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Abstract
Structural health monitoring (SHM) techniques with nonlinear Lamb waves have gained wide
popularity due to their high sensitivity to microstructural changes for the detection of damage
precursors. Despite the significant progress made, various unavoidable nonlinear sources in a
practical SHM system, as well as their impact on the detection, have not been fully assessed and
understood. For the real-time and online monitoring, transducers are usually permanently bonded
on the structure under inspection. In this case, the inherent material nonlinear properties of the
bonding layer, referred to as adhesive nonlinearity (AN), may create undesired interference to the
SHM system, or even jeopardize the damage diagnosis if they become serious. In this paper, a
nonlinear theoretical framework is developed, covering the process of wave generation,
propagation and sensing, with the aim of investigating the mechanism and characteristics of AN-
induced Lamb waves in plates, which potentially allows for further system optimization to
minimize the influence of AN. The model shows that an equivalent nonlinear normal stress is
generated in the bonding layer due to its nonlinear material behavior, which, through its coupling
with the system, is responsible for the generation of second harmonic Lamb waves in the plate,
subsequently resulting in the nonlinear responses in the captured signals. With the aid of the
finite element (FE) modeling and a superposition method for nonlinear feature extraction, the
theoretical model is validated in terms of generation mechanism of the AN-induced wave
components as well as their propagating characteristics. Meanwhile, the influence of the AN is
evaluated by comparing the AN-induced nonlinear responses with those caused by the material
nonlinearity of the plate, showing that AN should be considered as a non-negligible nonlinear
source in a typical nonlinear Lamb-wave-based SHM system. In addition, the theoretical model
is also experimentally validated in terms of the frequency tuning characteristics of the AN-
induced wave components. A fairly good agreement is found among the theoretical model, FE
model and the experiments, thus confirming the theoretically predicted AN-induced wave
generation mechanism and their characteristics.

Keywords: structural health monitoring, nonlinear guided waves, adhesive nonlinearity

(Some figures may appear in colour only in the online journal)

1. Introduction

The presence of the damage in engineering structures, in
whatever form it is manifested, can significantly jeopardize
their operation and safety without timely awareness. There-
fore, early detection of the initial damage in real time
becomes important to enhance the safety and extend the
residual lifetime of structures in service, as well as to

effectively drive down the exorbitant maintenance cost [1].
This urgent need hatches out the concept of structural health
monitoring (SHM), which aims at the online damage diag-
nosis with built-in transducers [1–3]. Among various SHM
approaches, the one based on guided waves is probably one of
the most popular methods due to its appealing features like
low energy consumption, far-reaching detection area and high
sensitivity to damage [1, 3–6].
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Conventional solutions based on guided waves focus on
the damage scattering properties of the waves, which are
classified in the category of linear SHM methods [7]. It is
widely accepted that linear features of the guided waves are
good indicators for macro-scale defects, typically in the order
of millimeter range [8, 9]. For practical applications, however,
the appearance of the macro-scale damage may lead to rapid
disruption of the structure. Therefore, early detection of small
and incipient changes is highly desirable, which linear solu-
tions can hardly cope with. In this context, nonlinear guided
waves, which exhibit higher sensitivity to microstructural
changes through the exploration of the second harmonic
generation, started to attract more and more attentions in
recent years [10–12].

Generally speaking, the second harmonic guided waves
(Lamb waves of our specific interest) can be generated by
both crack-induced nonlinearity [13, 14] and material non-
linearity [15, 16]. With the main focus on the nonlinear
properties of the waveguides, theoretical basis revealing the
mechanism of the generation of second harmonic Lamb
waves has been well developed [15–19]. These investigations
show that two conditions are necessary for the cumulative
second harmonic generation: phase velocity matching and
non-zero power flux, resulting in a few SHM-usable mode
pairs at some specific frequencies. These theoretical findings
provide the guidance for the application of the nonlinear
Lamb waves in SHM, including the selection of excitation
frequencies, the design of transducers and so on [17, 18, 20].
For example, Hong et al [21] managed to extract the damage
information from the second-harmonic Lamb waves to locate
fatigue damage at a rivet hole with surface-bonded PZT discs
(PZT denotes PbZr–TiO3). Rauter and Lammering [22]
detected fatigue damage in a composite plate using the second
harmonic components of Lamb waves with piezoelectric
transducers. Those previous experiments demonstrate that the
nonlinear Lamb-wave-based SHM technique has great
potential for the detection of damage precursors in many
engineering applications.

More recently, it has been reported that strong cumula-
tive second harmonic S0 wave components can also be gen-
erated by the primary S0 Lamb waves in plates at relatively
low-frequency range as long as the phase velocities of the
primary and secondary waves approximately match [23]. This
allows the use of lower excitation frequencies for the cumu-
lative second harmonic generation, which is preferable in real
applications because the signal complexity and the require-
ments for the experimental equipment can be significantly
reduced. In addition, the condition of approximate phase
velocity matching gives the flexibility for the choice of
excitation frequencies.

