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A “weak” formulation of the pseudo-excitation (PE) approach was recently proposed for
structural damage detection in thin-walled structures. The method was shown to exhibit
some appealing features including high noise tolerant ability. However, the method
requires very dense displacement field measurement within the inspection region. To

measurement (VEBM) under the “weak” formulation framework is proposed in this paper.
VEBM based “weak” formulation divides the entire structure into several “virtual ele-
ments” (VE). By tuning the vibration frequency to the natural frequency of the VE, the
“weak” formulation is shown to provide a “region-by-region” detection strategy, allowing
reliable damage detection by using only a small number of measurement points at the VE
boundaries. The effectiveness of the proposed method was first validated numerically
using a cantilever beam containing a small damage. Influences of various factors such as
measurement noise levels and frequency discrepancies between the ideal and the actual
elements were discussed. An experiment was carried out through a Laser Doppler Vib-
rometer (LDV) measurement. Results demonstrated that VEBM method can achieve good
detection results by using a small number of measurement points, whilst providing
enhanced noise tolerant capability against measurement uncertainties.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The safety and reliability of engineering structures cannot be over-emphasized. Along with it is the ever-increasing need
for effective and reliable damage detection methods. During the last few decades, a large variety of non-destructive eva-
luation (NDE) methods, such as ultrasonic C-scan [1], eddy-current [2], thermography [3], laser ultrasonic [4], guided-wave
[5] etc., have been developed. Among the existing methods, vibration based approach is one of the most studied techniques,
due to its relatively low cost and potential to be used for on-line structural health monitoring (SHM) [6–10]. Damage indices
based on various vibration parameters, such as eigen-frequencies, mode shapes, transfer functions, damping properties or
electro-mechanical impedance, were proposed to detect the changes in the structural properties as a result of occurrence of
the damage [11–15]. Notably, the “pseudo-excitation” (PE) approach was recently proposed to provide a damage detection
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framework by evaluating the damage-induced perturbation to the local equation of motion [16–20]. The basic principle of
the PE method is similar to a local force identification problem [21–23]. Compared with other vibration based methods, the
PE approach is advantageous in that it requires no prior knowledge of the baseline signals, overall structural models or
boundary conditions etc. Moreover, since the PE approach examines the local equation of motion point-by-point, it can be
applied to complex systems comprising various structural components like beams, plates and shells.

The original version of the PE approach leads to a damage location index based on the “strong” formulation in which
high-order derivatives of the structural displacement need to be derived. In the case of a beam element, for example, d4w(x)/
dx4 (where w(x) is the flexural displacement of the beam element at the position x), is involved. This high order derivative
makes “strong” formulation based PE approach venerable to the measurement noise and uncertainties. Attempts were made
in previous works to enhance noise immunity. For example, by exploring the relationship between the density of the
measurement point and the accuracy of the finite difference scheme used to calculate the high-order derivatives, it was
shown that the noise influence can be partly reduced through a proper selection of the measurement interval [16]. Gaussian
wavelet transform has also been used in “strong” formulation to construct a multi-scale PE model for damage identifications
[17]. Furthermore, a “weak” formulation was also developed using a continuous Gauss smoothing-based detection strategy
[20]. As a result of the weighted integration, the noise immunity was shown to improve from “strong” to “weak” for-
mulation. Despite the effort, the latest “weak” version of the PE technique still cannot completely resolve its bottlenecking
problems which mainly exhibit in the following aspects: (1) limited by the “point-to-point” inspection strategy and the need
for deriving higher-order derivatives, a large amount of measurement points are still required, making the technique dif-
ficult to implement in practical applications; (2) the use of high order derivative can still not be avoided; and (3) the
requirement for the structure parameters, such as modulus of elasticity and density, is rather harsh, creating more problems
since discrepancies between the ideal and actual structural properties are unavoidable.

To address these problems, a novel “weak” form of the PE approach based on virtual element boundary measurement
(VEBM) is proposed in this paper. Different from the previous “weak” formulation that directly integrates the damage
location index calculated by “strong” formulation within a small interval, VEBM based “weak” formulation firstly divides the
entire structure into several regions, which are referred to as “virtual elements” (VE). According to the parameters of VEs, a
suitable weight function is chosen to carry out damage location index integration, leading to the final form of “weak”
formulation, which only requires vibration measurement at the boundaries of the VEs. Thus, whilst ensuring an improved
robustness against measurement noise through the weighted integration, VEBM based “weak” formulation further reduces
the number of the measurement points significantly.

