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A wavelet-decomposed Rayleigh–Ritz model for 2D plate vibration analyses is proposed
in this work. For an elastically-supported rectangular plate under Love–Kirchhoff theory,
2D Daubechies wavelet scale functions are used as the admissible functions for analyzing
the flexural displacement in an extremely large frequency range. For constructing the
mass and stiffness matrices of the system, the 2D wavelet connection coefficients are
deduced. It is shown that by inheriting the versatility of the Rayleigh–Ritz approach
and the superior fitting ability of the wavelets, the proposed method allows reaching
very high frequencies. Validations are carried out in terms of both eigen-frequencies and
the forced vibration responses for cases which allow analytical solutions. Effects of the
wavelet parameters on the calculation accuracy and convergence are also studied.
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1. Introduction

The structural vibration analysis covering a broad frequency range is a subject of
growing importance for numerous applications. For example, with the advent of
modern technologies in developing artificially engineered structures, exemplified by
acoustic metamaterials [Ang et al., 2016], periodic structures [Zhou et al., 2013;
Gao et al., 20l6] and acoustic black hole structures [Zhou et al., 2017], etc., emi-
nent technical challenges are created, among which is the need of reaching higher
frequencies with shorter wavelengths due to the lattice effect of the structure. As
demonstrated in the open literature, major difficulties reside in the high frequency
range due to the lack of accurate, unified and numerically stable methods [Langley
and Bardell, 1998]. Two bottle-necking problems arise. First, the reducing structural
wavelengths as the frequency increases require more structural details to be consid-
ered. Classical finite element methods (FEMs), however, can hardly accommodate
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this, since the use of a minimum number of elements per wavelength quickly leads
to a large system size and consequently tremendous computational cost [Marburg,
2002]. Pushing the FEM to its high-frequency limit using very high order interpo-
lation functions is also shown to be insufficient [Bardell, 1991; Berry et al., 1992;
Carrie and Webb, 1997; Ruta, 1999]. Secondly, high-frequency vibration computa-
tion usually suffers from the round-off errors of the computers, accompanied by the
inevitable ill-conditioned problem. Therefore, there is a real need for developing
methods which allow the prediction of the high frequency vibrations of structures,
and the topic is technically challenging.

Among existing semi-analytical methods based on spatial discretization [Cheng
and Nicolas, 1992], Rayleigh–Ritz method using artificial spring treatment is prob-
ably the most popular one [Cheng and Lapointe, 1995]. In Rayleigh–Ritz approach,
the properties of the basis functions significantly affect the computational efficiency,
stability and accuracy. It has been demonstrated [Zhang and Cheng, 2016] that var-
ious forms of polynomials, constructed from Jacobi polynomials [Carrie and Webb,
1997], Legendre polynomials [Bardell, 1991] or the natural Taylor’s basis [Berry
et al., 1992], all suffer from the ill-conditioned problems in the calculations of the
high-order polynomial coefficients due to the round-off errors of the computers.
Trigonometric functions, used as an alternative, suffer from the potential conver-
gence problems at the boundary [Li and Daniels, 2002] due to the well-known Gibbs
phenomenon. There has been a consistent effort in exploring ways to choose admis-
sible functions to accommodate the need of various physical problems [Zheng and
Wei, 2013; Su et al., 2015].

Wavelets, which are proposed to be investigated in this paper, are expected to
provide a solution to overcome the above problems. Apart from their traditional
use in signal processing and analyses [Niccoleau and Vassilicos, 2014], wavelets have
been used to solve partial differential equations (PDEs) in various fields. Wavelets
feature compact support, flexible scaling and translation, and the ability to express
any square integrable functions on the real axis [Zhang and Cheng, 2015]. These
unique and appealing properties enabled their use to solve various engineering prob-
lems [Cohen, 2003] such as the preconditioning of large discretized PDEs [Chen,
1998; Ford and Chen, 2001; Tran et al., 1998]; the adaptive approximation of func-
tions to resolve isolated singularities at a low computational cost [Chen et al., 2006;
de Lautour, 1999; Gantumur and Stevenson, 2006] and the sparse representation of
the discretized integral equations [Castrillon-Candas and Amaratunga, 2003; Tausch
and White, 2003]. Most of the past attempts, however, were made under the FEM
framework [Pan et al., 2003], thus inhibiting the shortcomings of the FEM itself.
Meanwhile, wavelet functions have also been used as the interpolation functions
under the FEM/BEM framework [Geng et al., 2017; Mutinda and Cristinel, 2015].
FEM/BEM discretizes the structural domain and approximates the solution using
local interpolation basis functions. They all embrace the common philosophy of the
so-called local expansion.
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Using a Euler–Bernoulli beam, our previous work [Zhang and Cheng, 2016]
demonstrated the efficacy of a wavelet-decomposed Rayleigh–Ritz method (WDRM)
for high-frequency vibration analyses of 1D structures. It has been shown that the
localized compact support properties of the wavelets lead to a sparse representation
of the system matrices. Along with their exceptional fitting ability and the tactic
treatment of the structural boundary using artificial springs, the WDRM approach
exhibits tremendous computational advantages and allows reaching extremely high
frequency range in 1D cases. As compared to the conventional FEM/BEM method,
expansion of the displacement over the entire structural span can be referred to as
global expansion method.