However, in a typical nonlinear Lamb-wave-based SHM
system with transducers permanently bonded on the host
structures, there might be other non-negligible nonlinear
sources apart from the nonlinearity of the waveguides, like
instrument nonlinearity, that of the transducers and the
bonding layers. The influence of these undesired nonlinear
sources on the SHM method needs to be evaluated before
meaningful and convincing diagnosis conclusions can be

reached. Of our specific interest, the nonlinearity associated
with the bonding layers will be investigated. Similar to the
crack-induced nonlinearity and material nonlinearity of the
waveguides, two main mechanisms are responsible for the
generation of the second harmonic waves associated with
bonding layers: debonding and nonlinear material properties
of bonding layers. For the former, relevant research has been
carried out through both finite element (FE) analyses and
experimental investigations [24]. Results demonstrate that
strong second harmonics of Lamb waves can be generated
when transducers are partially debonded. For the latter, the
material nonlinearity of the bonding layers is referred to as
adhesive nonlinearity (AN) in this paper. Although it is well
accepted that the properties of the adhesive have a significant
influence on the linear Lamb-wave-based SHM methods [25–
27], the influence of the AN on the nonlinear SHM methods
has not been fully investigated so far and this motivated the
current work. The evaluation of the AN is challenging mainly
for several reasons. First, it is a complex coupling problem
with the transducers bonded to the host structure, which
requires appropriate assumptions in the model development.
Second, references on the acquisition of the nonlinear elastic
parameters of adhesives are scarce, or even inexistent in some
aspects, in the literature due to their complex viscoelastic
properties. Third, most existing signal processing methods
used in the nonlinear SHM like fast Fourier transform [28],
short time Fourier transform [21] and wavelet transform [23]
are unable to extract the original nonlinear responses in the
time domain, which can hardly make the model validation
process convincing.

In this study, we propose a coupled model to investigate
the mechanism of the AN and assess the characteristics of the
AN-induced second harmonic Lamb waves, which can
potentially be used for further system optimization to mini-
mize the influence of AN. The proposed model is inspired by
some existing linear Lamb-wave-based SHM models [1, 29–
31]. Particularly, the shear-lag model developed by Giurgiutu
et al is highlighted, which has been successfully applied to
predict the phenomenon of frequency tuning [31]. In the
present study, the shear-lag model is extended to form a
nonlinear framework through a perturbation method. The
proposed model combines the entire process of Lamb wave
generation, propagation and sensing with the AN introduced
to both actuator-plate and sensor-plate interfaces using the
nonlinear elastic properties of the adhesive. The theoretical
model allows calculating the linear and nonlinear responses in
terms of the voltage output of the PZT sensors in the time
domain. Model validation is carried out using both FE and
experimental results. For FE validation, a FE model is
established with the experimentally measured nonlinear
elastic parameters of the adhesive. The nonlinear responses
are extracted by the superposition method which allows
separating the linear and nonlinear parts of the response and
validating the model in the perspective of propagating char-
acteristics of nonlinear wave components. In addition, the
influence of the AN is analyzed and evaluated. Experiments
are carried out to further ascertain the frequency tuning
characteristics of nonlinear S0 Lamb wave components.
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2. Theoretical model

The model consists of an infinite plate incorporating the three
modules, usually present in a typical Lamb-wave-based SHM
system: wave generation, propagation and sensing, as shown
in figure 1. PZT transducers, used either as actuators or sen-
sors, are bonded on the surface of the plate under inspection
through adhesive layers. The adhesive ensuring the PZT-plate
interactions is assumed to have nonlinear elastic properties.
By contrast, the piezoelectric transducers and the plate are
considered as linear waveguides in terms of their elastic and
piezoelectric properties. For Lamb waves generated by the
PZT discs, the small deformation assumption is adopted
throughout the analyses. In principle, AN exists in both the
actuator-plate and sensor-plate interfaces. The nonlinearity at
the actuation area is referred to as the actuator adhesive
nonlinearity (AAN) while the one at the sensing area the
sensor adhesive nonlinearity (SAN). In addition, only the
second harmonic wave components are considered due to
their extensive use in most nonlinear Lamb-wave-based SHM
methods.

2.1. Nonlinear material elastic properties

The nonlinear material behavior of the adhesive is first
evaluated. Similar to previous relevant studies, the con-
stitutive equation of the adhesive is expressed with the
Landau–Lifshitz model [17]:

[ ] ( [ ]) [ ]
[ ] ( )

l m= + + +
+ +
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where λ and μ are Lamé constants, while A, B, C are defined
as the third-order elastic constants (TOECs). The operation
tr() denotes the trace of a matrix. T is the second Piola–
Kirchhoff stress tensor and E the Lagrangian strain tensor,
whose components can be written as
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in the equation which corresponds to

the geometric nonlinearity (GN) is first omitted so that the
Lagrangian strains retreat to engineering strains [32]. By the
same token, the nominal stress is used instead of the second
Piola–Kirchhoff stress in the following analyses. The

influence of the GN will be numerically evaluated in the
subsequent section on FE validation.

Two typical types of material behavior are considered:
uniaxial tension and pure shearing. During the uniaxial ten-
sion process, the stress–strain relationship writes
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where E is the Young’s modulus of the material. In the pure
shearing deformation in the x1–x2 plane, the nonlinear stress–
strain relationship writes
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Detailed derivations can be found in appendix A. It is worth
noting that only the linear and third-harmonic terms of the
shear strain appear in equation (4). As the focus of this work
is on the second harmonics, the third-order term is omitted
and the shear stress-strain relation can be simplified as

( )mg=T , 512 12

where g12 is the commonly-used engineering shear strain,
which is related to the shear strain component by g e= 212 12.

In the pure shearing process, equation (A.15), which
represents the stress–strain relation in the x1 direction, can be
described as:

( ) ( ) ( )g
l e e e me= -

+
= + + +T

B A2

4
2 . 6e

12
2

1 2 3 1

The above equation indicates that an equivalent second-har-
monic normal stress, Te, is generated mainly through normal
strain ε1. This process is considered to be responsible for the
AN-induced second harmonic generation, to be validated in
the subsequent analyses.