The outline of the paper is as follows. The principle of the VEBM based “weak” formulation is firstly derived from its
“strong” counterpart. Selections of the excitation frequency and the weight function are then discussed. Numerical simu-
lations using a finite element model are then presented to demonstrate the effectiveness of the proposed method in terms
of de-noising and damage detection capability. Effects of different noise levels and the unavoidable errors in the excitation
frequency selection are also discussed. Finally, an experiment is carried out to validate the proposed method using a beam
element containing an artificial damage.
2. PE approach for damage detection

2.1. “Strong” formulation

Fig. 1 shows a typical complex system comprising various structural components such as beams, plates and shells.
Despite the complexity of the overall structure, the dynamic response of each component (and each point on that com-
ponent) satisfies a certain well-prescribed relation, such as the equation of motion. The basic idea of the PE approach is to
examine whether the vibration displacement satisfies the local equation of motion in the healthy condition. Since the
inspection philosophy is component specific, the structural part beyond the inspected area, although, obviously affects the
vibration of the inspected component, but does not affect the way that local equation of motion is satisfied. Thus, the PE
approach can be applied to a complex system by examining the corresponding local equation of motion component-by-
component.

Taking an Euler–Bernoulli beam component with homogeneous isotropic material properties under a flexural harmonic
excitation as a simple example, a one-dimensional damage location index DLI(x) quantifying the damage-induced
Fig. 1. A typical complex structure with dynamic responses satisfying local equation of motion on various structural components.
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perturbation at the position x can be defined as

DLI xð Þ ¼ EI
d4w xð Þ
dx4

�ρSω2w xð Þ (1)

whereω is the angular vibration frequency of the steady vibration; E, I, ρ and S are the modulus of elasticity, cross-sectional
moment of inertia, density of material and cross sectional area in healthy structural situation, which are known before
damage detection; w(x) is the steady transverse displacement of the beam, that needs to be measured point-by-point during
damage detection. It should be mentioned that, DLI(x)¼0 indicates the vibration of the structural element, in the absence of
the surface loading, irrespective of the boundary condition of the entire structure. Physically, DLI(x) represents the trans-
verse excitation over the local area of the beam element. For a pristine component in the absence of any external excitation,
DLI(x)¼0 in the intact region, but is different from zero within the damage zone, corresponding to a virtual pseudo-
excitation due to the structural damage. More details about the derivation of “strong” formulation in the damage zone can
be found in [16]. Thus, the PE approach can detect the damage location where sudden change exists in the DLI(x) curve.
Considering that DLI(x) is a complex function of the damage size and shape, “strong” formulation can hardly detect the
damage severity in detail, even though DLI(x) quantitatively identifies the deviation from the local equation of motion of the
healthy structure.

Similarly, a two-dimensional PE approach can be derived for a homogeneous isotropic plate component using the thin-
plate theory, as

DLI x; yð Þ ¼ DU∇4�ρhω2� �
w x; yð Þ (2)

where D¼Eh3/12(1�ν2) is the flexural rigidity of the plate, h and ν are the thickness and Poisson's ratio of the component,
respectively. The operator ∇4, called the Biharmonic operator, can be written as

∇4 ¼ ∂4

∂x4
þ2

∂4

∂x2∂y2
þ ∂4

∂y4
(3)

Both Eqs. (1) and (2) are derived from an undamped structural model of the bending vibration, which is assumed to
dominate the structural motion. Considering that light damping takes significant effect on the vibration mainly in the
vicinity of structural resonances, the damping influence on local equation of motion can be ignored when excitation fre-
quency is different from any natural frequencies of the structure. Furthermore, the damage is a discontinuous zone in the
structure, especially at the damage edge, the singularity in the local equation of motion induces a sudden change in the
damage location index that is used to detect the damage position. Thus, “strong” formulation is still effective when possible
other types of vibration and damping are present in the structural vibration.