This paper extends the previous work on 1D structure to 2D planar cases.
Among other technical aspects, the handling of the 2D Daubechies wavelet scale
functions presents particular challenges. To the best of our knowledge, very few
papers attempt the high frequency plate analyses, with the exception of the work
[Beslin and Nicolas, 1997] in which structural modes in what can be regarded as
the mid-frequency range were investigated. The use of 2D Daubechies wavelets as
the global basis for plate problems has not yet been investigated up to now. The
objective of this paper is twofold: (1) to demonstrate the efficacy of the wavelet-
decomposed method in dealing with the high frequency vibration problems of plates;
and (2) to solve the problem of the connection coefficients of 2D Daubechies wavelet
scale functions. The latter becomes challenging due to the strong oscillation nature
of the Daubechies wavelets and the lack of the closed-form expressions.

The outline of the paper is as follows. Section 2 describes the theoretical mod-
eling framework. 2D Daubechies wavelet scaling functions are briefly recalled and
the calculation method of the 2D connection coefficients are presented. Numeri-
cal results are given and discussed in Sec. 3. Whenever possible, comparisons with
analytical results are carried out for validations and assessment. The convergence
properties of the algorithm on relation to the parameters of the wavelet functions
are investigated. Both free and forced vibration analyses cover a large frequency
band, containing typically thousands of structural modes.

2. Theory

2.1. Plate model

Consider a flat rectangular plate shown in Fig. 1(a), bounded along its edges by
x = 0, x = a and y = 0, y = b. The elastically-supported plate is assumed to be
isotropic, homogeneous and subjected to small displacement assumptions, allowing
the decoupling of the bending and in-plane motions when undergoing out-of-plane
vibrations. For illustration purposes, the Love–Kirchhoff theory is used. Note the
use of other more accurate plate theories considering shear effect and the rotational
energy should not pose any particular technical difficulties. The displacement field
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for the plate is written as

{u, v, w} =
{
−z

∂w

∂x
,−z

∂w

∂y
, w(x, y, t)

}
. (1)

The x and y coordinates are normalized by

ξ = x/a, η = y/b. (2)

The transverse displacement, w, is expressed as

w(ξ, η, t) =
M∑

m=1

N∑
n=1

qmn(t)fm(ξ)fn(η), (3)

where fm(ξ) and fn(η) are the assumed admissible functions and qmn(t) the time-
dependent unknowns to be determined.

The plates are elastically supported by a set of artificial translational and rota-
tional springs, which are continuously and uniformly distributed along its edges
with different stiffnesses (ki in N/m for the translation and kθi in N/rad for the
rotation with i = 1, 2, 3, 4), shown in Fig. 1(b). Adjusting the stiffness values of
the springs allows the representation of various boundary conditions [Langley and
Bardell, 1998]. For example, simply-supported boundaries can be obtained by using
a sufficiently large ki and a zero kθi .