2.2. Wave generation

As the first module in the theoretical model, the wave gen-
eration mechanism is investigated by extending the classic
shear-lag model to the nonlinear one, named as nonlinear
shear-lag model. Previous nonlinear studies indicate the

Figure 1. Sketch of the theoretical model.
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validity of the assumption that the amplitude of the second
harmonic components due to the material nonlinearity is
much smaller than that of the fundamental waves [17].
Consequently, the problems characterized by the nonlinear
shear-lag model can be decoupled to linear and nonlinear
problems through the perturbation method. In addition, other
assumptions from the classic shear-lag model are adopted in
this theoretical framework, namely, (1) the problem is treated
as a one-dimensional problem, that is, only the d31 effect of
the piezoelectric element is responsible for the generation of
Lamb waves. (2) Inertial terms of the PZT, as well as these of
the bonding layer and plate are neglected in the model, thus
limiting the accuracy of the model up to certain frequencies,
which concurs with our focus on the relatively low-frequency
range. (3) The deformation of the bonding layer is simplified
as pure shearing in the linear case, whilst an additional
equivalent normal stress is generated in the bonding layer in
the nonlinear case.

The nonlinear variables can be expressed as

( ) ( ) ( ) ( ) ( )= +V V x f t V x g t 7L Q

in which V is a variable which can be u for displacement, ε
and γ for normal and shear strains or σ and τ for normal and
shear stresses, respectively. The subscripts L and Q denote the
linear and quadratic terms, respectively. f (t) and g (t) are
time-dependent terms. In this specific case, as no inertial
terms are considered, the two terms are related by

( ) ( ( ))=g t f t .2 In the subsequent derivation, the time-
dependent terms f (t) and g (t) will be omitted for the sake of
simplicity.

The nonlinear shear-lag model is established by for-
mulating the governing equations including constitutive,
geometric and equilibrium equations of the actuator, bonding
layer and the host structure, respectively. A sketch showing
the force transmissions in the model is given in figure 2.

For the actuator, the three governing equations are
described as

( ) ( )s s s e e e= + = + -E , 8L Q L Qa a a a a a ISA
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where the subscript a stands for the actuator. E and t are the
Young’s modulus and thickness of the PZT actuators
respectively. eISA denotes the linear piezoelectric-induced
strain, described as

( )e =
d V

t
, 11ISA

31a in

a

where d31 is the piezoelectric constant and Vin the input
voltage. Similarly, the governing equations for the host
structure can be written as
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where the subscript h represents the host structure. The
coefficient α depends on the stress, strain, and displacement
distributions across the plate thickness. In the low-frequency
range, especially when only A0 and S0 modes of Lamb waves
exist in the plate, α is set to 4 [31].

For the bonding layer, the governing equations can be
expressed as

( ) ( )t t t g g= + = +G , 15L Q L Qba ba ba ba ba ba

( ) ( )
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where the subscript ba denotes the bonding layer under the
actuator. G is the shear modulus of the adhesive and TbaQ is
the equivalent nonlinear normal stress on the bonding layer.
The shear stress of the bonding layer is related to that over the
actuator-plate interface, given by

( ) ( )
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= +

2
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If admitting that the amplitude of the quadratic terms is
usually much smaller than their linear counterparts and all the
quadratic terms in the governing equations being omitted, the
problem will be reduced to the classic shear-lag model.
Referring to the classic shear-lag solutions with the stress-free
boundary conditions [1, 31], the linear shear stress distribu-
tion can be obtained as:
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where a is the half length of the actuator. Parameters ya and
Ga are defined as

( )y =
t E

t E
, 20a

h h

a a

( )a y
y

G =
+G

t t E
. 21a

2 ba

ba a a

a

a

Based on equation (6), the equivalent nonlinear normal
stress writes

( )

( ) ( )
( )

( )

g

e

=
- +

=
- +

G
G
G

⎛
⎝⎜

⎞
⎠⎟

T
B A

B A

t

x

a

2

4

2

4

sinh

cosh
.

22
Q

L
ba

ba
2

ISA

ba a

a

a

2

Figure 2. Sketch of the wave actuating problem.
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According to the perturbation method, the nonlinear problem
can then be constructed by eliminating all the linear terms
from the governing equations from equations (8) to (18).
Upon rearranging the equations, the differential equation in
terms of the variable thQ can be written as

( ) ( )t t - G = GR xsinh 2 , 23Q Qh a
2

h a

where R and P are two intermediate constants which can be
expressed as
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As the actuator and the host structure have stress-free
boundaries, the final solution to this nonlinear problem writes
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Details of the equation derivation are provided in appendix B.

2.3. Wave propagation

The second module in the model is the wave propagation. In
this work, only A0 and S0 modes of Lamb waves which
propagate in a linear isotropic aluminum plate will be con-
sidered in the low-frequency range. Once the shear stress
distributions are obtained, the corresponding strains of Lamb
waves subjected to a harmonic excitation can be obtained as
[1]
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where ξ denotes the wave number for either A0 and S0 Lamb
wave modes and Gh is the shear modulus of the host structure.
Expressions for intermediate variables, NA, NS, DA and DS

are:
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where ω is the excitation frequency and cP and cS the wave
speeds for the pressure wave and the shear wave, respectively.
d is the half thickness of the plate. t̃h is the Fourier transform
of the shear stress distribution on the top surface of the host
structure for either linear or nonlinear terms, which can be
calculated by:
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From equation (26), the linear and quadratic responses in the
frequency domain can be determined. It is worth noting that
the calculation of the nonlinear response is based on the
assumption that the AAN-induced second-harmonic Lamb
waves propagate independently of the primary Lamb waves at
their respective velocities.

In most SHM applications, tone-burst excitations are
preferred as they can provide sufficient temporal information
for damage diagnosis. Thus, the time-domain responses need
to be calculated. Given a certain position x0, the frequency
response function, denoted by G(ω), can be obtained from
equation (26). Subjected to an excitation signal fe(t), the time-
domain response in terms of the normal strain can be calcu-
lated as

( ) [ ( ( )) ( )] ( )e w= ⋅x t F f t G, IF , 340 e

where F() and IF() represent the direct and inverse Fourier
transform, respectively. Finally, the temporal signals of the
strains at any position can be obtained as e RLh for the linear
response and ehRQ for the ANN-induced nonlinear response.