For implementation of “strong” formulation, the vibration displacement fields w(x) (for beam component) and w(x, y)
(for plate component) should be measured point by point. For illustration, the continuous vibration displacement w(x) in a
beam component is obtained in discrete form wi. The discrete DLIi at measurement point i can be calculated by mean of
finite difference, using four adjacent measurement points from i�2 to iþ2, as

DLIi ¼ EI
wi�2�4wi�1þ6wi�4wiþ1þwiþ2

d4m

 !
�ρSω2wi (4)

where dm is the interval of measurement points. To achieve a good approximation of the fourth-order derivative, a small dm
should be used, leading to very dense measurement. However, due to the high order finite difference employed in Eq. (4),
DLIi is highly sensitive to measurement noise which is unavoidable in practical applications. Note that, although PE
approach, such formulated, is baseline-free, an accurate estimation of the system parameters such as E, I, ρ and S is a
prerequisite. Considering the difficulty in obtaining these parameters accurately in practice, especially under changing
working environment, the “strong” formulation based PE approach shows its obvious drawbacks with venerable noise
immunity.

2.2. “Weak” formulation

For an Euler–Bernoulli beam component, in order to enhance the noise immunity of the PE approach, a “weak” for-
mulation is established by integrating DLI(x) in the interval [xc�τ/2, xcþτ/2] with a weight function η(x) as

DLI xc; τð Þ ¼
Z xc þτ=2

xc �τ=2
EI
d4w xð Þ
dx4

�ρSω2w xð Þ
" #

η x�xcð Þdx (5)

where DLI represents the “weak” formulation based damage location index; xc and τ are the center and width of the
interval, respectively. Taking advantage of the weighted integration, DLI quantifies the local equation of motion within the
integrative interval instead of at each specific point. It was proven that the measurement noise can be partly suppressed and
the signal feature pertaining to the damage can be strengthened using a classic Gaussian weight function [20].

The physical implication of the “weak” formulation is to examine the structure ‘region-by-region’. In doing so, the DLI in
“strong” formulation is summed up over the interval that averages the noise. However, the amount of data points required
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in the measurement is still the same. Furthermore, the high-order derivative still remains which intrinsically creates
inaccuracies due to the measurement noise.
3. VEBM based “weak” formulation

3.1. Damage location index of the VE

The noise from the displacement measurement is magnified in the PE approach by the high-order derivatives. For
reducing the derivative order of w(x), integration by part is carried out, thus diverting the derivative from actual dis-
placement w(x) to weight function η(x) gradually. Eventually, the fourth-order derivative in Eq. (5) can be reduced step by
step as

DLI0 xc; τð Þ ¼ �
Z xc þ τ=2

xc �τ=2
f ve xð ÞUw xð ÞdxþEIUBC xc; τð Þ (6)

in which,

f ve xð Þ ¼ EI
d4η x�xcð Þ

dx4
�ρSω2 Uη x�xcð Þ (7)

BC xc; τð Þ ¼
X3
i ¼ 0

�1ð Þiw 3� ið Þ xð ÞUη ið Þ x�xcð Þ
" #xc þτ=2

xc �τ=2

(8)

In the above expressions, DLI0 xc; τð Þ is the damage location index in the interval [xc�τ/2, xcþτ/2] centered at position xc
with subscript ‘0’ indicating the highest derivative order of w(x). It is obvious that fve(x) shares the same form as Eq. (1) by
replacing the actual displacement w(x) with the weight function η(x). Therefore, η(x) can be regarded as the virtual dis-
placement of the VE of a length τ, having the same material properties as the real beam element. fve can then be regarded as
the virtual force applied on the VE. BC(xc, τ) is related to the boundary condition of the VE, which is the sum of a series of
products of the actual and virtual displacements. The superscripts, (i), of w(x) and η(x) in Eq. (8) are the derivative order. The
boundary part BC(xc, τ) includes the first to third order of derivatives of w(x) in which the second order derivative of w(x) at
the boundary of VE can be measured directly by strain gage [24,25] or piezoelectric sensor [26].

In Eq. (6), the choice of η(x) is crucial to the “weak” formulation. Since w(x) and its second-order derivative can be
measured by sensors directly at the VE boundary without the use of finite difference, a suitable η(x) can eliminate unwanted
derivatives terms of w(x), thus enhancing the noise immunity of the detection.