Rayleigh–Ritz procedure requires the construction of various energy terms of
the system. Lagrange’s equations can then be applied to find the stationary state
of the Hamiltonian with qmn(t) as the generalized coordinates

d

dt

(
∂L

∂q̇mn(t)

)
− ∂L

∂qmn(t)
= 0, (m = 0, 1, 2, . . . , r and n = 0, 1, 2, . . . , s), (4)

where L is the Lagrangian of the system expressed as

L = Ek − Ep + W, (5)

xy
z

a

b

h

(a) (b)

Fig. 1. (a) Model of a rectangular plate. (b) Artificial springs along the boundary.
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where the kinetic energy Ek, potential energy Ep, and the work W done by the
external excitation force is written as

Ek =
ρab

2

∫ 1

0

∫ 1

0

(
∂w

∂t

)2

dξdη, (6)

Ep =
D

2ab

∫ 1

0

∫ 1

0

[
b2

a2

(
∂2w

∂ξ2

)2

+
a2

b2

(
∂2w

∂η2

)2

,

+ 2v

(
∂2w

∂ξ2

) (
∂2w

∂η2

)
+ 2(1 − v)

(
∂2w

∂ξ∂η

)2
]
dξdη

+
b

2

∫ 1

0

{
k1[w(ξ, η, t)|ξ=0]2 + k2[w(ξ, η, t)|ξ=1]2

+
kθ1

a2

[
∂w(ξ, η, t)

∂ξ
|ξ=0

]2

+
kθ2

a2

[
∂w(ξ, η, t)

∂ξ
|ξ=1

]2
}

dη

+
a

2

∫ 1

0

{
k3[w(ξ, η, t)|η=0]2 + k4[w(ξ, η, t)|η=1]2

+
kθ3

b2

[
∂w(ξ, η, t)

∂ξ
|η=0

]2

+
kθ4

b2

[
∂w(ξ, η, t)

∂ξ
|η=1

]2
}

dξ, (7)

where ρ is the density, and D = Eh3/12(1 − ν2) is the flexural rigidity.

W =
∆∑

δ=1

[fδ(t)w(ξδ , ηδ, t)]. (8)

The symbol ∆ in Eq. (8) represents the number of forces applied to the system and
(ξδ, ηδ, t) the application point of each of them.

Assuming that the transverse motion is harmonic and inserting the w expressions
Eq. (3) into Eqs. (6) and (7), and then into Eq. (4), classical eigenvalue problem
and forced vibration problem are formed as

[Kijmn]{qmn} = ω2[Mijmn]{qmn}, (9)

[[Kijmn] − ω2[Mijmn]]{qmn} = {F}, (10)

where [M ] and [K] are the mass and stiffness matrices, respectively, with

Mijmn = ρhabI0,0
i,mJ0,0

j,n , (11)

Kijmn =
D

ab

[(
b2

a2

)
I2,2
i,mJ0,0

j,n +
(

a2

b2

)
I0,0
i,mJ2,2

j,n

+v(I2,0
i,mJ0,2

j,n + I0,2
i,mJ2,0

j,n ) + 2(1 − v)I1,1
i,mJ1,1

j,n

]
, (12)
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Fij =
∆∑

δ=1

Fδ(t)fi(ξδ)fj(ηδ), (13)

in which

Iα,β
i,m =

∫ 1

0

fα
i (ξ)fβ

m(ξ)dξ, Jα,β
j,n =

∫ 1

0

fα
j (η)fβ

n (η)dη, (14)

where the indices α and β (α, β = 0, 1, 2) denote the order of the derivatives.
The above integrals can be calculated using the Gaussian quadrature method

with an appropriate number of integration points for the function in the integrand of
each integral. The resulting values of the integrals, once calculated, can be stocked
into a file for the generation of the stiffness and mass matrices.

2.2. Wavelet decomposition

2.2.1. 2D Daubechies wavelets scaling functions

1D Daubechies wavelets scaling functions are governed by a set of L (an even integer)
coefficients {hj : j = 0, 1, . . . , L − 1} through a two-scale relation as

ϕ(x) =
L−1∑
j=0

hjϕ(2x − j), (15)

where the coefficients hj are the wavelet filter coefficients whose values can be found
in the literature [Daubechies, 1992]. 2D wavelet scaling functions can be constructed
as a tensor product of the 1D functions as [Mallat, 1999]

ϕ(x, y) = ϕ(x) ⊗ ϕ(y), (16)

where ⊗ is the kronecker symbol.