2.4. Wave sensing

At the last module in the model, the propagating Lamb waves
are captured and converted to voltage signals by the surface-
bonded piezoelectric sensor. Previous work showed that the
sensor itself has negligible influence on the propagation the of
Lamb waves [33]. This is used here as an additional
assumption. Similar to the wave generation module, the
output signal includes both linear and nonlinear components
according to the perturbation method. More specifically, the
nonlinear response will include both AAN-induced and SAN-
induced components, presumably captured by the sensor
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independently. Physically, the former propagates at different
speeds before reaching the sensor at different time instants,
whilst the latter is mainly generated by the linear Lamb wave
at the sensor position. Thus the wave sensing process can be
divided into three individual problems: linear Lamb wave
sensing (using notations with the subscribe L in the following
analysis), linear wave sensing of AAN-induced wave com-
ponents (with the subscript Q1) and nonlinear wave sensing
of SAN-induced wave components (with the subscript Q2), as
shown in figure 3.

As to the linear wave sensing part, the equilibrium
equations of the piezoelectric sensor and the bonding layer
can be written as

( )e t¢ - =t E 0, 35L Ls s s s

( )t t t= = , 36L L Ls h bs

where the subscripts s and bs stand for the sensor and bonding
layer under the sensor, respectively. The constitutive and
geometric equations of the sensor and bonding layer are
analogous to those in the wave actuation case. The only
difference lies in the absence of the piezoelectric term in the
constitutive equation of the sensor, as

( )s e= E . 37L Ls s s

As the normal strain of the host structure is a known variable,
the differential equation with respect to the normal strain of
the sensor can be obtained by substituting the geometric and
constitutive equations of the bonding layer into equation (35)
as

( )e e e - = -K K , 38L L RLs
2

s
2

h

where

( )=K
G

t E t
. 392 bs

s s bs

Since the sensor has two stress-free ends, the boundary con-
ditions can be constructed as

( )
( ) ( )s

s
=
=

⎧⎨⎩
x
x

0,
0,

40L

L

s 1

s 2

where x1, x2 are the positions of the two ends of the sensor.
By putting equation (37) into equation (40), the final solution
to equation (38) yields
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Once the normal strains of the sensor are obtained, the final
linear voltage output of the sensor can be determined as [29]

( )
( )

ò e
=

-s
V

E x

l e E

d t d

d
, 43L

x

x

L

out

31s s s s

s 33 31s
2

s

1

2

where d31s, ls, and se33 are the piezoelectric constant, length
and the dielectric constant of the sensor, respectively.

As the wave components related to the AAN are linearly
captured by the sensor, we can follow the same process as the
linear wave sensing problem. The corresponding nonlinear
strain of the sensor can be determined with respect to the
AAN-induced normal strain of the host structure as

( )

( ( )) ( )
òe e q

q q

= + + -

´ -
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2
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2

1

2

2 1 2

1

1

2

2 1 2

Thus, the voltage output corresponding to AAN will be cal-
culated as VoutQ1 according to equation (43).

Due to the material nonlinearity of the adhesive, an
additional equivalent nonlinear normal stress, responsible for
the SAN, is generated across the thickness of the bonding
layer (shown in figure 3), written as

( ) ( )g= - +T B A
1

4
2 , 46Q Lbs bs

2

where g Lbs can be obtained by combining equation (35) and
the constitutive equation of the bonding layer. As the SAN
shares the same mechanism with AAN, the governing
equations for the nonlinear wave sensing problem are iden-
tical to those in the nonlinear wave actuating process, with
different subscripts used for the corresponding elements.
Upon rearranging the terms, the differential equation with
respect to t Qs 2 can be obtained

( ) ( ) ( )t t
a - G = - 

G

E t t
D x D x

1

2
, 47sQ s sQ

bs

h h bs
2

2
2

where

( ) ( ) ( )g
= -

+
D x

t B A

x

2

4

d

d
, 48Lbs bs

2

Figure 3. Sketch of the wave sensing problem.
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( )y =
t E

t E
, 49s

h h

s s

( )a y
y

G =
+G

t t E
. 50s

2 bs

bs s s

s

s

Similarly, the sensor and host structure have stress-free
boundaries and the differential equation can be solved as
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Detailed derivations can be found in appendix C. Once
obtaining the shear stress distribution on the lower surface of

the sensor, the normal strain related to the SAN can be further
calculated according to the equilibrium equation of the sensor as

( )òe
t

=
t E

xd . 54Q
x

x Q
s 2

s 2

s s1

Finally, the corresponding voltage output will be obtained as
VoutQ1 according to equation (43).

The overall output voltage of the sensor is the super-
position of the linear, ANN-induced and can SAN-induced
signals, as

( )= + +V V V V . 55L Q Qout out out 1 out 2

3. FE validations

FE method is first adopted to verify the theoretical model. The
physical parameters of the adhesive which are used in both
theoretical and FE models are obtained through experimental
measurements. In the FE model, both AN and material non-
linearity of plate can be separately introduced to the relevant
parts. Analysis focuses on four issues. First, the nonlinear
feature extraction methods, crucial to the subsequent analyses,
are highlighted and evaluated. Second, the theoretically pre-
dicted mechanism of the AN-induced nonlinear waves is
validated, allowing a better understanding of the underlying
phenomena. Third, the propagating characteristics of the AN-
induced wave components are investigated, providing guidance
for the following experimental characterization of the AN.
Finally, the influence of the AN is assessed, justifying the
practical need of considering AN effect in SHM applications.

3.1. Parameter justifications

The material parameters of the piezoelectric material [34]
(PZT-C6 manufactured by Fuji Ceramics in the present case)
and those of the aluminum [35] are readily available.

