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Acoustics Black Hole (ABH) effect shows promising features for potential vibration control and
energy harvesting applications. The phenomenon occurs in a structure with diminishing
thickness which gradually reduces the phase velocity of flexural waves. The coupling between
the tailored ABH structure and the damping layer used to compensate for the adverse effect of

models. This paper presents a semi-analytical model to analyze an Euler-Bernoulli beamwith
embedded ABH feature and its full coupling with the damping layers coated over its surface.
By decomposing the transverse displacement field of the beam over the basis of a set of
Mexican hat wavelets, the extremalization of the Hamiltonian via Lagrange's equation yields a
set of linear equations, which can be solved for structural responses. Highly consistent with
the FEM and experimental results, numerical simulations demonstrate that the proposed
wavelet-based model is particularly suitable to characterize the ABH-induced drastic wave-
length fluctuation phenomenon. The ABH feature as well as the effect of the wedge truncation
and that of the damping layers on the vibration response of the beam is analyzed. It is shown
that the mass of the damping layers needs particular attention when their thickness is
comparable to that of the ABH wedge around the tip area. Due to its modular and energy-
based feature, the proposed framework offers a general platform allowing embodiment of
other control or energy harvesting elements into the model to guide ABH structural design for
various applications.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Developing highly-damped and light-weighted structures is of great importance for various engineering problems.
Traditional methods such as viscoelastic coating for structural damping enhancement usually require covering structural
surface over a large area, thus leading to additional weight [1]. The approach using a graded impedance interface for
attenuating structural wave reflections at the edges of plates and bar [2] tackles the abovementioned drawback of tradi-
tional methods, but is restricted in practical application due to the technical difficulties in creating suitable impedance
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interfaces. Mironov [3] first proposed the concept of Acoustics Black Hole (ABH) by reducing structure thickness according
to a power-law profile (with power no less than 2) to gradually reduce the local phase velocity of the flexural waves,
achieving zero reflection in the ideal scenario thus creating energy concentration at the tip end [3–5]. ABH effect shows
appealing features in vibration control because only a very small amount of damping materials is required at the energy
focalization region to achieve efficient damping of flexural waves [6–10]. In addition, it also shows potential in sound
radiation control [11,12] and energy harvesting due to the high energy concentration within a confined area [13]. Periodic
ABH profiles can also be included in structures to further increase the overall performance [10]. In these applications, on one
hand, the addition of vibration control or energy harvesting elements may affect the formation of the ideal ABH through
their interference with the host structure; on the other hand, topological or system optimizations may be needed to achieve
the maximum performance. To this end, a flexible model, which allows the consideration of the full coupling between the
host ABH structure and various control or energy-harvesting elements to be embedded, is of paramount importance.

Among existing models describing the ABH effect, the geometrical acoustic approach [14] was first proposed to analyse
the flexural wave propagation in tailored wedges and to calculate the reflection coefficients [6,7] on the premise of
smoothness assumption of the thickness profile [15]. The wave would never be reflected back if the thickness of wedge was
ideally reduced to zero. However, the unavoidable truncations in real fabricated wedges would significantly increase the
reflection coefficients, which can be compensated to a certain extent by covering the wedge surfaces with thin damping
layers [6,7]. An impedance method which is not limited by the hypothesis of geometrical acoustics has also been proposed
by Georgiev et al. for beam structures, which ultimately leads to the reflection matrix by Riccati equation [16,17]. These two
types of approaches only consider semi-infinite structures, even only the ABH wedge part in some cases [6,7]. This is
obviously different from the practical situation in which structures are finite in size with real boundary, and an ABH profile
is usually only part of conventional structures. All these combined, multiple reflections take place between boundaries as
well at the intersection between the ABH portion and the rest of the structure, which cannot be apprehended by the existing
models. On the other hand, existing approaches consider the effect of a thin damping layer through Ross–Unar–Kerwin
(RUK) model [1], which assumes the thickness of the damping layer is much smaller than that of the wedge. In practice,
however, the thickness of even an extremely thin damping layer would be comparable to that of the wedge tip, where ABH
effect is the largest, which suggests the importance of considering a few practical issues. The first one is the possible
increasing importance of the added mass effect, which has been considered in some previous work [7] for a uniform layer. If
one wants to further optimize the damping layer through adjusting its location and shape to achieve maximum damping
performance, the added mass and stiffness effect of the damping layer needs to be treated in a more versatile manner. Most
importantly, the unavoidable full coupling between the damping layer and the power-law profile wedge might need to be
considered to better reflect the reality. This issue becomes even more important when other control and energy harvesting
elements are added. The geometrical and material characteristics as well as the location of damping layers are shown to
greatly affect the performance of damping layers on energy dissipation [17,18]. An optimization on these parameters as well
as the thickness variation of the damping layers might be an additional way to achieve the maximum energy dissipation.

