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This work is concerned with the suppression of a bending wave in a beam using resonators.

Particular focus is put on the separation length between resonators. It is demonstrated that, for a

beam with identical resonators attached at equal intervals, the bending wave transmission efficiency

varies with respect to the separation length. The phenomena and the underlying physics are investi-

gated by resorting to a simple beam model having two resonators resting on it. The two resonators

are coupled over the segment through various bending wave components, comprising both

propagating waves and evanescent waves, generated at the resonator locations where the beam

encounters impedance discontinuities. The separation length, specifying the phase change of the

propagating waves and the amplitude decay of the evanescent waves travelling from one resonator

to the other, is thereby the parameter determining the extent to which the resonators would be

coupled and the degree of the power that is transmitted. Results show, qualitatively, the difference

in the working mechanism of the resonators in different separation length regions, with criteria

being defined to distinguish those regions. Particularly, in the intermediate separation region, the

evanescent waves are shown to play an important role in the coupling and are responsible for trans-

mitting power, comparable with that transmitted by propagating waves, to the far field.
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I. INTRODUCTION

In the work of Liu et al.,1 a conceptual prototype of

localized resonant material was fabricated to create a band

gap at the wavelength below the regime associated with the

periodicity of the structure. Since then, a massive surge has

been seen in the research on acoustic metamaterial, which

grow along with the advancement in material design and

manufacturing techniques, allowing for micro local resonant

elements to be integrated to the host structures. Local reso-

nators present in the structure generate a band gap around

the frequency away from that associated with the familiar

Bragg band gap, opening up the possibility of customizing a

material to obtain properties that cannot be found in nature

materials. An extensive review of the past work can be found

in Hussein et al.2

Design of lightweight soundproof structures is of great

interest for many engineering applications. The controversy

is that the high stiffness-to-mass ratio of lightweight struc-

tures usually results in poor acoustic insertion loss in the

frequency range controlled by the mass law. A possible solu-

tion to alleviate the problem is to embody local resonators

into the structure. The creation of a vibrational stop band

at low frequencies was discussed by Claeys et al.3 As a com-

mon practice, the vibrational property of a structure, with

attached local resonators, is characterized by the dispersion

curve, which, in view of the periodic distribution of local

resonators, could be resolved by confining the analysis into a

unit element. Any suitable technique for modeling periodic

structures could be employed for this purpose. For example,

the dynamic stiffness matrix of a structure segment extracted

from the finite element (FE) modeling could be post-

processed, with periodic conditions and proper force equilib-

rium relations imposed on the boundaries of the segment,

to obtain the dispersion curve of the whole periodic

structure.4–7

The key feature of an acoustic metamaterial is the exis-

tence of the band gap brought about by the local resonance

mechanism, which has long been utilized for vibration sup-

pressions.8–13 The effect of a one degree of freedom (DoF)

resonator (dynamic vibration absorber) on the vibration of a

beam was examined in the work of Brennan,14 in which the

tuning of the resonator for maximum wave attenuation was

investigated. A mathematical expression was also given to

approximately describe the relationship between the resona-

tor mass and the optimal tuning frequency. The work was

then extended to a two DoF case,15 with emphasis on the

effects of different resonator configurations. Upon encoun-

tering a resonator, a travelling bending wave in the beam is

scattered, generating propagating waves and evanescent

waves. The former is capable of reaching the far field while

the latter is confined within the near field. The influences of

these two wave components were investigated by El-Khatib

et al. 16,17 in two scenarios, where a resonator was placed

either in the near or far fields of a point excitation, and the

a)Present address: Department of Mechanical and Aerospace Engineering,

The Hong Kong University of Science and Technology, Hong Kong

Special Administrative Region.
b)Electronic mail: li.cheng@polyu.edu.hk

J. Acoust. Soc. Am. 139 (5), May 2016 VC 2016 Acoustical Society of America 23610001-4966/2016/139(5)/2361/11/$30.00

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  143.89.188.5 On: Fri, 06 May 2016 11:53:35

http://dx.doi.org/10.1121/1.4947108
mailto:li.cheng@polyu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4947108&domain=pdf&date_stamp=2016-05-01


tuning frequency for maximum transmission reduction was

sought in different scenarios. It is relevant to note that the

above four papers all consider one single resonator. The

reduction of bending wave motion in a beam by multiple res-

onators was reported by Thompson,18 where the resonators

were approximated as a continuous resonant medium

attached to the beam. A more explicit investigation was car-

ried out by Gao et al.,19 in which, each resonator was mod-

eled as an impedance discontinuity at the point of

attachment. The effects of various parameters (such as reso-

nator mass and separation lengths between resonators) on

the minimum transmission efficiency, the effective band-

width and the amount of the reduction over the effective

bandwidth were examined in a quantitative manner. The

work allows the observation of some interesting phenomena.

