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Abstract

The estimation of nonlinear autoregressive moving average with exogenous input (NARMAX) models for vibrating multi-layer

composite plates is presented and used to assess internal delamination in the plates. Both static and dynamic tests are carried out to

investigate the nature of the nonlinearity of the composite system. The nonlinear nature and order of nonlinearity are then

approximated, and used to restrict the search space of the potential NARMAX model. After the structure and terms of the

NARMAX model are identified, all coefficients are calculated for the intact plate. Delamination in the plate is assessed according to

the coefficient variations in the model using the measured input/output data for the damaged system. Results show that the model

output prediction is in agreement with the test data. The proposed method is available to discover and assess severity and location of

delamination in the composite plates.

� 2004 Published by Elsevier Ltd.
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1. Introduction

With the wide application of composites in aerospace

and vehicle industries, civil engineering and other

mechanical components, the nondestructive testing

(NDT) or online damage detection for composite

structures is absolutely necessary for service safety.

Fiber-reinforced laminae are the most frequently used

composites. Due to imperfections introduced during the
manufacturing process or induced by external repeated

or impact loads, delamination is a major concern for

in-service composites and has the most critical potential

danger in the hidden state, i.e., internal delamination.

Early detection of initial damage can prevent a cata-

strophic failure or structural deterioration beyond re-

pair. It is, therefore, critical to detect the damage for

practical composites or structures, especially at the early
stage [1–5].

A number of studies have been carried out to show

the effectiveness of dynamic response measurements for

NDT of composites. Vibration-based NDT method has

been developed in order to detect the damage by dy-
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namic analysis [6]. The basic idea in vibration-based
damage detection is that the modal parameters depend

on the physical properties of the structure to be in-

spected. Therefore, changes in physical properties of a

structure due to damage can result in detectable varia-

tions in its modal parameters, such as natural frequen-

cies, mode shapes and modal damping. However, as the

damage-induced variation of modal parameters is al-

ways slight, it is not always practical to detect damage,
especially in the early or initial state using this method.

Because of its ability to learn from past experiences

and to memorize patterns in the form of an associative

memory, neural networks (NNs) have been applied

successfully in many fields. The candidate models for

structures with various types of damage are designated

as patterns for damage identification. These different

patterns are organized into pattern classes according to
the location and severity of damage. To identify the

status of a structure, so as to detect damage or to

monitor the health of the structure the NNs must be

trained using a great number of input–output data of

intact and various damaged samples. Due to the limi-

tation of measured signals of dynamic responses from

real-world structure under different episodes of dam-

age, the model-based neural networks (MBNNs) are
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Fig. 1. Geometry and delamination position of the composite system.
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proposed [7–9]. Since the effectiveness of the MBNN

system is dependent on the accuracy of the structural

model, it is helpful for accurately modeling the practical

structure to investigate the model obtained by experi-
mental data.

Due to the complication of material composition, it is

difficult to establish accurate analytical models for

multi-layer composites. Therefore, the computational

model established according to experimental data plays

an important role in the implement of damage detection.

According to our experimental investigation, the rela-

tionship between input and output is nonlinear for
multi-layer composite structure. Several authors have

studied the realization problem for nonlinear systems

and some interesting results have been obtained. Espe-

cially for nonlinear discrete system, Leontaritis and

Billings have proposed the nonlinear, autoregressive,

moving average exogenous (NARMAX) structure as a

general parametric form for modeling nonlinear system

[10]. NARMAX models describe the nonlinear systems
in terms of difference equations relating the current

output to combinations of inputs and past outputs.

Although it is capable of describing a wide variety of

nonlinear systems, it has been used mainly for control

problem, where the main objective is to achieve a simple

system description.

This paper deals with the NARMAX model of multi-

layer composite system in order to carry out damage
detection. Based on nonparametric analysis on nonlinear

nature test and order approximation of the nonlinearity

the NARMAX model is constructed, while the orthog-

onal estimation algorithm is used to select the model

terms according to the error reduction ratio [11]. The

computation code is programmed to identify the model

structure and estimate parameters. The proposed model

is validated using different input/output signals. The
applicability of this model for damage detection of some

samples is then investigated according to the parameter

variations of the model. The results show that the pro-

posed model is well suited to identify the dynamic

behavior of multi-layer composite systems and effective

to detect internal delamination even at its early state.
2. Nonlinearity analysis on multi-layer composites

2.1. Sample description

Samples of 16-layer carbon fiber-reinforced epoxy
plates are prepared. Each sample has an area of

240 · 180 mm2 in the orientation of [0/0/90/90/0/0/90/

90]s. The laminate is fabricated using TC12K33/S-1

prepreg tapes with a thickness of 0.13 mm. Each dam-

aged sample is delaminated at a specified position by

inserting teflon films with a thickness of 0.015 mm as

shown in Fig. 1. The teflon film is inserted between the
forth and fifth layers when the laminate is fabricated.

Simply supported boundary condition is adopted during

experiment.

