Compared with
Fig. 11(b), it can be seen that the reflected wave in Fig. 15(b) is now much smaller, as a result of the increased energy dis-
sipation. The time response at x ¼ 0:06 m and x ¼ 0:145 m are obtained from the wave field and plotted in Figs. 16 and 17,
respectively. Extracted from the magnitudes of the incident and reflected wave packets, the reflection coefficient R0 are
0.3724 and 0.5556, respectively for the two positions, both being smaller than their corresponding counterparts without
a damping strip. The result confirms the fact that the thin absorbing strip located near the sharp edge can significantly
reduce the reflection coefficient [3,12], which also prove that the laser excitation technique is valid.

The reflection coefficient is expected to depend on both the thickness of the damping layer and the position [3,12]. In
order to investigate this, the reflection coefficient at different location in x direction is measured using the above method
when damping layers of different thickness are bonded on the surface. Five cases, including the one without damping layer
and four other cases with four different damping layers, of 0.3 mm, 0.5 mm, 1 mm and 2 mm in thickness, are considered.
Fig. 11. Wave field in space-time domain ðx; tÞ at 30 kHz: (a) incident wave; (b) reflected wave.



Fig. 12. Signal of 30 kHz at x ¼ 0:06 m: (a) original wave; (b) incident wave; (c) reflected wave.

Fig. 13. Signal of 30 kHz at x ¼ 0:145 m: (a) original wave; (b) incident wave; (c) reflected wave.
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The data of reflection coefficient measured in the case without damping layer is used to fit the curve of Eq. (17) by identifying
the unknown constant K1 based on the LMS method, which minimizes the least meaning square value of the error. The data
of the other four cases are then used to fit the curve of Eq. (19) by identifying the unknown constant K2 using the same
method. The obtained curves and the experimental data of all five cases are plotted in Fig. 18. The reflection coefficient
RE at the edge and the reflection coefficient R0 at x ¼ 0:06 m and x ¼ 0:145 m are plotted in Fig. 19.

Although the measured data of the reflection coefficient are quite dispersive, the fitted curves give reasonable consistent
results, as shown in Fig. 18. It is obvious that the reflection coefficient decreases as the distance from the sharp edge (at x =
0.16 m) increases due to the wave attenuation in the propagation process. When a damping strip is bonded near the sharp
edge from x ¼ 0:145 m to x ¼ 0:16 m, a stronger wave attenuation is induced because of the high viscosity of the damping
material. The influence of the thickness of the damping layer on the reflection coefficient at x ¼ 0:06 m, x ¼ 0:145 m and
x ¼ 0:16 m is shown in Fig. 19. Obviously, the reflection at the edge x ¼ 0:16 m is not perfect, being not exactly equal to,
but smaller than 1 (RE defined in Eq. (21). It is also influenced by the thickness of the damping. The reflection coefficient



Fig. 14. Relationship of reflection coefficient and frequency at x ¼ 0:145 m.

Fig. 15. Wave field: (a) incident signal v iðx; tÞ; (b) reflected signal v rðx; tÞ.

Fig. 16. Signal at x ¼ 0:06 m: (a) original wave; (b) incident wave; (c) reflected wave.
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at x ¼ 0:145 m does not decrease monotonously as the thickness of the damping layer increases. Results also indicate the
existence of an optimal thickness of the damping layer to ensure the smallest reflection coefficient although the optimum
damping layer thickness is dependent on many factors. Among the five thicknesses tested, the optimal one is around 0.5



Fig. 17. Signal at x ¼ 0:145 m: (a) original wave; (b) incident wave; (c) reflected wave.
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Fig. 18. Reflection coefficient at different location in x direction when damping strips of different thickness are bonded.
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mm. Before this optimal value, the reflection coefficient decreases with increasing thickness as a result of the increasing
energy dissipation. Exceeding the optimal value, however, the reflection coefficient starts to increase as the damping layer
becomes thicker. This indicates an increasing and non-negligible dynamic effect of the damping layer, which starts to
adversely compromise the ideal wave propagation pattern of the ABH. Energy dissipation also suffers by the same token.
5. Conclusions

In this paper, a time-domain experimental technique, based on a laser-induced visualization system, is proposed for the
investigation of the wave propagation and attenuation in a one-dimensional ABH plate. The proposed method utilizes non-
contact excitation and offers a time-domain analysis tool as an alternative to the widely used frequency-domain approaches
in order to get a better understanding on various physical phenomena incurred during the wave propagation process
through ABH structures.

An analytical expression of the reflection coefficient of flexural waves in a modified one-dimensional ABH is derived and a
new procedure is proposed for determining the reflection coefficient based on the wave extraction and separation. Experi-
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mental data can be used to calibrate the coefficients used in the analytical expressions of the reflection coefficient. Despite
the highly dispersive nature of the waves, reasonably consistent results have been obtained after fitting with a LMS algo-
rithm based on the theoretical expression.

The proposed time-domain method, comprised of a laser-induced visualization technique and the associated signal pro-
cessing and feature extraction methods, allows for the visualization of the entire wave propagation and reflection process in
a non-ideal one-dimensional ABH structure. The validity of the proposed approach is demonstrated by revisiting some of the
fundamental issues related to the ABH phenomena, found to be consistent with literature. For example, the phenomena of
the wave compression accompanied by the phase velocity decrease and the amplitude increase toward the sharp edge of
ABH structure have been clearly demonstrated. The wave velocity obtained from the experimental wave field in the
distance-time domain also agrees well with the theoretically predicted velocity variations. It is also experimentally con-
firmed that there exists an optimal thickness for the damping layer, to strike a balance between the energy focalization
due to the ABH effect and the energy dissipation. The excessive use of the damping layer may compromise or even jeopardize
the ABH-induced energy focalization due to its dynamic interference with the host structure, leading to a reduced energy
dissipation.

The most appealing feature of the proposed technique resides in its ability to reveal and scrutinize the fine physical
details (in terms of wave separation and visualization) incurring during the entire wave propagation process. In particular,
the location-dependent evolution of the wave reflection coefficient can be obtained and displayed. This allows for assess-
ment and evaluation of the practical design of ABH structures when geometrical or manufacturing imperfections are present.
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