2.2.2. Basis construction

1D wavelet basis, as discussed in a previous work [Zhang and Cheng, 2016], is
written as

φj(x) = 2m/2ϕ(2mx − j). (17)

To determine a suitable range of j, all the terms between the normalized expansion
domain [0, 1] should be included into the expansion set. However, substituting
Eq. (17) into Eq. (3) requires the calculation of Eq. (14). As the wavelet scale
function is a compact support function, when Eq. (14) equals to zero, the mass
and stiffness matrices M and K defined by Eqs. (11) and (12) are singular and
the problem becomes underdetermined. Therefore, the expansion set Equation (17)
should be carefully chosen as below to avoid such occurrence:

φj(x) = 2m/2ϕ(2mx − j), j = −L + 2, . . . , 2m − 1. (18)

1750088-6



October 3, 2017 18:31 WSPC-255-IJAM S1758-8251 1750088

Wavelet Decompositions for High Frequency Vibrational Analyses of Plates

Fig. 2. 2D Daubechies scaling function selection criteria.

In the present 2D situation,

φj(x) = 2m/2ϕ(2mx − j), j = −L + 2, . . . , 2m − 1,

φk(y) = 2m/2ϕ(2my − k), k = −L + 2, . . . , 2m − 1.
(19)

The total number of the decomposition items is (2m + L − 2)2. For illustration
purposes, a typical 2D Daubechies scaling function basis is shown in Fig. 2, with
L = 8, m = 2, j = −6, . . . , 3, k = −6, . . . , 3.

2.2.3. 2D connection coefficients

Substituting the tensor form of the 2D wavelet scaling function, Eq. (16), into
Eq. (3), the mass and stiffness matrices, Eqs. (11) and (12), are converted to

M = ρhab • I0,0 ⊗ I0,0, (20)

K =
D

ab

[(
b2

a2

)
I2,2 ⊗ I0,0 +

(
a2

b2

)
I0,0 ⊗ I2,2,

+v(I2,0 ⊗ I0,2 + I0,2 ⊗ I2,0) + 2(1 − v)I1,1 ⊗ I1,1

]

+ bk1ϕ− ⊗ I0,0 + bk2ϕ+ ⊗ I0,0 +
bkθ1

a2
ϕ′

− ⊗ I0,0 +
bkθ2

a2
ϕ′

+ ⊗ I0,0

+ ak3I0,0 ⊗ ϕ− + ak4I0,0 ⊗ ϕ+ +
akθ3

b2
I0,0 ⊗ ϕ′

− +
akθ4

b2
I0,0 ⊗ ϕ′

+, (21)

where

ϕ− = {ϕi(0)ϕj(0)}, i = −L + 2,−L + 1, . . . , 2m − 1,

j = −L + 2,−L + 1, . . . , 2m − 1,
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ϕ+ = {ϕi(1)ϕj(1)}, i = −L + 2,−L + 1, . . . , 2m − 1,

j = −L + 2,−L + 1, . . . , 2m − 1,

ϕ′
− = {ϕ′

i(0)ϕ′
j(0)}, i = −L + 2,−L + 1, . . . , 2m − 1,

j = −L + 2,−L + 1, . . . , 2m − 1,

ϕ′
+ = {ϕ′

i(1)ϕ′
j(1)}, i = −L + 2,−L + 1, . . . , 2m − 1,

j = −L + 2, −L + 1, . . . , 2m − 1,

F =
∆∑

δ=1

Fδϕ(ξδ, ηδ). (22)

Then

Iα,β =
∫ 1

0

ϕT (α)

1 (ξ)ϕ(β)
2 (ξ)dξ. (23)

Here, the 2D connection coefficients, Iα,β , are converted to the tensor product of
1D connection coefficients. Substituting Eq. (17) into Eq. (13), one gets

Iα,β
i,j =

∫ 1

0

[2m/2ϕ(2mξ − i)](α)[2m/2ϕ(2mξ − j)](β)dξ

= 2(α+β)m

∫ 2m

0

ϕ(α)(x − i)ϕ(β)(x − j)dx. (24)

The function form of ϕ(·)(x − i) is the differential of the 1D Daubechies wavelet
scaling functions, which can be obtained through a recursive scheme as detailed in
our previous work [Zhang and Cheng, 2016]. Iα,β can then be calculated by Gauss
integration.

3. Numerical Results and Discussions

The following sections consider a rectangular steel plate with different boundary
conditions. Again, it is relevant to reiterate that the validity issue of the Love–
Kirchhoff assumption in the high-frequency range is well known and beyond the
scope of the present paper. The illustration of the computation accuracy of the
proposed method through comparison with a simple benchmark problem having
exact solutions is the major focus here.