For example, the wave suppression effect is less sensitive to

the number of resonators when the separation lengths are

small as opposed to the case with larger separation length.

The occurrence of those phenomena, however, is not

explained. The lack of the physical understanding of and the

explanation to those issues motivates the present work. In

particular, our interest is to explore how resonators with dif-

ferent separation lengths interact with each other from the

wave propagation viewpoint, as well as the role played by

the propagating and evanescent waves in the process of

power transmission. It is intuitive to surmise that the interac-

tion among resonators would depend greatly on the separa-

tion length. For sparse configuration with larger separation,

the propagating waves should dominate the interaction;

whilst for shorter length, evanescent waves could be a signif-

icant player. In particular, a single evanescent wave, incapa-

ble of transmitting energy to the far field, might be involved

in power transmission process through the interaction with

another evanescent wave travelling in the opposite direc-

tion.16,17 This suggests that, in the presence of multiple reso-

nators, the evanescent waves would play different roles in

determining the effect of the resonators for different separa-

tion lengths. Another point of motivation is the inclination to

understand the interaction of local resonators in acoustic

metamaterial, which is somehow overlooked by the global

dispersion curve derived from the local structural unit based

on structural periodicity. A well-understood working princi-

ple of the resonators would benefit the structural design for

various vibration control applications.

The paper is organized as follows: Sec. II establishes a

general model for the bending wave propagation in a beam

with an attached resonator array. Section III illustrates the con-

trol mechanism of the bending wave with one resonator. The

cases for two resonators at different intervals are investigated

in Sec. IV. The underlying physics are revealed and explained.

Section V studies the role of evanescent waves in the power

transmission process. Conclusions are then drawn in Sec. VI.

II. MODEL DEVELOPMENT

A. Wave propagation in a beam with one resonator

The structure under investigation is a Euler–Bernoulli

beam of infinite length, shown in Fig. 1. Ignoring the effects

of in-plane shear stiffness and rotary inertia, the general

wave motion in terms of transverse flexural displacement, w,

is expressed as20

wðx; tÞ ¼ ðAe�jkbx þ Bejkbx þ Ce�kbx þ DekbxÞejxt: (1)

It is clearly shown in Eq. (1), that the wave motion in

the beam consists of four wave components: the first two are

the propagating waves with a phase speed cb¼x/kb, where

kb ¼ ðx2m=EIÞ1=4
is the bending wavenumber, in which m

and EI are, respectively, the mass per unit length and the

bending stiffness of the beam; whilst the last two are the

evanescent waves, the amplitudes of which decay exponen-

tially with distance x. Evanescent waves contribute little to

the far field vibrational displacement, whilst in the near field,

their influence may be substantial. In Eq. (1), the sign in

front of the wavenumber indicates the positive-going (�)

and negative-going (þ) waves, respectively.

Following the notation in Fig. 1, Eq. (1) can be rewritten

for the region x< 0 as

wðxÞ ¼ aþe�jkbx þ a�e�jkbx þ aþN e�kbx þ a�N e�kbx; (2)

and for x> 0 as

wðxÞ ¼ bþe�jkbx þ bþN e�kbx: (3)

The time dependence is well understood and will be

omitted hereafter for simplicity. Across the attach point of

the resonator x¼ 0, the transverse displacement, i.e., w(0), is

continuous, giving

aþ þ aþN þ a� þ a�N ¼ bþ þ bþN : (4)

Similarly, the continuity of the angular displacement

yields

�jaþ � aþN þ ja� þ a�N ¼ �jbþ � bþN : (5)

Shear force equilibrium is also satisfied at the point,

thus

EIk3
bðjaþ � aþN � ja� þ a�N � jbþ þ bþN Þ � keqwð0Þ ¼ 0;

(6)

FIG. 1. (Color online) A diagram showing the wave components for a beam

with a single resonator.
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where keq is the equivalent dynamic stiffness of the resona-

tor, expressed by18

keq ¼
x2ka 1þ jgð Þ

x2 � x2
a 1þ jgð Þ ; (7)

in which xa¼ (ka/ma)1/2 is the natural frequency of the reso-

nator itself, with ka, ma, and g being, respectively, its stiff-

ness, mass, and loss factor.