In summary, the full coupling between the damping layers and the ABH taper needs to be considered. Meanwhile, the
consideration of more realistic structures with finite size and boundary is necessary to guide the design of practical ABH
structures. To this end, a simulation model is necessary, which can truthfully characterize the ABH phenomenon while
offering the flexibility of considering additional control and energy harvesting elements for further potential applications.

In this paper, we propose a semi-analytical model to analyze an Euler–Bernoulli beam containing a portion with
embedded ABH feature and its full coupling with a thin damping layer over its surface. The beam is of finite length with
arbitrary boundary conditions. The speed of the flexural waves and the wavelength remain constant in the uniform portion
of the beam. When entering into the tapered region, however, the thickness reduction of the beam reduces the wave speed
rapidly, along with a much shortened wavelength. This non-uniform and fast-varying nature of the wavelength creates
particular challenges to the modeling. To tackle the problem, a wavelet-decomposed formulation is proposed in this paper.
This model takes the damping layer as an integral part of the system, thus conserving its full coupling with the host
structure. Meanwhile, due to its energy-based and modular nature, it allows easy extension to further include other
embedded control or energy harvesting elements for potential applications. Via Lagrange's equation, Mexican hat wavelets
are proposed to decompose the displacement field of the system, leading to the theoretical model presented in Section 2. In
Section 3, numerical results are compared with FEM for validation. The ABH features, the effects of the truncation, damping
layer and full coupling are investigated. Meanwhile, a preliminary analysis on the location and the shape of the damping
layers is carried out to illustrate the versatility of the model. The numerical results from present model are further compared
with experimental measurements to confirm the accuracy of this model in Section 4. Finally, conclusions are drawn in
Section 5.
2. Theoretical model and formulation

2.1. Modeling procedure

As shown in Fig. 1, consider an Euler–Bernoulli beam undergoing flexural vibration under a point force excitation f(t) at
xf. The response is measured at point xm. The beam is composed of a uniform portion with constant thickness hb from xb1 to
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Fig. 1. An Euler–Bernoulli beam with symmetrical ABH power-law profiles.
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xb2, an ABH portion with power-law profiled thickness, i.e. hðxÞ ¼ εxm, from x0 and xb1, and damping layers with variable
thickness hd(x) from xd1 and xd2. The whole system is assumed symmetrical with respect to the mid-line of the beam. The
non-uniform end of the beam is free and the other end is elastically supported by artificial translational and rotational
springs [19,20], the stiffness of which can be adjusted to achieve various boundary conditions. For example, if the stiffnesses
of the translational and rotational springs are both set to be extremely high compared with that of the beam, a clamped
boundary is achieved. This treatment also eliminates the geometrical boundary conditions of the system, thus facilitating
the choice of admissible functions in the following displacement-discomposed analysis based on Hamilton principle. The
damping of both the beam and the damping layer are taken into account through complex stiffness E, i.e., E¼E (1þ iη),
where η is the damping loss factor.