3.1. Low-order eigenvalue validations

The eigen-frequency problem described by Eq. (9) is first considered for low-order
modes. Three different boundary conditions are investigated using the same nota-
tions in [Leissa, 1973]. For example, corresponding to the four edges at x= 0, y = 0,
x = a, y = b, C-S-C-F denotes clamped, simply-supported, clamped and free
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boundaries, respectively. For each type of boundary conditions, results are tabu-
lated by including the first four natural frequencies of the plate for three different
aspect radios (a/b = 2/5, 1, 5/2), along with the results from other work in the
literature. The support length L and the resolution m of the wavelet scale function
used in the calculation are also quoted for each case. For the convenience of compar-
ison with results from the literature [Bardell, 1991; Leissa, 1973], a non-dimensional
frequency parameter is defined as

Ω = ωa2
√

ρ/D, (25)

where ω is angular frequency and a is the length of the rectangular plate.
Firstly, the accuracy of the WDRM is checked when all four edges of the plate

are completely free (F-F-F-F). In this case, the plate boundary conditions are fully
accounted for in the original matrix equation with no stiffness values being assigned
to the springs. The eigenvalue problem yields three zero frequency parameters (as
expected) which correspond to the rigid-body translation and rigid-body rotations.
The subsequent non-zero frequency parameters are shown in Table 1.

Table 1. Frequency parameters for a F-F-F-F plate:
L = 18, m = 4.

a/b Mode No. Leissa Bardell WDRM

2/5 Ω4 3.463 3.433 3.428
Ω5 5.288 5.278 5.275
Ω6 9.622 9.541 9.540
Ω7 11.437 11.329 11.324

1.0 Ω4 13.489 13.468 13.465
Ω5 19.789 19.596 19.593
Ω6 24.432 24.270 24.269
Ω7 35.024 34.801 34.799

5/2 Ω4 21.643 21.454 21.374
Ω5 33.050 32.989 32.964
Ω6 60.137 59.629 59.602
Ω7 71.484 70.804 70.789

Table 2. Frequency parameters for C-C-C-C plate:
L = 18, m = 4.

a/b Mode No. Leissa Bardell WDRM

2/5 Ω1 23.65 23.64 23.64
Ω2 27.82 27.81 27.80
Ω3 35.45 35.44 35.41
Ω4 46.70 46.81 46.67

1.0 Ω1 35.99 35.99 35.99
Ω2 73.41 73.39 73.39
Ω3 73.41 73.39 73.39
Ω4 108.22 108.22 108.21

5/2 Ω1 147.80 147.78 147.75
Ω2 173.85 173.80 173.78
Ω3 221.54 221.50 221.33
Ω4 291.89 292.53 291.65
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Table 3. Frequency parameters for C-S-C-F plate:
L = 18, m = 4.

a/b Mode No. Leissa Bardell WDRM

2/5 Ω1 22.54 22.49 22.49
Ω2 24.30 24.27 24.26
Ω3 28.34 28.32 28.32
Ω4 35.35 35.31 35.36

1.0 Ω1 23.46 23.38 23.38
Ω2 35.61 35.56 35.55
Ω3 63.13 62.89 62.85
Ω4 66.81 66.77 66.68

5/2 Ω1 28.56 28.49 28.48
Ω2 70.56 70.31 70.32
Ω3 114.00 113.91 113.79
Ω4 130.84 130.53 130.61

As can be seen, for all first four frequencies, WDRM, Lessia’s work [Leissa,
1973] and Bardell’s work [Bardell, 1991] provide very close results. It should also
be noted that the WDRM generates the smallest values for each natural frequency,
suggesting a higher accuracy than the other two.

Then, plates with C-C-C-C and C-S-C-F boundary conditions are investigated.
The first four frequency parameters are presented in Tables 2 and 3, respectively,
for the two boundary cases. Once again, the comparison shows the same tendency
as explained before and an excellent agreement is observed with the work of [Leissa,
1973] and [Bardell, 1991]. Meanwhile, the WDRM yields consistently lower frequen-
cies for all cases compared with their counterparts reported in [Leissa, 1973; Bardell,
1991].