For a resonator with single DoF, which only exerts

transverse force upon the beam, the bending moment equi-

librium at x¼ 0 is expressed as

�aþ þ aþN � a� þ a�N þ jbþ � bþN ¼ 0: (8)

The coefficients of the different wave components can

be conveniently rearranged in vectors as

aþ ¼ aþ

aþN

� �
; a� ¼ a�

a�N

� �
; bþ ¼ bþ

bþN

� �
: (9)

The relationships among these coefficients are estab-

lished as

bþ ¼ Taþ; a� ¼ Raþ; (10)

in which, the 2� 2 T and R matrices are the transmission

and reflection matrices describing the contribution of the

propagating and the evanescent wave components of the

incident wave in constructing the corresponding wave com-

ponents in the transmitted and reflected waves.

With the notation defined in Eq. (9), Eqs. (4)–(6) and

(8) can be written in a matrix form as

1 1 1 1

�j �1 j 1

j �1 �j 1

�1 1 �1 1

2
664

3
775 aþ

a�

� �
¼

1 1

�j �1

jþ e �1þ e
�1 1

2
664

3
775bþ;

(11)

where

e ¼ keq

EIk3
b

¼ w 1þ jgð Þ
X2 � 1� jg

; (12)

with X ¼ x=xa being the non-dimensional frequency, and w
the non-dimensional mass ratio defined as

w ¼ 2pma

km
; (13)

where k is the wavelength. T and R matrices can then be

sought by using the relations defined in Eq. (10).

Given a transverse excitation force on the beam at a dis-

tance l to the left of the resonator, the coefficients of the

positive-going wave components are21

bþ0 ¼
bþ0
bþN0

� �
¼ � F

4EIk3
b

i
1

� �
: (14)

For the incident wave at x¼ 0, after travelling over a

distance l from the point where the force is imposed,

aþ ¼ Zbþ0 ; (15)

where

Z ¼ e�ikbl 0

0 e�kbl

� �
: (16)

Z is the transfer matrix characterizing the phase change

of the propagating wave component and the amplitude decay

of the evanescent wave component over the distance l. By

substituting Eqs. (14)–(16) into the determined T and R, the

wave motion in the beam can be known explicitly.

B. Wave propagation in a beam with multiple
resonators

For a beam with multiple resonators, the transmission

and reflection matrices could be obtained in a recursive man-

ner. Considering the configuration shown in Fig. 2, a beam

with an array of N resonators is excited by a transverse force

at x¼�l0. At the point where the Nth resonator is located,

the incident, reflected and transmitted waves are related by

a�N ¼ RNaþN ; bþN ¼ TNaþN ; (17)

and those at the point where the (N�1)th resonator is located

are related by

a�N�1 ¼ TN�1b�N�1 þ RN�1aþN�1;

bþN�1 ¼ TN�1aþN�1 þ RN�1b�N�1: (18)

The transfer relations for the waves between the

(N�1)th and the Nth resonators are

aþN ¼ ZN�1bþN�1; b�N�1 ¼ ZN�1a�N ; (19)

where

FIG. 2. (Color online) A diagram

showing a beam with multiple

resonators.
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ZN�1 ¼
e�ikblN�1 0

0 e�kblN�1

" #
(20)

is the matrix evaluating the transfer relation for the waves trav-

elling over distance lN�1 between the (N�1)th and the Nth res-

onators. The positive-going wave incident at the (N�1)th

resonator is related to the reflected wave at the (N�1)th reso-

nator and the wave transmitted over the Nth resonator by

a�N�1 ¼ RN�1N�1aþN�1; bþN ¼ TN�1NaþN�1: (21)

Combining Eqs. (17)–(21) yields

TN�1N ¼ TNðI�ZN�1RN�1ZN�1RNÞ�1ZN�1TN�1; (22)

and

RN�1N�1 ¼RN�1þTN�1ðI�ZN�1RNZN�1RNÞ�1

�ZN�1RNZN�1TN�1: (23)

In the above equations, the single subscript of T and R
denotes the transmission and reflection coefficients for indi-

vidual resonator, while the double indexed ones represent

those for the resonators consisting of the (N-1)th and the Nth

resonators.