However, the material parameters of the adhesive, especially
its TOECs, are seldom provided in the existing literature. In
this study, a tensile test was carried out to estimate the
Young’s modulus and TOECs of the adhesive.

Tensile tests were conducted with three samples made of
UHU plus 2-component epoxy adhesive. The experiment was
carried out at the room temperature with the tensile rate of
0.2 mm s−1. The experimental set-up and the test specimens
are illustrated in figure 4.
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Figure 4. Experimental setup and specimens for measuring the
elastic parameters of the adhesive.
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Figure 5. (a) Experimental results of the stress–strain curves of three samples. (b) Curve fitting results with the experimental result of
specimen 2#.

Table 1. Proportional method to estimate the TOECs of adhesive.

A B C μ′

Aluminum −702.4 Gpa −280.8 Gpa −205.6 Gpa −1248 Gpa
Adhesive −20.9 Gpa −8.3 Gpa −6.1 Gpa −37.09 Gpa

Table 2. Parameters used in the theoretical and FE models.

PZT C6

Width Thickness E v d31 se33

8 mm 0.3 mm 62 Gpa 0.32 −210 pm V−1 18.9 nF m−1

Bonding layer

Thickness E va A B C
0.03 mm 1.31 Gpa 0.4 −20.9 Gpa −8.3 Gpa −6.1 Gpa

Aluminum plateb

Thickness E v A B C
2 mm 69.56 Gpa 0.34 −702.4 Gpa −280.8 Gpa −205.6 Gpa

a
The Poisson’s ratio of the adhesive is assumed to be 0.4 which is the same as in [36].

b The TOECs of the aluminum are only used in the FE model to compare the influence of
adhesive nonlinearity and that of material nonlinearity of the plate.

Figure 6. Sketch of the FE model.
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The stress–strain curves from three tested specimens are
shown in figure 5(a), which show fairly consistent results.
Curve fitting was performed using the experimental results of
sample 2# with a quadratic function, as

( )e m e= + ¢T E . 562

The fitted curve shown in figure 5(b) gives the parameters in
terms of the Young’s modulus ( )=E 1.310 GPa and the
nonlinear elastic parameter ( )m¢ = -37.09 GPa . In order to
estimate the TOECs of the adhesive, a proportion method is
adopted here. The m¢ of the aluminum can be firstly calculated
with its TOECs by comparing equations (3) and (56). Then,
we calculate the ratio between experimentally obtained m¢ of
the adhesive and theoretical m¢ of the aluminum. Finally, the
TOECs of the adhesive can be determined by the calculated
ratio, with results tabulated in table 1. In addition, all the
parameters used in the FE model and theoretical model are
listed in table 2.

3.2. FE model description

A 2D FE model is established using ABAQUS, as sketched in
figure 6. Two identical piezoelectric transducers, used as
actuator and sensor respectively, are glued to an aluminum
plate. For simplicity, their corresponding bonding layers are
also assumed to have the same dimensions and material
properties. Tie constraints are applied to model the interac-
tions between individual parts, thus assuring the displacement
continuity between the pairs of tied surfaces. Plane strain
elements are attributed to all the parts with fine meshes whose
size is smaller than 10% of the shortest wavelength of interest.
In order to strike a balance between the signal complexity
resulting from the boundary reflections and the calculation
cost, the total length of the plate is set to 1000 mm and the
distance between the actuator and the sensor is 200 mm. GN
can either be included or excluded so that its influence can be
evaluated. In this model, the piezoelectric material is assumed
to have linear elastic and electric properties while the adhe-
sive and the plate can be linear or nonlinear in elasticity as
needed. The nonlinear material behavior is programmed with
the ABAQUS UMAT user subroutine according to the
Landau–Lifshitz model. As a typical example, the excitation
for both the theoretical and FE models is chosen as a 5-cycle
tone-burst signal with an amplitude of 160 V and a center
frequency of 60 kHz. In this case, only S0 and A0 mode Lamb
waves can be generated in the plate based on their dispersion
curves (not shown here).

3.3. Nonlinear feature extraction

In order to validate the theoretical model, the nonlinear fea-
tures in the FE results need to be extracted. Two possible
methods can potentially be used. The first one is the baseline
method, in which the baseline signal needs to be obtained in
advance in the absence of any nonlinear sources in the sys-
tem. The nonlinear features can then be extracted by sub-
tracting the baseline signal from the overall system response

signal. Though accurate in principle, the method is not fea-
sible to use in practice since the purely linear baseline can
hardly be obtained. The second method is referred to as the
superposition method, originally reported by Kim [37]. The
second harmonic nonlinear part is extracted by superposing
two response signals resulting from the excitations which are
opposite in phase. Through this method, the linear and odd
harmonic components are eliminated in principle. In addition,
the method allows obtaining the nonlinear response in time
domain which includes amplitude, temporal and phase
information. In the present case, an evaluation is carried out to
demonstrate its validity for the nonlinear feature extraction,
which was lacking in the original work of Kim.

As a comparison, results from FE simulation are treated
by the baseline method and the superposition method,
respectively, with results being plotted together in figure 7(a)
to validate the superposition method. Noticeable differences
between the two methods can be observed. By carrying out
the FFT to the windowed signals, it becomes clear that the
observed differences are due to the presence of the linear and
the odd harmonic responses, which is consistent with the
above analyses (shown in figure 7(b)). This suggests that the
superposition method is feasible to extract all the even har-
monic nonlinear responses. Moreover, it is able to preserve
their amplitude, temporal and phase information. These fea-
tures make the superposition method attractive for real
applications.