Based on Euler–Bernoulli beam theory, the displacement field of the beam writes

u;wf g ¼ �z
∂w
∂x

;wðx; tÞ
� �

(1)

where the vector u;wf g represents the displacement of a point either on the beam or on the damping layers, along x and z
directions, respectively. Note the above assumption assumes a perfect bonding of the damping layer with the host beam to
ensure the displacement continuity. The flexural displacement w can be expanded as

wðx; tÞ ¼
X
i

aiðtÞφiðxÞ (2)

where φiðxÞ are the assumed admissible functions and aiðtÞ the complex unknowns to be determined.
Upon constructing the Hamiltonian functional, its extremalization leads to the following Lagrange's equations

d
dt

∂L
∂_aiðtÞ

� �
� ∂L
∂aiðtÞ

¼ 0 (3)

where the Lagrangian of the system L can be expressed as

L¼ Ek�EpþW (4)

in which Ek represents the kinetic energy of the system; Ep the potential energy and W the work done by the external force.
They can be obtained by

Ek ¼
1
2

Z
ρ

∂w
∂t

� �2

dV (5)

Ep ¼
1
2

Z
EIðxÞ ∂2w

∂x2

� �2

dxþ1
2
kwðxb2; tÞ2þ

1
2
q

∂wðxb2; tÞ
∂x

� �2

(6)

W ¼ f ðtÞUwðxf ; tÞ (7)

Keeping in mind that the kinetic energy and the potential energy in Eqs. (5) and (6) are the sum of the whole system, so
the integration should be carried out for both the beam and the damping layers. Based on the energy concept, the damping
layers are modeled as part of the systemwith its intrinsic material properties (modulus Ed, density ρd) and full coupling with
the beam. Similarly, should other control or energy harvesting elements be present, their energy terms can also be easily
added into the system.

Substituting Eqs. (4)–(7) into Eq. (3) yields the following linear equations in matrix form:

MaðtÞþKaðtÞ ¼ fðtÞ (8)

where M and K are, respectively, the mass matrix (real) and stiffness matrix (complex due to the material viscoelasticity);
a(t) and f(t) are, respectively, the vector of the response aiðtÞ and the force. In a harmonic regime, the vector of the response
and the vector of the force are represented as:

aðtÞ ¼Aejωt (9)
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fðtÞ ¼ Fejωt (10)

Then Eq. (8) can be rewritten as,

½K�ω2M�A¼ F (11)

The forced vibration response can be obtained by solving Eq. (11) directly. For free vibration, setting the force vector in
Eq. (11) to zero leads to the following eigenvalue equation:

M�1KA¼ω2A (12)

which gives the natural frequencies and the corresponding mode shapes. Since the system is complex, recalling the express
of the stiffness, the eigenvalues take complex form as

ω2 ¼ω2
nð1þ iηÞ (13)

where ωn is the natural frequency and η the corresponding modal loss factor of the system. The latter will be particularly
useful to characterize the energy absorption of the damping layers as a result of ABH effect.

2.2. Solution using Mexican hat wavelet expansion

In the modelling, the key challenge is to find suitable admissible functions in Eq. (2) to approximate the present dis-
placement field. Although power series (polynomial functions) have been used for non-uniform beams [21,22] or plates
[23,24] with linear or nonlinear thickness variation, none of them are comparable to the degree of thickness variation
required by ABH profile. In fact, the present non-uniform beam follows power-law profile with thickness quickly dimin-
ishing to zero, especially when the power is larger than 2. The resultant rapidly varying wavelength and corresponding
increase in vibration amplitude, particularly near the ABH wedge tip, create particular difficulties to the choice of admissible
functions. In fact, using polynomial functions to approximate the displacement as a preliminary attempt in our calculation
shows strong singularity evenwith a few expansion terms. The Mexican hat wavelet (MHW) is hereafter demonstrated to be
particularly suitable to describe the tightness of the wave packet near the ABH wedge end.