The obtained TN-1N and RN-1N-1 can be used to obtain TN

and RN in a recursive way, respectively, in Eqs. (22) and

(23), to get the transmission and reflection matrices of the

resonator group comprising the (N-2)th, (N-1)th, and Nth

resonators (derivation is made by changing the subscript N-1
to N-2). The transmission and reflection coefficients of the

entire resonator array are then obtained by repeating the

above process. This leads to the coefficients of the wave

components of the transmitted wave as

bþN ¼ T1Naþ1 ¼ T1NZ0bþ0 : (24)

Equation (24) can be substituted into Eq. (17) to get the

wave components incident and reflected at the Nth resonator,

i.e., aþN and a�N , and those at the N-1th resonator can be

derived from Eqs. (18) and (19)

aþN�1 ¼ T�1
N�1ðZ�1

N�1aþN � RN�1ZN�1a�N Þ; (25)

and

a�N�1 ¼ RN�1aþN�1 þ TN�1ZN�1a�N : (26)

The coefficients of the incident and reflected wave com-

ponents at any resonator location can therefore be obtained in

a recursive manner. To quantify the energy transmission pro-

cess, a transmission efficiency, which quantifies the power

transmitted through N resonators to the far field, is defined as

s ¼ 10 log10

bþN
aþ0

����
����
2

: (27)

III. BENCHMARK CASE WITH SINGLE RESONATOR

Control of the bending wave motion in a beam with a

single resonator is first addressed to understand the

mechanism of the interaction between the resonator and the

beam on one hand, and to develop the benchmark for subse-

quent analyses on the other hand. To avoid the near field

effect caused by the point force excitation, the resonator is

located far away from the force, with a non-dimensional

length knl0¼ 10. The same mass ratio and loss factor of the

resonator, i.e., wn ¼ 0:5; g ¼ 0:001, as those in Ref. 19, are

used in the calculation. The subscript n denotes the quantity

evaluated at the resonance frequency of the resonator

(x¼xa).

The transmission efficiency for the current case is

shown in Fig. 3. It can be observed that the minimum trans-

mission occurs at the frequency away from the resonance

frequency of the resonator where the transmission is reduced

by 3 dB only. This indicates that the resonator should be

properly tuned for maximum vibration reduction.

The time-averaged power flow in a beam undergoing

bending motion can be expressed as22

PðxÞ ¼ �M _h � Qv; (28)

where the bar denotes time average. An explicit expression

of Eq. (28) is given in the Appendix. The right-hand side

terms of Eq. (28) show the two components of the overall

power flow through the bending moment and the shear force,

respectively.

With Eq. (28), the non-dimensionalized power (with

respect to the injected power of the force excitation) for the

two components is plotted in Figs. 4(a) and 4(b), respec-

tively. It can be seen that, at the non-dimensional frequency

X ¼ 1, the power associated with the shear force is zero,

while that associated with the bending moment is 0.5. This

suggests that at this frequency, the resonator exerts a trans-

verse force upon the beam to pin the structure at the point of

attachment, preventing the transmission of power through

shear force. Therefore, the total power is only transmitted

through bending moment and is half of that injected by the

force excitation, in agreement with the 3 dB reduction in the

transmission curve in Fig. 3.

FIG. 3. (Color online) Transmission efficiency for a beam with a single

resonator.
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At the transmission dip, however, both power flow com-

ponents are zero, indicating a quasi-termination of the power

transmission. The vibration of the structure in this case is

dominated by the resonator and the upstream part of the

beam. The corresponding frequency, i.e., Xt, can be esti-

mated by the following expressions given by Brennan14

X2
t ¼ 1þ wn

4
X1=2

t ; (29)

where Xt is called tuned frequency. Numerical calculations

show that Xt increases with wn. This is understandable in

that the equivalent dynamic stiffness of the resonator,

expressed by Eq. (7), is proportional to the stiffness of the

resonator. When the resonator mass is increased, its stiffness

should be increased concurrently to keep the same xa, lead-

ing to an increase in the equivalent dynamic stiffness as well

as Xt. It follows that, for a beam subject to an excitation at a

fixed frequency, a resonator with larger mass should be

detuned to a larger extent from the excitation frequency.

IV. TWO RESONATORS WITH DIFFERENT
SEPARATION LENGTHS

This section investigates the influence of the separation

length between resonators on the suppression of wave

motion in the beam. Two identical resonators, with mass

equal to ma/2 each, are separated by a non-dimensional

length knl, with l being the distance between them. Other pa-

rameters remain the same as those used in Sec. III.

Figure 5 shows the transmission efficiency (s) against

frequency for different knl values. It is obvious that, despite

the same resonators being used, the power transmission is

quite different and evolves in a complex manner with respect

to knl. For small separation length (knl¼ 0.01), only one sin-

gle transmission dip is noticeable in the curve. When the

length is increased (knl¼ 0.1 and 0.5), an extra dip appears

at X ¼ 1. Further increasing the length (knl¼ 1) would shift

the two dips towards each other, before they finally merge

together to form a more pronounced dip for even larger sepa-

ration (knl¼ 5). Further increasing the separation length

(knl¼ 10) only gives rise to a change in amplitude with no

further shift in the frequency of the merged transmission dip.