3.4. Demonstration of the mechanism of AN

The established theoretical model reveals that the AAN-
induced second harmonic response results from an equivalent
nonlinear normal stress exerting over the thickness-through
cross section of the bonding layer and its induced second
harmonic normal strain. To verify this theoretically predicted
mechanism, the averaged nonlinear normal strain of one
element in the bonding layer is extracted using the super-
position method, as shown in figure 8. It can be seen that the
nonlinear response mainly contains the 120 kHz wave
component, which demonstrates the second-harmonic normal
strain is indeed generated in the bonding layer. Through its
coupling with the host structure, the second-harmonic Lamb
waves is further generated in the host structure, which is
consistent with the theoretical prediction.

Furthermore, the linear, AAN-induced and SAN-induced
voltage responses, predicted by the model, are also compared
with the FE results in figure 9. The agreement between the
theoretical results and FE ones in terms of both temporal and
phase is obvious in both linear and nonlinear responses
despite some noticeable differences in the signal amplitude.
This difference may be attributed to the assumptions used in
the theoretical model like the 1D assumption, omission of the
inertial terms, ignorance of the influence of the sensor on the
propagating waves and so on. Same as the linear model [31],
the model developed here is not intended to reproduce every
single detail of the signal, especially in terms of amplitude,
but to reveal the higher-order wave generation mechanism
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and characteristics of AN. In that perspective, the agreement
between the two sets of results is deemed acceptable, able to
validate the model as well as the AN-related wave generation

mechanism of AN from the model. The temporal and phase
information will be further utilized to investigate the propa-
gating characteristics of the AN-induced wave components.

Figure 7. (a) Comparison of the nonlinear responses obtained with baseline method and superposition method and (b) the FFT results of the
nonlinear responses.

Figure 8. Nonlinear normal strain at the edge of the bonding layer at the actuator-plate interaction.

Figure 9. Comparison of the linear and nonlinear results between the theoretical and FE models: (a) linear responses with 60 kHz excitation;
(b) AAN-induced responses with 60 kHz excitation; (c) SAN-induced responses with 60 kHz excitation.
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3.5. Propagating characteristics of AN-induced wave
components

Upon obtaining the linear, AAN-induced and SAN-induced
responses, the propagating characteristics of the AN-induced
wave components can be investigated according to the tem-
poral and phase information of the responses. Owing to their
agreement with the FE results, only results from the estab-
lished model, shown in figure 10, are used in this section. As
the group velocity of the A0 mode Lamb waves at 120 kHz is
different from, and much higher than that at 60 kHz,
figure 10(a) shows that the AAN-induced wave components
propagate independently at their respective velocities, as
evidenced by the difference in their respective arrival time. In
contrast, the SAN-induced waves is captured simultaneously
with the linear wave component, as shown in figure 10(b).
The difference between the propagating characteristics of the

AAN-induced and SAN-induced wave components can pro-
vide guidance for the further identification of these two
nonlinear sources in the experiments.

3.6. Evaluation of the influence of AN

As both AN and material nonlinearity can be separately
introduced to the FE model, the influence of the AN can be
quantitatively evaluated. Four cases are considered in the FE
simulations: with only linear properties, only GN, material
nonlinearity of the plate (MNP) and AN containing both
AAN and SAN in the system. The effect of the GN is
included in the MNP and AN cases. The nonlinear responses
with different nonlinear sources are shown in figure 11. The
pure linear case is shown in figure 11(a), exhibiting no non-
linear feature in the signal as expected. When GN, MNP or
AN is introduced to the system, the nonlinear responses can

Figure 10. (a) Theoretical linear and AAN-induced responses with 60 kHz excitation; (b) theoretical linear and SAN-induced responses with
60 kHz excitation.

Figure 11. Comparison of nonlinear responses in the (a) linear case and nonlinear case with geometric nonlinearity; (b) nonlinear case with
AN and MNP when the exciting frequency is 60 kHz.
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be captured through the superposition method. Compared
with that of the MNP and the AN, the influence of the GN is
indeed negligible, as reflected by its small amplitude of
nonlinear response (figure 11(a)). In addition, the amplitude
of the nonlinear response in the case of the AN is much larger
than that of the MNP. It can be concluded from the above
analyses that, AN is a non-negligible nonlinear source in a
typical nonlinear Lamb-wave-based SHM system. Without its
proper consideration, conventional nonlinear acousto-guided
wave based SHM methods could be compromised.

4. Experimental validations

Experiments were carried out to further validate the model
mainly in terms of the frequency tuning characteristics of AN-
induced waves. In the following, the basic characteristics of
the nonlinear response in the experiment are first discussed.
After that, the frequency tuning curves from the theoretical
model and the experiments are compared to validate the
model.

4.1. Experimental setup

The experimental set-up is illustrated in figure 12. Two rec-
tangular piezoelectric transducers (30 mm*8 mm*0.3 mm)
were bonded on an aluminum plate (400 mm*400 mm*2 mm)
with the epoxy adhesive tested in section 3.1. The distance
between the two transducers was 200 mm and the thickness of
the bonding layer was approximately 30 μm which was
measured by Mitutoyo’s micrometer. The whole system
works as follow: the controller commands the NI-PXI5412
signal generation module to output a tone burst exciting
signal. The low-voltage signal then passes through the
Ciprian US-TXP-3 power amplifier and the amplified output
is applied to the piezoelectric transducer to generate Lamb
waves in the plate. Responses of Lamb waves are then
acquired by the NI-PXI5105 data acquisition module, stored
and processed by the controller.

4.2. Analysis of the nonlinear response

In the experiment, a pair of five-cycle tone burst signals at the
central frequency of 60 kHz with reversed phase were

Figure 12. Experimental set-up.