The MHW is the second derivative of the Gaussian distribution function e� x2
2 , which can be defined as following after

normalization [25,26]

φðxÞ ¼ 2ffiffiffi
3

p π� 1
4 1�x2
� �

e� x2
2 (14)

MHW drops exponentially to zero along x, which can be treated as approximately localized in [�5, 5]. After the wavelet
transform, the mother wavelet of MHW in Eq. (14) can be expanded into a set of MHW functions

φj;kðxÞ ¼
2ffiffiffi
3

p π� 1
42j=2 1�ð2jx�kÞ2

h i
e�ð2j x� kÞ2

2 (15)

where j is the scaling parameter (integer) to stretch or squeeze the MHW and k the translation parameter (integer) to move
the MHW along x axis. MHW functions with the scaling parameter j¼0 and different translation parameters k are shown in
Fig. 2. It shows that MHW is highly localized and fairly flexible by scaling and translation, which enables MHW to better
cope with the local details of the ABH part. Moreover, the smoothness of MHW is also particularly desirable in the
approximation. The abovementioned properties make MHW suitable as the basis functions demonstrated in the latter
sections.
Fig. 2. MHW functions with the scaling parameter j¼0 and different translation parameters k.
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Choosing MHW as basis function, Eqs. (2) and (3) can then be represented as

wðx; tÞ ¼
Xm
j ¼ 0

X
k

aj;kðtÞφj;kðxÞ (16)

d
dt

∂L
∂ _aj;kðtÞ

� �
� ∂L
∂aj;kðtÞ

¼ 0 (17)

Another key issue is to choose the appropriate range of translation parameter k when the scaling parameter j is defined.
Note that all MHW functions in the beam domain [x0, xb2] should be included into the displacement expansion in Eq. (16).
Meanwhile, to avoid possible singularity of the matrix K and M, those MHW functions resulting in zero

R xb2
x0

φj;kðxÞdx value
should be eliminated. When calculating

R xb2
x0

φj;kðxÞdx, recall that MHW is treated as approximately localized in [�5, 5]. In
addition, to avoid possible illness of these matrices, the translation parameter k is determined within the following range:

k¼ ½�4þm� jþpðx02jÞ; gðxb22jÞþ4�mþ j�; ð j¼ 0;1;2; :::;m; mr5Þ (18)

where p(*) rounds the elements of * to the nearest integers towards zero; g(*) rounds the elements of * to the nearest
integers towards infinity. As shown in Fig. 2, setting x0¼0, xb2¼5 cm,m¼0, and j¼0, k should be within the range [�4, 9] to
ensure that all MHW functions in the beam domain [0, 5] are included. Meanwhile each MHW function with translation k
would not result in zero

R xb2
x0

φj;kðxÞdx value (namely the value of MHW function (solid line) in [0, 5] should not always equal
to zero). Eq. (18) shows that under the same scaling parameter j, the range of translation parameter k is larger with the
increasing beam length, i.e. (xb2–x0). For a given beam length, however, both j and k can be adjusted to ensure that sufficient
terms be used in the expansion to guaranty the calculation accuracy. Expressions to calculate various terms in Eq. (11) by
using MHW functions are given in Appendix A.
3. Numerical results and discussion

As a numerical example, the geometrical and material parameters of the beam and the damping layers are shown in
Table 1. The beam is clamped-free. A harmonic driving force of 1 N is applied at xf¼8 cm. The first resonant frequency of a
clamped-free uniform beamwith a length of 10 cm and the same material properties is used as the reference frequency [27],

f ref ¼ ðβlÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
EbI

ρbAl
4

s
¼ 209:5 Hz; ð βl¼ 1:875104Þ (19)

3.1. Validation

We first verify the accuracy of the proposed model when the ABH beam portion is perfectly fabricated without trun-
cation, namely x0¼0. Table 2 shows the comparison of first seven resonant frequencies between the FEM results and the
results using the present approach. It can be seen that reasonable accuracy is obtained for the lower-order modes up to the
fifth or sixth one. The mode shapes trend is also found to be in accordance with that from the FEM results (not shown here).
However, when the thickness of the beam tends to zero, the local phase velocity of the flexural waves also approaches to
zero and the vibration amplitude becomes infinite theoretically, which can be hardly simulated by either FEM or the present
numerical calculation. Therefore, the resonant frequencies and mode shapes cannot exactly match with each other when no
truncation exists.

The accuracy of the present approach increases significantly with the appearance of a truncation, even very small. As
shown in Table 3 and Fig. 3, the present approach guarantees extremely high accuracy for the first thirty-seven modes in
terms of both resonant frequencies (with an error less than 0.5 percent as compared with FEM) and mode shapes when a
small truncation (x0¼1 cm corresponding to a thickness of the wedge tip of 0.01 cm) is introduced. Fig. 3 shows that ABH
Table 1
Geometrical and material parameters used in the numerical simulation.