These observed phenomena are discussed and explained in

detail in Secs. IV A–IV C.

A. Small separation length (Zone I)

The case of small separation length (knl¼ 0.01) is first

investigated. Recalling the four wave components in the gen-

eral solution of the governing equation: A pair of propagat-

ing and evanescent waves travelling in the positive direction

and another pair travelling in the negative direction, a super-

position of them gives the overall response of the beam. In

particular, the responses at the points of attachments are

related by Eqs. (19) and (20), which describe the phase

change of the propagating waves and the amplitude decay of

the evanescent waves, over the distance between the

resonators.

Figure 6 depicts the non-dimensionalized displacement

amplitude (normalized by �F=4EIk3
b) of the four wave com-

ponents and that of the resultant wave motion, at Xt, over the

distance between the two resonators. It can be seen that, the

four wave components, by virtue of the closeness of the reso-

nators, are basically constant over the segment, indicating no

change in either the phase of the propagating waves or the

amplitude of the evanescent waves within such a small sepa-

ration length. Therefore, two resonators placed in the imme-

diate vicinity of each other would be equivalent to a single

resonator having the same total equivalent mass. This is evi-

denced in Fig. 7, in which, the transmission efficiency for

the case with two resonators overlaps with that with a single

resonator but doubled mass.

B. Intermediate separation length (Zone II)

When the separation length is increased, to knl¼ 0.1 for

example, an extra transmission dip appears (Fig. 5) at

FIG. 5. (Color online) Transmission efficiencies for the beam with two reso-

nators separated by different non-dimensional lengths knl.

FIG. 4. (Color online) Non-dimensional power of the power flow compo-

nent for the beam with a single resonator. (a) Component associated with

the bending moment calculated by Eq. (A4); (b) component associated with

shear force calculated by Eq. (A5).
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X ¼ 1, while the original transmission dip remains at Xt. To

understand the underlying mechanism, it is relevant to have

a closer examination of the beam segment between the two

resonators, at the frequencies of the transmission dips. The

non-dimensionalized displacement amplitude of the segment

is depicted in Fig. 8. At Xt, the beam segment experiences a

large vibration as a result of the strong coupling between the

two resonators through the beam, leading to the vanishing of

power flow in the beam. To substantiate this argument, the

power flow components, associated with the bending

moment and the shear force, are plotted against frequency in

Fig. 9. Similar as the one resonator case, both power compo-

nents are zero. This, however, is different to what happens at

X ¼ 1, where the vibration of the beam segment is signifi-

cantly smaller than that at Xt, as shown in Fig. 8. At X ¼ 1,

the resonators impose strong constraint at the points of

attachments. However, different from the single resonator

case, in which the beam structure is completely pinned, the

beam still undergoes modest vibration as shown in Fig. 8,

due to changes in the coupling between the resonators. For a

separation length in this region, both propagating and evan-

escent waves serve as an agent for power transmission. Over

the segment, the variation of the propagating and evanescent

waves would cause different responses of the resonators and

affect the coupling between them. The transversal constraint

FIG. 6. Non-dimensional displacement amplitudes for the wave components

and the resultant motion, of the beam spanning from the first resonator (left

end) to the second resonator (right end), at the transmission dip (X ¼ 1:062).

(a) Positive-going propagating wave; (b) positive-going evanescent wave; (c)

negative-going propagating wave; (d) negative-going evanescent wave; (e)

resultant wave motion.

FIG. 7. (Color online) Comparison of the transmission efficiencies for two

resonators, and a single resonator with the mass equal to the sum of the

mass of the two individual resonators. All resonators have identical reso-

nance frequency and loss factor.

FIG. 8. (Color online) Non-dimensional displacement amplitude for the re-

sultant motion of the beam spanning from the first resonator (left end) to the

second resonator (right end), at the two transmission dips (X ¼ 1 and

X ¼ 1:062).

FIG. 9. (Color online) Non-dimensional power of the power flow compo-

nent for the beam with two resonators separated by knl¼ 0.1. (a) The com-

ponent associated with bending moment calculated by Eq. (A4); (b) the

component associated with shear force calculated by Eq. (A5).
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at the ends of the beam segment is then partially released

and the pinning effect becomes less obvious than that in the

one resonator case. This changed coupling can be further

observed by checking the power flow components at X ¼ 1

in Fig. 9, where the power associated with the bending

moment decreases to 0.26 (from 0.5) and that associated

with the shear force increases to 0.14 (from 0), compared

with the single resonator case.