Figure 13. (a) Responses to the opposed excitations at 60 kHz; (b) response to the positive excitation at 60 kHz and extracted nonlinear
responses with the superposition method; (c) the normalized theoretical and experimental nonlinear responses.
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separately used as the excitation of Lamb waves. Setting the
amplitude of the excitation to 160 V, the responses to the pair
of excitations are shown in figure 13(a). The superposition
method was used again, allowing obtaining the corresponding
nonlinear response which is about 2% in the amplitude of the
primary wave components in amplitude, as shown in
figure 13(b). As the instruments have low nonlinearity
according to the manufacturers [38–40] and the influence of
the material nonlinearity of the plate in this specific config-
uration is weak, as evidenced by the previous FE results, it is
believed that the captured nonlinear response is mainly
associated with AN.

The normalized nonlinear response is compared with the
theoretical one which combines both AAN and SAN effects,
as illustrated in figure 13(c). The agreement between the two
sets of results demonstrates again the propagating character-
istics of the AN-induced nonlinear wave components. In light
of the propagating characterizes analyzed before, the SAN-
generated nonlinear A0 mode wave should only appear at the
time when primary A0 mode wave reaches the sensing posi-
tion. It can be seen from figure 13(b), however, that part of
the nonlinear signal is weak, thus suggesting the weak non-
linearity induced by SAN, in agreement with the theoretical
results predicted by the established model (figure 10(a) and
figure 10 (b)). The plausible explanation is that, while all the
input energy passes through the actuator-plate interface, only
part of it flows across the sensor-plate bonding layer so that
adhesive over the sensor-plate interface undergoes smaller
deformation as its counterparts at actuation does.

4.3. Frequency tuning characteristics of the nonlinear wave
components

Guided by the previous linear work [31], the nonlinear fre-
quency tuning characteristics of the system are experimentally
investigated to further validate the theoretical model. The
focus is put on the S0 mode Lamb waves since they show the
promising cumulative effect on one hand and can be easily

identified from the temporal responses as the first arrival wave
package on the other hand, both being conducive to SHM
applications. In the experiments, the excitation frequency
range was chosen from 60 to 300 kHz. Take 200 kHz exci-
tation as an example, the acquired sensor signal is first treated
using superposition method, giving nonlinear response signal
depicted in figure 14(a). The complex Morlet wavelet trans-
form is then applied to extract the amplitude of the signal.
Detailed signal processing procedure can be found in our
previous work [6]. Results in terms of the modulus of the
wavelet coefficients at 400 kHz are shown in figure 14(b),
from which we can precisely obtain the amplitude value of the
nonlinear second-harmonic S0 mode responses. The same
wavelet transform is also applied to the nonlinear responses
from the theoretical model to keep the consistency of the
analysis. This results in the normalized frequency tuning
curves of the nonlinear S0 mode Lamb waves, plotted in
figure 15. It can be seen that both sets of results show a very

Figure 14. (a) Nonlinear responses extracted by the superposition method with an excitation at 200 kHz; (b) the modulus of the wavelet
coefficients at 400 kHz.

Figure 15. Normalized frequency tuning curves of the nonlinear S0
mode Lamb waves obtained in the theoretical model and the
experiments.
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similar tendency, which again validates the frequency tuning
characteristics revealed by the theoretical model. For further
application, the frequency tuning characteristics can be
exploited and utilized for optimizing the system configuration
to minimize the adverse influence of AN in an SHM system.

5. Conclusions

In this paper, a nonlinear theoretical framework is proposed to
investigate the mechanism and characteristics of the AN and
its effect on a typical PZT-actuated and nonlinear Lamb-
wave-based structural health monitoring system. The pro-
posed model combines the entire processes of Lamb wave
generation, propagation and sensing, allowing the assessment
of the contributions of various physical components involved.
The model incorporates both linear and nonlinear contribu-
tions from various parts of the system which can be solved
through the perturbation method. The reduced linear problem
retreats to the classical shear-lag solutions as a special case.
The nonlinear problem is formulated to show the existence of
an equivalent nonlinear normal stress in the bonding layer,
originated from the nonlinear material behavior and respon-
sible for the generation of non-negligible second harmonic
responses in the captured sensor signals. The model is vali-
dated with both FE and experimental results in various
aspects which are relevant to SHM applications. The mech-
anism as well as the propagating characteristics of AN-
induced Lamb waves is confirmed through comparisons with
FE results. Meanwhile, the influences of AN and MNP are
separated, quantified and compared. The frequency tuning
characteristics of AN-induced S0 mode Lamb waves are also
validated through experiments. In particular, a superposition
method is applied to extract the nonlinear feature from the
overall system responses.

Results demonstrate the non-negligible nonlinear effects
of the bonding layers in a typical PZT-actuated SHM system.
The AAN-induced Lamb waves propagate independently of
the primary Lamb wave modes in the structure while the
SAN-induced wave components are captured simultaneously
with the primary Lamb waves. In addition, the agreement of
the frequency tuning characteristics of S0 mode nonlinear
Lamb waves from the theoretical and experimental results
proves the validity of the theoretical framework. Furthermore,
both the theoretical model and the experimental results indi-
cate that AAN acts as a much stronger nonlinear source with
appreciable influence on the nonlinear SHM system when
compared with the SAN.

The above findings suggest the necessity of considering
the adhesive as one of the non-negligible nonlinear con-
tributors in information processing and SHM system design in
general. In that regard, the proposed theoretical model will
definitely be useful in performing system analysis, design and
eventually optimization to minimize the effect of the AN in
SHM systems. As the influence of AAN is shown to be
dominant in the AN-induced nonlinear response, the main
focus of the further optimization should be on the actuator
configuration.

Acknowledgments

The authors wish to acknowledge a grant from Research
Grants Council of Hong Kong Special Administrative Region
(PolyU 152070/16E).