Geometrical parameters Material parameters

Beam
ε¼0.005 Eb¼210 GPa
m¼2 ρb¼7800 kg/m3

hb¼0.125 cm ηb¼0.005
Damping layers

x0¼1 cm Ed¼5 GPa
xb1¼5 cm ρd¼950 kg/m3

xb2¼10 cm ηd¼0.3



Table 2
Resonant frequency comparison between FEM and present approach results for the beam without truncation x0¼0.

Resonant frequency (Hz) FEM Present approach Error (%)

ω1 427.74 427.82 0.017
ω2 964.47 960.28 �0.434
ω3 1162.64 1154.94 �0.662
ω4 1465.12 1470.33 0.355
ω5 1851.49 1896.61 2.437
ω6 2306.23 2423.38 5.080
ω7 2831.84 3071.44 8.461

Table 3
Resonant frequency comparison between FEM and present approach for the beam with truncation x0¼1 cm.

Resonant frequency (Hz) FEM Present approach Error (%)

ω1 432.91 432.77 �0.033
ω2 1669.52 1669.44 �0.005
ω3 2972.79 2972.68 �0.004
ω4 5071.01 5071.64 0.012
ω5 8000.11 8000.41 0.004
ω6 11338.33 11,338.29 0.000
ω7 15564.66 15,563.33 �0.009
ω8 20445.83 20,445.20 �0.003
… … … …
ω20 132394.69 132,388.11 �0.005
ω21 146265.88 146,258.45 �0.005
… … … …
ω33 365983.72 367,427.36 0.394
ω34 388845.60 390,636.11 0.460
ω35 412250.75 413,190.71 0.228
ω36 436519.49 436,889.19 0.085
ω37 461370.85 463,679.23 0.500
ω38 486902.30 493,317.59 1.318
ω39 513248.96 523,609.75 2.019
ω40 540113.58 546,477.55 1.178
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takes more significant effect at higher resonant frequencies and the wavelength decreases proportionally to the local phase
velocity of the flexural waves in the ABH wedge. Generally speaking, the above results demonstrate that the proposed model
together with the use of MHW decomposition can effectively characterize the wavelength fluctuation along the beam as a
result of ABH effect and guarantee high accuracy. In addition, treating MHW as approximately localized within a specified
region [�5, 5] is also reasonable and will not cause sensible errors in the calculations.

3.2. ABH feature and effects of the truncation and damping layers

Numerical examples are given in the following sections to demonstrate the validity of the model in producing typical
ABH phenomenon and its flexibility and versatility to handle various system configurations.

To show the ABH feature and the effect of the truncation on the response, Fig. 4(a) first presents the cross point mobility,
wðxm ¼ 6 cmÞ=f ðxf Þ, for ABH beamwith or without truncation. The case of a uniform beamwith the same length as the ABH
beam without truncation is used as reference. It can be seen that the response of the beam with ABH feature is slightly
reduced at high frequencies. To further show the overall vibration level, Fig. 4(b) and (c) show the mean quadratic velocity of
the uniform portion and the energy ratio Γ between the ABH portion and the uniform portion, respectively. The energy ratio

is defined as Γ ¼ 10 log oV2 4ABH

oV2 4Unif
, while the energy ratio of the uniform beam is calculated within the same region corre-

sponding to the ABH beam without truncation. As a result of ABH effect, the vibration level of the uniform portion of the
ABH beam is slightly reduced at high frequencies (Fig. 4(b)), in agreement with the cross point mobility curves, and the
vibration energy shifts to the ABH part as shown in Fig. 4(c). Not surprisingly, the appearance of the truncation reduces this
energy shift thus weakening the ABH effect.