3.2. Selection of the weight function η(x)

According to the description above, the most straightforward way to removew(1)(x) and w(3)(x) in Eq. (8) is to choose η(x)
in such a way that:

d2η xð Þ
dx2

����
x ¼ �τ=2

¼ d2η xð Þ
dx2

����
x ¼ þτ=2

¼ 0 (9)

η xð Þ
����
x ¼ �τ=2

¼ η xð Þ
����
x ¼ þτ=2

¼ 0 (10)

Going back to the VE, these boundary conditions state the VE can be regarded as a simply-supported beam at both ends.
The VE has the same material parameters as the actual beam and the length is, τ according to Eq. (7). It can be seen from Eq.
(6) that it is possible to completely eliminate the integration term by letting fve(x) equal to zero, as

EI
d4η x�xcð Þ

dx4
�ρSω2 Uη x�xcð Þ ¼ 0 (11)

Eq. (11) indicates that the virtual force fve(x) is zero and the solution of η(x) is the free vibration response of the VE. Thus,
by tuning the actual excitation frequency to the natural frequency of the VE, η(x) corresponds to the mode shape of VE. For
example, when the actual excitation frequency ω equals the first natural frequency of the VE, as

ω¼ π
τ

� �2 ffiffiffiffiffiffi
EI
ρS

s
(12)

η(x) is the first mode shape of VE, expressed as

η xð Þ ¼ sin
π
τ
x (13)
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Finally, Eq. (6) at these specific frequencies (any of the natural frequency of the VE) can be simplified as

DLI xc; τð Þ ¼DLI0 xc; τð Þ
EI

¼ π
τ

d2w xð Þ
dx2

����
xc �τ=2

þd2w xð Þ
dx2

����
xc þτ=2

" #
�π3

τ3

�
w xð Þjxc � τ=2þw xð Þjxc þτ=2

	
(14)

Eq. (14) shows that the damage location index in this “weak” formulation can be readily obtained through virtual ele-
ment boundary measurement (VEBM) at the natural frequency of the VE, significantly reducing the number of the mea-
surement points. The method only requires the measurement of w and w(2) at VE boundaries. Hence, Eq. (14) provides a
novel scheme to detect the damage in a beam component; this scheme is implemented in several steps:

(1) Divide the entire structure into several VEs of length τ, depending on the accuracy required for locating the damage.
(2) Tune the frequency of the actual excitation to the first (or any other, in principle) natural frequency of the VE. It should

be mentioned that the estimation of the parameters, such as E, I, ρ and S is obviously not error-free with respect to the
true values. Therefore, a fast scan process based on sweeping frequency of the excitation can be carried out to accurately
find the frequency ω, within which the distance between the adjacent vibration nodes of the beam is equal to τ.

(3) Measure the displacement and its second-order derivatives at the boundary of VE. Notably, if strain gauges or
piezoelectric sensors are used to measure the strains s directly, the corresponding second-order derivatives of the
displacements can be obtained as

d2w xð Þ=dx2 ¼ 2s=h (15)

where h is the thickness of the beam. Alternatively, this second-order derivative can also be obtained using a finite
different scheme based on displacement measurement.

(4) Calculate the damage location index, according to Eq. (14), to detect the damage location.

It is relevant to note that the VEBM based “weak” formulation can also be extended to the plate component in similar
way. Different from a beam component, VEs in the plate component are a series of virtual square thin-plates with the same
length. The final variant of the two-dimensional “weak” formulation has a similar form as Eq. (14), given as

DLI xc; yc; a

 �¼ Z yc þa=2

yc �a=2
�π
a

sin
π
a
y

� �
∇2 w xc�a=2; y


 �þw xcþa=2; y

 �� �

dy

þ
Z yc þa=2

yc �a=2

π3

a3
sin

π
a
y

� �
w xc�a=2; y

 �þw xcþa=2; y


 �� �
dy

þ
Z xc þa=2

xc �a=2
�π
a
sin

π
a
x

� �
∇2 w x; yc�a=2


 �þw x; ycþa=2

 �� �

dx

þ
Z xc þa=2

xc �a=2

π3

a3
sin

π
a
x

� �
w x; yc�a=2

 �þw x; ycþa=2


 �� �
dx (16)

where (xc, yc) and a are the center position and length of the VE, ∇2 is the Laplacian operator that can be written as

∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
(17)

Likewise, the two-dimensional “weak” formulation shown by Eq. (16) is derived under a steady vibration with the
excitation frequency equal to the natural frequency of VE, given as

ω¼ 2π2

a2

ffiffiffiffiffiffi
D
ρh

s
(18)

From Eqs. (1)–(16), the PE approach offers a series of variants of DLI for damage localization. In particular, the VEBM
based “weak” formulation provides a dimension-reduced measurement strategy, reducing the full field measurement to
point or edge measurement in the beam and plate components, respectively. Furthermore, the proposed “weak” formulation
brings about significant improvement in the robustness for damage detection far beyond what the signal processing method
can do, to be demonstrated in the following sections. However, compared with “strong” formulation that can identify the
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Fig. 2. A cantilever beam with an artificial damage.