It follows that increasing the separation length would

modify the way in which the resonators are coupled over the

beam segment, and consequently affect the power that could

be transmitted. Figure 10 depicts the non-dimensional power

associated with the bending moment, at X ¼ 1, as a function

of knl. It can be seen that the curve starts from a value

asymptotic to half of the total power injected to the beam,

corresponding to the case of small separation length. The

curve decreases with the increase of the separation length,

indicating a reduced power transmission through bending

moment. A threshold separation length can then be defined

to distinguish the so-called small and intermediate separation

regions. This is taken as knl equals 0.105, at which the power

component associated with the bending moment is half of

that for the single resonator case, i.e., non-dimensional

power being 0.25. Below this value, the two resonators can

be regarded as a combined resonator, generating one single

power transmission dip.

When the separation length is further increased, as

shown in Fig. 5, the transmission efficiency at the two dips is

found not only to decrease in value but also to shift in fre-

quency towards each other. The shift phenomenon can be

visualized, by plotting the frequencies of the two transmis-

sion dips against the separation length, in Fig. 11. The figure

shows that the two dips, which arise initially at fixed fre-

quencies, converge with the increase of separation length

until merging at knl � p, after which only one transmission

dip exists. Note this value corresponds to a physical separa-

tion length of half wavelength of the bending wave. With

this, the second threshold, i.e., knl � p, can be defined to dis-

tinguish the intermediate separation region from the large

separation region.

For knl falling in the intermediate separation region

bounded by the two threshold values (knl � 0.105 and knl �
p), the two resonators are coupled over the beam segment in

terms of the propagating waves and appreciable evanescent

waves and cause two power transmission dips in the spectrum.

It is interesting to explore the reason that leads to the

merging of the two power transmission dips. This can be

done by observing the displacement amplitude of the result-

ant wave motion of the beam segment at the frequency of

the merged dip, for separation length knl¼ p. The result is

given in Fig. 12, where a large vibration is found near the

first resonator (upstream), while a small vibration near the

second resonator (downstream). This difference in vibration

level indicates the different roles of the two resonators in the

resonator-beam system: The first resonator couples with the

FIG. 10. (Color online) Non-dimensional power flow component, associated

with the bending moment at the frequency of the first transmission dip, as a

function of the non-dimensional length knl between the two resonators. The

vertical line distinguishes Zone I and Zone II.

FIG. 11. (Color online) Frequencies of the two transmission dips as a func-

tion of the non-dimensional length knl between the two resonators. The ver-

tical line distinguishes Zone I and Zone II.

FIG. 12. Non-dimensional displacement amplitude for the resultant motion

of the beam spanning from the first resonator (left end) to the second resona-

tor (right end), at the transmission dip (X ¼ 1:032), when knl¼p.
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beam segment to introduce a bending constraint, while the

second resonator pins the structure. This could also be mani-

fested, implicitly, by substituting the resonance frequency

into Eq. (29). A simple calculation shows that the effective

mass in the system, for such separation length, equals half of

the overall physical mass of the resonators, i.e., the mass of

the first resonator. This is in agreement with the above expla-

nation where the second resonator pins the structure and

does not introduce additional mass into the coupled system.

C. Large separation length (Zone III)

After the second threshold value, increasing separation

length would result in only one transmission dip in the power

transmission curve, and the amplitude of the transmission

dip varies with respect to the separation length. This can be

visualized by plotting the minimum transmission efficiency

against the separation length in Fig. 13. As can be seen, the

minimum transmission oscillates within a bounded region,

where the upper bound occurs when knl¼ np and the lower

bound occurs when knl¼ (nþ 1/2)p, where n is an integer

larger than 1. For large separation length, the influence of

the evanescent waves is weak in the coupling, and the two

resonators are merely coupled through propagating waves.

The separation length, which specifies the phase changes of

the propagating waves over the beam segment, thereby

determines the amount of the power that could be

transmitted.

V. THE ROLE OF EVANESCENT WAVES IN THE
PRESENCE OF MULTIPLE RESONATORS

The dependence of the coupling between resonators on

the separation length suggests the importance of the evanes-

cent waves in determining the power transmission in the

beam. To explore the underlying physics, the role of evanes-

cent waves is studied in two cases where a resonator array

comprising five and 10 resonators is used, respectively. The

case of two resonators will be taken as a reference for

comparison. For all configurations, the overall mass of the

resonators is maintained a constant and the mass is equally

allocated to individual resonators. All resonators are there-

fore set to have identical resonance frequency and loss

factor, attached at equal interval.

Figure 14 depicts the power transmission efficiencies

for two, five, and 10 resonators with different separation

lengths, corresponding to the three zones defined in Sec. IV.