Damping layers are suggested to compensate for the adverse effect induced by the truncation [6,7]. Fig. 5 shows the
sufficient increase of the system damping loss factors when damping layers with relatively thin thickness hd¼0.005 cm are
applied over the whole surface of the ABH part of the beam. As a reference, the damping layers with same thickness and
length are also applied over a uniform beam. Because of the ABH effect at higher frequencies, the concentrating energy on
the ABH part enables the damping layers to take much better effect compared with that of the uniform beam, and thus
greatly increase the system damping loss factors by as large as 100 percent.
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Fig. 6 compares the system damping loss factors η when damping layers with different thicknesses are used to cover the
whole surface of the ABH part. At the first resonant frequency where the ABH part does not dominate the vibration mode,
the damping layers show little effect on the system damping loss factor. With the increasing input frequency, the ABH part
starts to dominate the vibration mode; therefore, thicker damping layers create larger system damping as expected.
Typically, the system damping loss factor with damping layers of thickness hd¼0.01 cm (double of the thickness of the ABH
tip) is nearly twice as large as that without damping layers (hd¼0). The vibration level of the uniform part and energy ratio
are also shown in Fig. 7. Consistent with Fig. 6, the damping layers with thicker thickness reduce the mean quadratic
velocity of the uniform part, the maximum of which can be reduced as much as 11.3 dB at the seventh resonant frequency.
The damping layers, on the other hand, increase the energy in the ABH part especially at high frequencies as evidenced by
an increase in the energy ratio Γ, which demonstrates the compensation effect induced by the surface damping layers.

3.3. Location and thickness variation of damping layers

As demonstrated above, damping layers are effective to increase the system damping at high frequencies and thus
compensate to a certain extent the adverse effect of the inevitable truncation. To obtain the maximum damping, the dis-
tribution of the damping layers could be adjusted. As an example, the system damping loss factors for different distributions
of damping layers with constant mass are compared in Fig. 8. It can be seen that applying damping layers near the ABH tip
rather than the whole ABH part significantly increases the system damping loss factor at high frequencies. The maximum
loss factor is obtained when the damping layers with thickness of hd¼0.01 cm are deployed in the area from 1 cm to 2 cm,
which is close to the ABH tip. Since this small area corresponds to the highest energy density, unit mass of damping layers
can consume largest energy and increase the system damping loss factor to maximum content.

Fig. 9 further reveals the effect of the thickness variation of damping layers with constant mass on the system damping
loss factor. The damping treatment is applied in the area from 1 cm to 2 cm to gain the maximum damping effect as
suggested in Fig. 8. The case with uniform damping layer thickness of hd¼0.005 cm is used as reference. It can be seen that
the effect of the shape of the damping layer is not quite obvious for lower-order modes. However, with the increasing ABH
effect at higher frequencies, the shape of the damping layer starts to play an important role in determining the overall
damping of the system. Roughly speaking, the wave packets shift closer and tighter near the ABH tip with higher energy
density when frequency increases as shown in Fig. 3. Therefore, the optimal damping application area also tends to shift
towards the ABH tip. Generally, the proposed model provides a tool to eventually optimize the thickness and distribution of
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Fig. 7. Comparison of (a) the mean quadratic velocity of the uniform beam portion, and (b) the ratio of mean quadratic velocity of the ABH portion to the
uniform beam portion for different thicknesses of damping layers when xd¼1–5 cm.

Fig. 8. Comparison of the system damping loss factors for different thicknesses and distributions of damping layers with constant mass. The length unit in
the figure is cm.
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the damping layers to achieve the most effective damping effect for a given application, for both free and forced vibration
problems.

3.4. Effects of the full coupling

To evaluate the importance of the full coupling between the beam and the damping layers, Figs. 10 and 11 compare the
system response with/without considering the mass and the stiffness of the damping layers, respectively. From Fig. 10(a),
one can see that when the damping layer is uniformly applied over the whole ABH region with a thin thickness (only a half
of the thickness of the ABH tip), the effect of the added mass by the damping layers is relatively small and negligible. When a
thicker layer (double of the thickness of the ABH tip) only covers the tip region, however, the higher-order resonant fre-
quencies are shifted to lower frequencies (the maximum reduction can be as large as 298 Hz in the present case) with the
consideration of the mass of the damping layer, suggesting that, in this case, the added mass on the ABH tip area can be
significant. This is understandable since ABH tip area dominates the vibration mode at these high frequencies as shown in
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Fig. 3. However, both cases in Fig. 10 show the negligible effect of the damping layer mass on the overall vibration level of
the structure. When considering the stiffness of the damping layers, for the same reason, the high order resonant peaks shift
to high frequencies, more noticeably in Fig. 11(b). Meanwhile, a reduction in the mean quadratic velocity can also be
observed in both cases, more noticeable for the tickers layer in Fig. 11(b).