Table 1
Geometrical and material parameters of the cantilever beam.

Beam width b [mm] 36
Beam thickness h [mm] 5
Beam length l [mm] 605
Damage length ld [mm] 2
Damage depth hd [mm] 2
Density ρ [kg/m3] 2700
Elastic modulus E [GPa] 68.9
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exact damage position, VEBM based “weak” formulation can only determine the damaged VE. In order to improve the
resolution, small length τ of VE should be used, which requires a higher excitation frequency and more measurement points.
4. Validation of the VEBM based damage detection

4.1. Numerical simulations

4.1.1. Finite element (FE) model
The geometrical and material parameters of an Euler–Bernoulli cantilever beam as shown in Fig. 2 are listed in Table 1. Without

loss of generality, a transverse surface slit, 2 mm in length and 2mm in depth, extending uniformly along the width of the beam, is
used to simulate the damage. The slit is located at x¼225mm (Fig. 2 for the coordinate system). A FE model is created using
commercial FE code ABAQUSs. In order to accurately model the slit, the beam element size is set to 1mm, resulting in a total of 605
elements in the entire structure. A harmonic point-excitation force is applied at x¼601mm. According to Eq. (12), the excitation
frequency is set to 3180 Hz, which is the 1st natural frequency of the VE that is 60mm long.

Theoretically, the proposed method can detect damages, located anywhere inside the free surfaces. However, damage
location index is different from zero at the fixed support position or load point. Therefore, the proposed method applies to
the points close to the support or excitation, but not exactly at these points. To avoid the influence from the boundary and
the excitation point, an inspection region, within the interval [30, 570], is chosen. The flexural displacement wexact at each
element node is shown in Fig. 3(a). It should be noted that the PE approach is independent of the amplitude of the exci-
tation. So the level of the excitation can be arbitrary. To quantitatively examine the noise immunity capability of the pro-
posed approach, the white Gaussian noise with three different energy levels, which are 10�7, 10�5, 10�3 of signal energy,
are added to the exact displacement wexact. The noisy displacements wnoisy are shown in Fig. 3(b–d).

4.1.2. Results and discussions
Using “strong” formulation stated in Eq. (4), the constructed DLIexact and DLInoisy that correspond to the exact dis-

placement wexact and the noisy displacements wnoisy are shown in Fig. 4(a–d), respectively. Using 541 measurement points,
Fig. 4(a) indicates the damage location explicitly where DLIexact reaches the peak value whilst doweling around zero in the
pristine region. On the contrary, Fig. 4(b)–(d) shows that the resolution of damage detection reduces as the noise level
increases. For 10�5 and 10�3 cases, DLInoisy fails to detect the damage location, due to the venerable noise immunity
capacity. In fact, the fourth-order derivative over the measured displacement wnoisy overwhelms and completely masks the
damage-induced peak in DLInoisy, in agreement with the previous analyses.

Using the proposed VEBM approach, the entire structure is divided into nine elements of the same length by ten
measurement points, as shown in Fig. 5. Each VE is 60 mm long, which is the distance between each two adjacent mea-
surement points. An excitation frequency of 3180 Hz, corresponding to the first natural frequency of the VEs, is used to
excite the structure. Based on Eq. (14), both w and its second-order derivative w(2) are required. In the present case, w(2) at
the i-th measurement point is obtained by mean of finite difference as

w 2ð Þ
i ¼wiþ1�2wiþwi�1

d2m
(19)

where two points, adjacent to i-th measurement point are used. Compared with the “strong” formulation, VEBM based
“weak” formulation uses only 30 measurement points in the inspection region [30, 570]. DLIextact and DLInoisy are then
calculated by Eq. (14) using wexact and wnoisy, respectively. Detection results obtained by placing DLI in the corresponding
position of each VE, are shown in Fig. 5(a–d), respectively. It can be seen that all figures show the corresponding damaged
VE with a high damage location index value. To quantify the detection results, a DNR (damage location index-to-noise ratio)
in dB, is defined as