Obviously, the power transmission curve is independent of

resonator number for small separation [knl¼ 0.01, Zone I,

Fig. 14(a)]. When knl is increased to 1 (Zone II), the propa-

gating waves and evanescent waves interfere with each

other, giving rise to multiple transmission dips [Fig. 14(b)],

before they all merge to a deeper dip when knl¼ 10 [Zone

III, Fig. 14(c)], where the propagating waves dominate the

coupling between resonators. The phenomenon is basically

identical to the two resonator cases, except for that in the in-

termediate separation case, where multiple dips appear in the

presence of multiple resonators, and the larger the resonator

number is, the earlier the merging of these dips takes place.

FIG. 14. (Color online) Transmission efficiencies for the beam with different number of resonators separated in different separation lengths knl. (a) knl¼ 0.01

(Zone I); (b) knl¼ 1 (Zone II); (c) knl¼ 10 (Zone III). ———— 2 resonators; - - - - - - - 5 resonators; ---------- 10 resonators.

FIG. 13. (Color online) Minimum power transmissions as a function of the

non-dimensional length between the two resonators. The calculation is made

for separation length in Zone III.
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Generally speaking, increasing the number of resonators

helps reduce the power transmission, except for very small

separation lengths. This is in agreement with the conclusion

drawn in the two resonators case.

The aforementioned phenomenon can be explained by

investigating the power transmitted by various wave compo-

nents, especially the evanescent waves, in the three zones. It

is shown that, an evanescent wave, which holds energy in

the near field, may be able to transmit energy to the far

field through the interaction with another evanescent wave

traveling in the opposite direction. This is evidenced by the

location independent term jaþN jja�N j sinð/4 � /2Þ in the time-

averaged power flow expression, i.e., Eq. (A6) in the

Appendix. It is reasonable to surmise that, in the intermedi-

ate separation length region (Zone II), the role of evanescent

waves might be substantial. This is investigated by the far

field power transmitted, respectively, by the propagating

waves, i.e., jaþj2 þ ja�j2, and the evanescent waves, i.e.,

jaþN jja�N j sinð/4 � /2Þ, for the three cases in Fig. 15. For the

two resonators case, it shows that, in general, the power is

carried mainly by the propagating waves, especially for

small and large separation lengths (Zones I and III). In the

intermediate separation region (Zone II), Fig. 15(b) shows

two interesting phenomena: First, evanescent waves are

more noticeable, within the frequency region where the reso-

nators are effective (X from 1 to 1.1), and carry appreciable

power compared with that by the propagating waves; second,

the power transmitted downstream of the beam is partially

reverted back to the upstream part of the beam by the

evanescent waves below the resonance frequency of the res-

onators, as evidenced by the negative value of the non-

dimensional power. This underlines the role of evanescent

waves in the power transmission process and explains the

reason behind the complex power transmission phenomena

observed in intermediate separation length region reported

in Sec. IV B.

The effect of resonator number is shown in Figs.

15(d)–15(i). Due to the increase of the resonator number, the

so-called stop band starts to appear. Again the dominance of

the propagating waves in both cases is obvious. It is relevant

to note, however, due to the fact that the total mass of the

resonator array is kept constant in the current simulation,

the mass of an individual resonator would reduce with the

increase of resonator number. In this connection, the near

field effect due to the evanescent waves is less obvious. This

treatment arises from the concern in practical problems

where the extra weight introduced by the control devices

should be as small as possible. If, however, the total added

mass of the system is not a concern, the mass of each resona-

tor can then be kept the same when the resonator number

increases. Numerical results show that the width of the stop

band and effect of the evanescent waves, as discussed in the

two resonators case, should remain the same or even

enhanced.

FIG. 15. (Color online) Far field non-dimensional power contributed by the propagating waves, i.e., jaþj2 þ ja�j2 in Eq. (A6), —————, and by the evanes-

cent waves, i.e., 2jaþN jja�N j sin ð/4 � /2Þ in Eq. (A6), - - - - - - -, for 2 (row 1), 5 (row 2), and 10 (row 3) resonators in different zones, knl¼ 0.01 (column 1),

knl¼ 1 (column 2), knl¼ 10 (column 3).
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VI. CONCLUSIONS

Motivated by the local resonance phenomenon and the

need for better understanding of periodic structures with

local resonators, this work discusses the suppression of bend-

ing wave in a beam using multiple resonators with various

separation lengths. Through a simple beam model, the power

transmission in the beam, the interaction among resonators

and the beam, as well as the role played by different wave

components, are investigated.