3.5. Effects of damping loss factor of damping layers

When the damping loss factor of damping layers in the above numerical calculation is 0.3, the maximum reduced mean
quadratic velocities of the uniform beam part can be as large as 11.3 dB compared with the bare beam without damping
layers as demonstrated in Fig. 7. In practice, the damping loss factor of damping layers can be even larger for some polymers,
especially when the material operates in its glass transition region [28]. Fig. 12 presents the reduced amplitude of mean
quadratic velocities of the uniform beam part compared with bare beam for three typical damping loss factors for the first
six resonant frequencies. The larger the damping loss factor is, the more the vibration level will be reduced as expected. The
reduced mean quadratic velocities of the uniform part for larger damping loss factors at higher resonant frequencies can be
appreciable (up to 14 dB in the best case).Therefore, significant damping effect can be achieved by making use of the ABH
feature by properly choosing parameters and distribution of the damping layers.
Fig. 10. The effect of the mass of damping layers on the mean quadratic velocity of the damping layers covered region for (a) thinner thickness and
(b) thinker thickness compared with the thickness of beam tip.

Fig. 11. The effect of the stiffness of damping layers on the mean quadratic velocity of the damping layers covered region for (a) thinner thickness and
(b) thinker thickness compared with the thickness of beam tip.

Fig. 12. Mean quadratic velocity reduction using damping layers with different damping loss factors (hd¼0.01 cm, xd¼1–5 cm).
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4. Experimental validation

Experiments were conducted to further validate the accuracy of the present semi-analytical model. The test sample is
illustrated in Fig. 13. The beam is made of steel with a mass density of 7794 kg/m3 and Young modulus of 200 Gpa. The ABH
portion parameters of the beam are: ε¼0.00125 cm�1 and m¼2. Other parameters are: x0¼4 cm, xb1¼16 cm, xb2¼32 cm.
The whole beam has a uniform width of 1 cm. The beam was suspended by two thin strings to achieve free boundary
conditions, thus eliminating the difficulty in realizing a clamped boundary due to the large stiffness of the beam. The beam
was excited using an electromagnetic shaker at xf¼26 cm, with the force measured through a force transducer (B&K 8200)
and amplified by a charge amplifier (B&K 2635). A Polytec scanning laser vibrometer (PSV) was used to generate a periodic
chirp signal with frequency from 0 Hz to 12 kHz to feed the shaker via a power amplifier (B&K 2706) and to scan the whole
beam for response measurement.

The predicted cross point mobilities ( _wðxmÞ=f ðxf Þ) by the present model are compared with the experimental results in
Fig. 14. As can be seen, the predicted results agree well with experimental ones, in terms of both amplitude and peak
locations, especially for the frequency range covered by the first eight natural modes with an error typically less than
2 percent in terms of natural frequencies. The increasing error in higher frequencies is likely due to the neglected shear and
torsional effect in the model, caused by the deviation of the excited force from the enteral axis. Fig. 15 shows the predicted
mean quadratic velocity of the uniform part and that of the ABH part respectively against the experimental results. Again,
both sets of results are in good agreement, demonstrating the remarkable accuracy of the proposed model. The ratios of
mean quadratic velocity of the ABH portion to the uniform beam portion were also found to be in very good agreement (not
shown here), confirming the energy concentration phenomenon revealed by the simulation model.
5. Conclusions

In this paper, a semi-analytical model is established to analyze an Euler–Bernoulli beamwith embedded ABH feature and
its full coupling with the damping layers coated over its surface. By using Mexican hat wavelet functions to approximate the
flexural displacement, the governing equations are obtained based on Lagrange's equation. Highly consistent with experi-
mental results as well as the FEM results in terms of the resonant frequencies and mode shapes, especially when a
Shaker

Force transducer

Scanning point Supporting strings

Fig. 13. Experimental set-up.