DNR¼ 10 log
DLI damageð Þ
DLI healthyð Þ (20)

where DLI damageð Þ and DLI healthyð Þ are the average values of the damage location indices in the actual damage region and
healthy region, respectively. Similar to the commonly used signal-to-noise ratio (SNR) in signal processing, DNR is a measure
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Fig. 3. Displacements using FE simulation (a) without noise; and (b–d) with different levels of white Gauss noise (the noise is 10�7, 10�5, 10�3 of signal
energy).

C. Zhang et al. / Journal of Sound and Vibration 372 (2016) 133–146 139



100 200 300 400 500
0

0.5

1

1.5

2 x 105

x (mm)

M
od

ul
us

 o
f D

LI

100 200 300 400 500
0

0.5

1

1.5

2 x 105

x (mm)

M
od

ul
us

 o
f D

LI

100 200 300 400 500
0

2

4

6

8

10

12

14 x 104

x (mm)

M
od

ul
us

 o
f D

LI

100 200 300 400 500
0

5

10

15 x 105

x (mm)

M
od

ul
us

 o
f D

LI

Fig. 4. Magnitude of DLI by “strong” formulation using (a) wexact; and (b–d) wnoisy with different noise levels (the noise is 10�7, 10�5, 10�3 of signal
energy).

C. Zhang et al. / Journal of Sound and Vibration 372 (2016) 133–146140
to evaluate the level of a desired detection result compared to the level of background noise. The detection results using
“strong” formulation and the VEBM approach with different noise levels are listed in Table 2. Obviously, the effect of the
added noise can be clearly observed from DNR reduction with the increasing noise level. Nevertheless, the beam segment
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Table 2
DNRs of the detection results with different noise levels.

Noise energy level DNR (Strong formulation) (db) DNR (VEBM approach) (db)

10�7 15.69 13.97
10�5 3.70 13.86
10�3 �0.42 9.83
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Fig. 6. Noise level in the different orders of displacement derivatives with Gauss noise (the noise in displacement is 1‰ of signal energy).
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containing the damage can still be accurately detected by the VEBM approach even with a high DNR. Compared with
“strong” formulation, the VEBM approach shows an enhanced noise immunity capacity.

It is relevant to mention that the error caused by the finite difference is still unavoidable due to the use of Eq. (19). Using
wexact and wnoisy with noise energy 10�3, the first to fourth-order derivatives of w as well as their discrepancies from the
true values are calculated (calculated difference between the results with and without the noise). The root mean square
(RMS) of the discrepancies, expressed in dB, is shown in Fig. 6, showing an increasing noise effect when the order of
derivative increases. Alternatively, w 2ð Þ

i can be directly obtained by measuring the strain at the two boundary points of the
VE. This will avoid indirect calculation of the w 2ð Þ

i through the finite difference scheme and, by the same token, will further
reduce the noise effect and measurement points at the same time.

Compared with Eq. (4), the VEBM based “weak” formulation, defined by Eq. (14) seems to be independent of the material
parameters such as E, I, ρ and S. However, this benefit does not come without price. In fact, Eq. (14) can be regarded as a
special case of Eq. (4) that is only applicable to the natural frequency of the VE. To choose the suitable excitation frequency,
the material parameters are implicitly required. Therefore, discrepancies between the excitation frequency and the esti-
mated natural frequency of VE are unavoidable. To investigate this problem and its influence on the detection accuracy in
practical implementation, the excitation frequency is artificially set to have a variation margin of plus or minus 50 Hz in the
FE model. On the other hand, the obtained displacements are still processed with the VEBM based “weak” formulation to
construct DLI by using Eq. (14). The distributions of DLI are shown in Fig. 7(a) and (b). DNR results using different excitation
frequencies are tabulated in Table 3. It can be seen that the damage can still be detected within a certain frequency range
around the accurate natural frequency of the VE, although the VEBM based “weak” formulation requires that the excitation
frequency be the natural frequency of VE strictly. However, the accuracy of the detection results decreases when the
excitation frequency shifts further away from the natural frequency of VE as shown in Table 3.
4.2. Experimental verifications