The bending wave suppression effect and the underlying

mechanism are shown to depend greatly on the separation

length between resonators. This is attributed to the evanescent

waves involved in the coupling of the resonators over the beam

segment. It is shown that the evanescent waves are responsible

for power transmission to the far field in some cases. The frac-

tion of the transmitted power, however, depends on the separa-

tion length as well as the number of resonators. More

specifically, main conclusions are summarized as follows:

(1) The separation length between resonators is shown to be

one of the key parameters affecting the beam-resonator

interaction and thus the power transmission. Three zones

are identified and demarcated by two threshold values, in

terms of non-dimensional separation length knl.
(2) Zone I (knl< 0.105) denotes the configuration where res-

onators are closely spaced. In this case, resonators behave

exactly in the same manner as one combined resonator,

producing a sharp transmission efficiency dip, attribut-

able to the effective suppression of the propagating wave.

(3) Zone II (0.105< knl< p) is referred to as the intermedi-

ate zone, within which multiple dips can be observed in

the power transmission efficiency curve. Within this

zone, the interaction between the beam and resonators

exhibit complex behavior. Notably, evanescent waves

are shown to play an important role in twofold ways:

carrying power downstream to the far field through their

interaction within the beam segment bounded by the res-

onators, and reverting power back to the upstream part

in the same process. It is, in this region, possible to

increase the number of resonators to create a stop band

over the frequency region where the resonators are

effective.

(4) For larger separation length exceeding half of the bend-

ing wavelength (Zone III, knl>p), the influence of the

evanescent wave diminishes. The minimum power trans-

mission varies within a bounded region and exhibits per-

iodic pattern, corresponding again to half of the bending

wavelength.
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APPENDIX

The instantaneous power can be expressed in terms of

the beam deformation and the internal force as22

Pðx; tÞ ¼ �M _h � Qv; (A1)

where M, _h, Q, and v are, respectively, the bending moment,

angular velocity, shear force, and transverse velocity of the

beam, respectively, which are related to the transverse dis-

placement w by

v ¼ @w

@t
; _h ¼ @2w

@x@t
; Q ¼ �EI

@3w

@x3
; M ¼ EI

@2w

@x2
:

(A2)

Equation (2) can be rewritten in a phasor form as

wðx; tÞ ¼ ðjaþje�jkbxei/1 þ ja�jejkbxei/2

þ jaþN je�kbxei/3 þ ja�N jekbxei/4Þeixt: (A3)

Substituting Eq. (A3) into Eq. (A1), the time-averaged

power components are derived as

Pm ¼ �Re Mð ÞRe _hð Þ ¼ 1

2
xEIk3

b

jaþj2 � ja�j2 þ 2jaþN jja�N j sin /4 � /2ð Þ
þjaþjjaþN je�kbx sin kbx� /1 þ /2ð Þ � cos kbx� /1 þ /2ð Þ½ �
�jaþjja�N jekbx cos kbx� /1 þ /4ð Þ þ sin kbx� /1 þ /4ð Þ½ �
�ja�jjaþN je�kbx sin kbx� /2 þ /3ð Þ � cos kbx� /2 þ /3ð Þ½ �
þja�jja�N jekbx sin kbxþ /3 � /4ð Þ þ cos kbx� /3 � /4ð Þ½ �

2
66666664

3
77777775
; (A4)

and

Ps ¼ �Re Qð ÞRe _vð Þ ¼ 1

2
xEIk3

b

jaþj2 � ja�j2 þ 2jaþN jja�N j sin /4 � /2ð Þ
�jaþjjaþN je�kbx sin kbx� /1 þ /2ð Þ � cos kbx� /1 þ /2ð Þ½ �
þjaþjja�N jekbx sin kbx� /1 þ /4ð Þ þ cos kbx� /1 þ /4ð Þ½ �
þja�jjaþN je�kbx sin kbx� /2 þ /3ð Þ � cos kbx� /2 þ /3ð Þ½ �
�ja�jja�N jekbx sin kbxþ /3 � /4ð Þ þ cos kbx� /3 � /4ð Þ½ �

2
66666664

3
77777775
: (A5)
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Summing up Eqs. (A4) and (A5) yields the total time-

averaged power in the beam:

�P ¼ Pm þ Ps

¼ xEIk3
b½jaþj

2 þ 2jaþN jja�N jsin ð/4 � /2Þ þ ja�j2�:
(A6)

It can be seen that, in addition to the power transmitted

by a pair of propagating waves, there is a cross-flow term

related to the evanescent waves, the amount of which is

determined by the displacement magnitudes of the evanes-

cent waves and their phase difference.
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