3.2. High order eigenvalues and convergence study

A simply-supported plate (S-S-S-S) is studied due to the existence of analytical
solutions. The geometrical and material parameters of the plate are: a = 1 m, b =
1 m, h = 0.003 m; Young’s modulus E = 2.1 × 1011 Pa; Poisson ratio ν = 0.3; and
density ρ = 7,800 kg/m3. As an example, the aspect radio a/b is restricted to 1. The
translational stiffness terms of the boundary springs are set as k1 = k2 = k3 = k4 =
1E12 N/m and kθ1 = kθ2 = kθ3 = kθ4 = 0. Convergence studies show that further
increases in ki or kθi would not lead to noticeable changes in the calculated results.

Convergence and error analyses are carried out. It should be noted that the
derivative order of the Daubechies wavelet scaling functions requires the use of a
minimum support length L. Theoretically, the maximum differential order of the
Daubechies wavelet functions is (L−2)/2. In the present plate case, the differential
order in the equation of motion is four. Therefore, the minimum L should be ten.
Satisfying this criterion, Fig. 3 shows the eigenfrequencies calculated by the WDRM
using L = 14, L = 16 and L = 18, respectively, with a fixed resolution m = 7, in
comparison with the analytical solutions.
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To quantify the accuracy, a relative error is defined for each eigen-frequency as

η = |fexact − fWDRM|/fexact × 100%, (26)

where fexact is the exact frequency value and fWDRM the numerically calculated
one by the WDRM.

The relative error for the same calculation cases (L = 14, L = 16 and L = 18,
with m = 7) is shown in Fig. 4. Both Figs. 3 and 4 show a consistently good accuracy
of the calculation for all cases, typically covering the first 2,000 modes (Fig. 4).
Errors start to increase for higher-order modes. If the calculation error is capped
at 1%, L = 14, L = 16, and L = 18 with m = 7 allow the correct prediction of the
first 2,300, 2,800 and 3,500 modes, respectively (Fig. 4). The corresponding basis

Mode sequence
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e 

(H
z)
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4

0
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4

5
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7

L=14, m=7

L=16, m=7

L=18, m=7

Analytical

Fig. 3. Eigenfrequencies using different wavelet support lengths L = 14 (dashed line), L = 16
(dotted line) and L = 18 (dashed-dotted line) with the wavelet resolution m being fixed at 7, in
comparison with analytical ones (solid line).

Fig. 4. Relative error using different wavelet support lengths L = 14 (dashed line), L = 16
(dotted line) and L = 18 (solid line) with the wavelet resolution m fixed at 7.
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Fig. 5. Relative error using different wavelet resolutions m = 4 (dotted line), m = 5 (dotted) and
m = 6 (dashed) with the wavelet support length L fixed at 18 from 1st mode to 1,000th mode.

terms used are 19,600, 20,614 and 20,736, respectively. Obviously, the calculation
accuracy, along with the frequency coverage, increases with the support length.

When varying the resolution parameter m, the relative error is shown in Figs. 5
and 6. As can be seen from Fig. 5, m needs to be increased for the same support
length L for more modes to be correctly calculated. More specifically, when m = 4,
about 70 eigen-frequencies can be obtained under 1% error. This number increases
to about 200 when m = 5; and 300 when m = 6, respectively. For relatively small
m values, the improvement in terms of frequency coverage is rather gentle. Further
increasing m, Fig. 6 shows that, when m = 7, about 3,400 eigen-frequencies can
be obtained under 1% error. This number increases to about 15,000 when m = 8.
Therefore, the effect of the resolution parameter m is obvious. When m increases up
to a certain value, the accuracy of the WDRM is improved in a significant manner.
Note that, for the sake of convenience, the lower order modes, with their error values
all below 1%, are not shown in Fig. 6.

Fig. 6. Relative error using different wavelet resolutions m = 7 (dotted line) and m = 8 (solid)
and with the wavelet support length L fixed at 18 from 1,000th mode to 20,000th mode.
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Another phenomenon is noteworthy from Figs. 5 and 6. Although the accuracy
generally increases with m, it does not mean that a larger m is necessarily better
for any specified mode sequence range. To show the phenomenon more clearly, a
tendency line on the relative error curves is plotted in Fig. 5. For the mode sequence
from the 1st to about the 15th, the most accurate result is obtained using m = 4.
From the 16th to the 200th modes, the smallest relative error is obtained using
m = 5. The same phenomenon can be again observed in Fig. 6, in which m = 7
gives the most accurate prediction accuracy for the mode sequence from the 1,000th
to about the 2,000th. A plausible explanation is that the different mode involves
different structural wavelengths. There should exist some correlations between the
structural wavelength range of the modes and the wavelet resolution m. If the
calculation is to be conducted by targeting a particular range, a smaller m may
generate better accuracy for the lower-order modes. Higher-order modes, however,
requires the use of a larger m.