4.2.1. Experimental setup
Experimental verification was subsequently conducted using a cantilever beam containing an artificial damage, which

was a rectangular slit (2�2 mm2) extending along the width of the beam. The beam, made of aluminum 6061, was fixed-
supported on a testing table (NEWPORT

s

ST-UT2), as shown in Fig. 8. The detailed dimensions and the material parameters
of the structure were the same as those used in the FE model, listed in Table 1 and shown in Fig. 2. Through a power
amplifier (B&Ks 2718) an electromechanical shaker (B&Ks 4809) was used to provide a harmonic point-force excitation to
the structure at x¼601 mm. A scanning Laser Doppler Vibrometer (Polytecs PSV-400B) was used to measure the out-of-
plane displacement of the beamwithin the selected inspection region from x¼30 mm to x¼570 mm. The natural frequency
of the VE was estimated to be 3180 Hz by Eq. (12), at which the steady-state vibration response was measured, and the
results are shown in Fig. 9.
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frequency of VE is 3180 Hz.

Table 3
DNRs of the detection results using different excitation frequencies.

Frequency (Hz) DNR (db)

3130 12.82
3180 (natural frequency of VE) 14.25
3230 10.03

Fig. 8. Test-rig and experimental setup.
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4.2.2. PE approach using “strong” formulation
For comparison, the “strong” formulation was firstly applied. According to Fig. 9, the measured displacement under

laboratory condition shows a high SNR that makes it possible to detect the damage using “strong” formulation. Using a
2.3 mm interval, 235 measurement points were used to construct the DLI according to Eq. (4). Fig. 10(a) shows that the DLI
such constructed fails to delineate the damage position, because of the measurement noise magnified by the high order
derivative. However, by increasing the interval to 3.5 mm, corresponding to 158 measurement points, an obvious
improvement is observed, as shown in Fig. 10(b), in agreement with the optimal measurement density criterion suggested
by the previous work [16]. The optimal interval between two measurement points balances the accuracy of the finite
difference calculation and the noise immunity. According to Eq. (20), the corresponding DNR is 6.6 dB.

4.2.3. PE approach using VEBM based “weak” formulation
Using nine VEs, 60 mm in length, and reducing the measurement points from 158 to 30, the displacement of the

measurement points and their second-order derivatives at the virtual element boundaries are obtained. Fig. 11 shows the
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damage location index by using Eq. (14). The significant peak value can be clearly observed at the damaged VE position.
Characterized by DNR, VEBM based “weak” formulation not only reduces the measurement points, but also improves the
detection accuracy from 6.6 dB in the “strong” formulation to 7.4 dB.
5. Conclusions

In spite of many appealing features of the pseudo-excitation (PE) approach, the “strong” formulation approach is shown
to be highly sensitive to measurement noise and requires a large amount of measurement points within the inspection
region. To tackle the problem, this paper presents a new “weak” formulation based on virtual element boundary mea-
surement (VEBM). The proposed method, along with the mathematical framework, establishes a new paradigm for PE-based
damage detection, shifting the “point-to-point” detection modality of the "strong" formulation to “region-by-region”
detection philosophy. The VEBM based “weak” formulation segments the entire structure into a series of so-called “virtual
elements” (VE). By tuning the excitation frequency to the natural frequency of the VE, the VEBM based “weak” formulation
allows eliminating higher order derivatives over the structural displacement, which is mainly responsible for the deficiency
of the “strong" formulation in detecting structural damages in the presence of the measurement noise. By the same token,
the proposed VEBM based “weak” formulation only requires a small number of measurement points at the virtual element
boundaries. Through numerical examples, it is also shown that the proposed method is able to tolerate variations of the
excitation frequencies to a certain extent as a result of inaccurate estimation of the structural physical parameters. Both
numerical and experimental studies show that the VEBM based approach is able to achieve satisfactory detection results by
using a small number of measurement points, whilst providing enhanced noise immunity capability against measurement
noise and uncertainties.

It is relevant to note that the VEBM based “weak” formulation only requires the displacements and its second-order
derivatives to be estimated at the boundaries of VEs. The latter can also be readily measured by strain gauge or piezoelectric
sensors. This will avoid calculating the second-order derivatives of structure displacement, thus further reducing the
number of measurement points and increasing the robustness of the method at the same time.
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