Appendix A. Nonlinear material behavior under
uniaxial tension and pure shearing

The Landau–Lifshitz stress–strain relation can be written in
the form of individual components as:
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During the uniaxial tensile process in the x1 direction, the
normal strains in the three directions are expected to have the
same order of magnitude. The shear stresses and strains
should be equal to zero. Meanwhile, the normal stresses in the
x2, x3 direction are also equal to zero. The stress-strain rela-
tion can be reduced to

( ) ( )

( ) ( )
( )

l e e e me e e e

e e e e e e e e

= + + + + + +

+ + + + + + +
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1 1 2 3 1 1 2 3
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1
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2
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3
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1 2 3 1 1
2
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l e e e me e e e

e e e e e e e e
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C

B B A

0 2

2 ,
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1 2 3 2 1 2 3
2

1
2

2
2

3
2

1 2 3 2 2
2

( ) ( )

( ) ( )
( )

l e e e me e e e

e e e e e e e e

= + + + + + +

+ + + + + + +

C

B B A

0 2

2 .

A.9

1 2 3 3 1 2 3
2

1
2

2
2

3
2

1 2 3 3 3
2

Putting equations (A.8) and (A.9) into equation (A.7), the
nonlinear stress–strain relationship in uniaxial tension can be
obtained:
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where E is the Young’s modulus which is related to the Lamé
constants as ( ) ( )m l m l m= + +E 3 2 .

Under pure shearing in x1–x2 plane, the shear stresses and
strains in the x1–x3 plane and x2–x3 plane are equal to zero.
Meanwhile, the normal stresses are also zero. The stress–
strain relations write

( ) ( )
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me e e e e e e e e= + + + + +T B A2 2 .
A.14
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As the shear strain is a small value under the small defor-
mation assumption, the normal strains are in the same order of
the magnitude of e12

2 from equations (A.11)–(A.13). In this
case, the normal strains become negligible compared to e .12

Any terms in equations from (A.11) to (A.13) with the order
of magnitude higher than e12

3 can be eliminated. The stress–
strain relation can be further reduced to

( ) ( ) ( )l e e e me e= + + + + +B A0 2 2 , A.151 2 3 1 12
2

( ) ( ) ( )l e e e me e= + + + + +B A0 2 2 , A.161 2 3 2 12
2

( ) ( )l e e e me e= + + + + B0 2 2 , A.171 2 3 3 12
2

( ) ( )
( )

me e e e e e e e e= + + + + +T B A2 2 .
A.18

12 12 1 2 3 12 1 12 2 12

By substituting equations (A.15)–(A.17) into equation (A.18),
the nonlinear shear–stress–strain relation can be obtained as
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Appendix B. Nonlinear shear-lag solution for wave
generation

The governing equations for the nonlinear shear-lag model
are summarized as follows in terms of the constitutive
equations from (B.1) to (B.3), geometric equations from (B.4)

to (B.6) and equilibrium equations from (B.7) to (B.10),

( )s e= E , B.1Q Qa a a

( )t g= G , B.2Q Qba ba ba

( )s e= E , B.3Q Qh h h

( )e =
u

x

d

d
, B.4Q

Q
a

a
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-u u

t
, B.5Q

Q Q
ba

a h

ba

( )e =
u

x

d

d
, B.6Q

Q
h

h

( )e t¢ - =t E 0, B.7Q Qa a a a

( )t t+ - =t
T
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d

d
0, B.8Q

Q hQba
ba

a

( )
t t

t
+

=
2

, B.9Q Q
Q

a h
ba

( )e at¢ + =t E 0. B.10Q Qh h h h

Putting equation (22) into equation (B.8) yields

( )
( ( ))

( )

( ) ( )

t t
e

t
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+

G G
G

= + G

B A

t a
x

P x

2
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sinh 2

sinh 2 . B.11

Q Q

Q

a h
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2

ba a a
2 a

h a

By using the equation resulted from equation (B.7) multiplied
by t Eh h to subtract the equation resulted from equation (B.10)
multiplied by t Ea a and substituting equation (B.11) into the
resulted equation, one gets

( ) ( )
( ) ( )

e e a t¢ - ¢ = +

+ G

t E t E t E t E

t E C xsinh 2 . B.12
Q Q Qa a h h a h h h a a h

h h a

After putting equations (B.4)–(B.6) and (B.2) into
equation (B.12), one has

( ) ( )

( )

t
a

t =
+

+ G
G t E t E

t t t E E

P

t t E
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B.13

Q Qba
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ba a h a h
h

ba a a
a

By further putting equation (B.11) into equation (B.9) and
then substituting the result into equation (B.13), the differ-
ential equation with the notions of equations (20) and (21) is
obtained as follows:

( ) ( ) ( )

t t - G = - G

´ G = G
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t t E
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h
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a

2
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The stress-free boundary conditions are given as

( )
( ) ( )

s
s

 =
 =

⎧⎨⎩
a

a

0,

0.
B.15

Q

Q

a

h

Putting equation (B.1) into equation (B.6) and then into
equation (B.9) and finally into equation (B.15) leads to the
following equation:
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Then, putting equation (B.11) into equation (B.16) yields

( ) ( ) ( )t ¢  = - G Ga P acosh 2 . B.17Qh a a

Combining equation (B.14) and (B.16) leads to the final
solution, expressed as
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Appendix C. Wave sensing of SAN-induced wave
components

The governing equations for the nonlinear wave sensing
problem are summarized as follows in terms of the con-
stitutive equations from equations (C.1) to (C.3), geometric
equations from equations (C.4) to (C.6) and equilibrium
equations from equations (C.7) to (C.10),
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Putting equation (46) into equation (C.8) gives
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Following the same process as detailed in appendix B, the
differential equation can be obtained as
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The free stresses at the boundaries of the sensor and the host
structure can be expressed as
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By substituting equations (C.1)–(C.6), (C.9) and (C.11) into
equation (C.13), the boundary conditions can be further
written as
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Combining equations (C.12) and (C.14), the differential
equation can be finally solved as
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