Fig. 14. Comparison of the predicted cross point mobility, wðxm ¼ 5 cmÞ=f ðxf Þ, against experimental measurements.



Fig. 15. Comparison of the prediction mean quadratic velocity of (a) the uniform beam portion, and (b) the ABH portion against experimental
measurements.
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truncation exists, numerical results demonstrate the validity and the suitability of the proposed wavelet-based model to
characterize the wavelength fluctuation along the beam as a result of ABH effect.

The ABH effect enables a high energy density concentration in the vicinity of the ABH wedge tip, which is conducive to
energy control and utilization within a confined area. However the truncation will weaken the ABH effect. Covering the ABH
part with damping layers can compensate for the adverse effect of truncation and thus reduce the mean quadratic velocity
of the uniform portion of the beam at high frequencies. Damping layers are preferable to be applied near the wedge tip as
frequency increases. For a given problem, optimization through the proposed model is possible to find the exact damping
layer configuration to achieve the maximum damping effect. Numerical results also indicate that the stiffness of the
damping layers plays a more important role than the mass does, which should be apprehended in the model; while the
effect of the added mass also needs particular attention when the thickness of damping layers is considerable to that of the
ABH wedge around the tip area. As a general rule, the full coupling between the add-on elements such as the damping
layers and the host structure is important to consider, which shows the importance of a fully coupled model.

As a final remark, the proposed model provides an efficient way to study the ABH feature and the effect of damping
layers using a more realistic ABH-featured beam. The model is based on global expansion approach instead of meshing used
in FEM, thus facilitating more flexible structural analyses and eventually system optimization at a later stage. Furthermore,
due to its modular and energy-based nature, the proposed framework offers a general platform for further including other
control or energy harvesting elements into the model to guide the design of ABH structures for various applications.
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Appendix A. Formulas for M, K, and F

Mjiks ¼Mbeam_Uni
jiks þMbeam_ABH

jiks þMdamp
jiks

ð j; i¼ 0;1;2; :::;m; k¼ �4þm� jþpðx02jÞ: gðxb22jÞþ4�mþ j; s¼ �4þm� iþpðx02iÞ: gðxb22iÞþ4�mþ iÞ

Mbeam_Uni
jiks ¼ 2ρbhb

Z xb2

xb1
φj;kðxÞφi;sðxÞdx

Mbeam_ABH
jiks ¼ 2ϵρb

Z xb1

x0
φj;kðxÞφi;sðxÞxmdx

Mdamp
jiks ¼ 2ρd

Z xd2

xd1
φj;kðxÞφi;sðxÞhdðxÞdx

Kjiks ¼Kbeam_Uni
jiks þKbeam_ABH

jiks þKdamp
jiks þKedge

jiks

ð j; i¼ 0;1;2; :::;m; k¼ �4þm� jþpðx02jÞ: gðxb22jÞþ4�mþ j; s¼ �4þm� iþpðx02iÞ: gðxb22iÞþ4�mþ iÞ
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Kbeam_Uni
jiks ¼ 2Ebhb

3

3

Z xb2

xb1

∂2φj;kðxÞ
∂x2

∂2φi;sðxÞ
∂x2

dx

Kbeam_ABH
jiks ¼ 2Ebϵ3

3

Z xb1

x0

∂2φj;kðxÞ
∂x2

∂2φi;sðxÞ
∂x2

x3mdx

Kdamp
jiks ¼ 2Ed

3

Z xd2

xd1

∂2φj;kðxÞ
∂x2

∂2φi;sðxÞ
∂x2

3ϵ2x2mhdðxÞþ3ϵxmhd
2ðxÞþhd

3ðxÞ
	 


dx

Kedge
jiks ¼ kφj;kðxb2Þφi;sðxb2Þþq

∂φj;kðxÞ
∂x

���
x ¼ xb2

∂φi;sðxÞ
∂x

���
x ¼ xb2

Fj;k ¼ Fφj;kðxf Þ
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