In the present case with L = 18, m = 6, the CPU time is about 620 s for the
whole calculation. Generally speaking, the CPU time is related to (2m + L − 2)2

according to Eq. (19), which is the size of the mass and stiffness matrices.
In Fig. 7, the first four mode shapes of the S-S-S-S plate using the WDRM with

L = 18 and m = 7 are presented. It can be seen that, despite the seemingly strong
oscillation feature of the wavelets, the lower-order mode shapes are well constructed
in a continuous and smooth manner.

As another extreme example, two arbitrarily chosen high-order mode shapes
(the 2,592nd at 36,741Hz and the 2,822nd at 39,619Hz) of the S-S-S-S plate using

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 7. The first four mode shapes calculated by the WDRM.
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(a)

(b)

Fig. 8. Mode shape of the 2,592nd mode of the S-S-S-S plate using the WDRM. (a) 3D view.
(b) Top contour view.
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(a)

(b)

Fig. 9. Mode shape of the 2,822nd mode of the S-S-S-S plate using the WDRM. (a) Partial 3D
view. (b) Top contour view.
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the WDRM are depicted in Figs. 8 and 9, respectively, together with the corre-
sponding top views. Note that, for the 2,822nd mode, only a small portion of the
plate (1/5 in each directions) is shown in the 3D view in order to better illustrate
details. It can be seen from these figures that these high-order mode shapes are also
well predicted with fine details and smoothness even near the edges, demonstrat-
ing the strong ability of the wavelet-decomposed model in coping with structural
details.

(a)

(b)

Fig. 10. Displacement amplitude at (0.75 m, 0.6m) in three different frequency bands: (a) from
10Hz to 1k Hz, (b) from 1 kHz to 5 kHz, (c) from 5 kHz to 10 kHz.
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(c)

Fig. 10. (Continued)

3.3. Forced vibrations

The forced vibration response of the S-S-S-S plate is investigated to further verify
the accuracy of the proposed method. The geometrical and material parameters of
the plate remain the same as before. System damping is ignored. A unit excitation
force is applied at an arbitrarily chosen point at (0.1m, 0.2m). The displacement
of the plate at another arbitrarily chosen location (0.75m, 0.6m) is calculated and
shown in Fig. 10, in a frequency range from 10Hz to 10 kHz. Calculations use
L = 18 and m = 7. The analytical solution [Rao, 2007] is used as the reference, in
which one million modes were used. In all three frequency bands, low in Fig. 10(a),
middle in Fig. 10(b) and high in Fig. 10(c), the displacement responses calculated
by the WDRM are found to be in nice agreement with the analytical solutions,
demonstrating again the remarkable accuracy of the method, even for very high
frequencies.

4. Conclusions

2D Daubechies wavelet scaling functions are used under the general framework of
Rayleigh–Ritz method for analyzing the high-frequency bending vibrations of plates.
Upon constructing the 2D Daubechies wavelet scaling functions and establishing
the calculation scheme for the associated 2D connection coefficients, a wavelet-
decomposed Rayleigh–Ritz plate model is developed. By embracing the flexibility
of the global methods and the accuracy of local methods, and exploiting the versatil-
ity of the Rayleigh–Ritz approach and the unique features of the wavelets, the pro-
posed method exhibits extraordinary computational advantages and allows reaching
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extremely high frequencies with conventional computational facilities. Typically,
upon properly choosing the wavelet parameters, the plate vibration, in both free
and forced regimes, can be accurately simulated, covering roughly fifteen thousand
plate modes. Typical errors of the calculated natural frequencies are capped at
1%. Numerical analyses also allow shedding light on the relationship among the
accuracy, convergence of the calculations and the wavelet parameters, namely the
support length L and the resolution m. In general, the calculation accuracy increases
with the support length. The effects of the resolution, however, are less systematic,
which seem to be dependent on the range of structural wavelength considered.
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