2.2. Static analysis

To approximate the nonlinearity of the system,

several step inputs of different amplitudes are applied,

and then the nonlinear behavior of the system is

determined by the relationship between the values of

the inputs and outputs. The static load–strain test is

used to investigate the behavior of the system. A con-

centrated compressive load along the opposite of z-
direction is applied at the point with coordinates
x ¼ 184 mm and y ¼ 168 mm on the top surface. The

strain ex along x-direction is measured at the point with

coordinates x ¼ 48 mm and y ¼ 90 mm on the top

surface. Fig. 2 shows the strain–load relationship of the

intact specimen. It is clear, from the shape of the

graph, that the relationship is nonlinear. According to

the measured data, using the 4-order polynomial fit the

solid line in Fig. 2 can be obtained.

2.3. Dynamic analysis

Periodic signal tests are used to investigate the non-

linear nature of the composite system. According to the

spectral properties of the signals it is possible to detect

and qualify the dynamic behavior of the nonlinearity in

a system by examining the additional frequency contri-

butions generated at the system output by nonlinearity

[12]. Dynamic test for the intact sample is conducted
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Fig. 2. Strain–load plot obtained by static test with polynomial fit for

the intact plate sample.
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composite system.
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Fig. 4. Excitation-response plot for the intact composite system.
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using the set-up as illustrated by Fig. 3. Two piezo-

electric patches with a thickness of 0.28 mm and a size of

15 · 25 mm2 are bonded on the top and bottom surfaces,

respectively as actuators (the center of the bounded area

is just at the point with coordinates x ¼ 48 mm and

y ¼ 90 mm). An accelerometer (Endevco 22) is used as

the transducer and adhered to the point with coordi-

nates x ¼ 184 mm and y ¼ 168 mm. The exciting signal
is generated by a waveform generator (TTi TGA1241).

A power amplifier (TreK 603) and a charge amplifier

(B&K 2635) are used to enhance signals from the gen-

erator and transducer, respectively. Both the exciting

and response signals are recorded and analyzed by an

FFT spectrum analyzer (B&K 3550).

The experimental results also show the nonlinear

nature of the system, because the response of the intact
system to a harmonic excitation includes not only main

harmonic composition, but also the super- and hypo-

harmonic compositions of exciting frequency. Fig. 4

shows the relationship between the amplitudes of exci-

tation and response when the exciting signal is sinusoi-

dal with a frequency of 200 Hz. In this figure, the

vertical coordinates are the root-mean-square values

(RMS) of the acceleration response signals, and the solid
line represents the fourth-order polynomial fit. There-
fore, the analysis performed on the available data of

both static and dynamic tests indicates the existence of a

fourth-order nonlinearity in the mentioned composite

system. This information will be used in the next section

to identify a parametric nonlinear model capable of

representing the dynamic behavior for the multi-layer

composite cantilever plates.
3. Estimation algorithm for NARMAX model

Having detected the nonlinearity, the development of

a global nonlinear model for the composite system is
needed. The NARMAX model for describing the input–

output relationship of the nonlinear single-input single-

output (SISO) system can be written as

yðkÞ ¼ F 4ðyðk � 1Þ; . . . ; yðk � nyÞ; xðk � dÞ; . . . ;
xðk � nxÞ; eðk � 1Þ; . . . ; eðk � neÞÞ þ eðkÞ ð1Þ

where F 4 is a fourth-order polynomial function, x is the

exogenous input, y is the output, and e is the noise

signal, i.e., the prediction error. ny , nx, and ne are the

auto-regressive, exogenous input and moving average

orders, respectively. d represents the system time delay.

Just as parameter estimation, the NARMAX model

identifies both the structure and the parameters of an
unknown nonlinear system. Therefore, after identifica-

tion of the system nonlinearity, estimating the system

parameters is a vital stage.
3.1. Parameter estimation using orthogonal estimator

Detecting which terms are significant and should be

included in the model is very important. There exist

several structure detection and parameter estimation
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algorithms as part of the NARMAX methodology [10].

The orthogonal estimator [13,14] will be used here to

estimate structure and parameters of the system, since it

is simple to implement and to use. An m-dimensional
estimation problem can be reduced to m one-dimen-

sional problems by the orthogonal algorithm, because it

allows each coefficient in the model to be estimated

independently of the other terms and provides an indi-

cation of the contribution that the term makes to the

system output.

Suppose there are nh process terms in the model of

Eq. (1), the NARMAX model can be represented as

yðkÞ ¼
Xnh
i¼1

hipiðkÞ þ eðkÞ ð2Þ

where piðkÞ describes the variable of a term with coeffi-

cient hi in the model of Eq. (1). Rather than directly

estimating hi the orthogonal algorithm operates on an

equivalent auxiliary model as

yðkÞ ¼
Xnh
i¼1

giwiðkÞ þ eðkÞ ð3Þ

where wiðkÞ’s are constructed to be orthogonal over the

data record. Because of the orthogonality the parameter

vector can be estimated by computing one parameter

estimation at a time. The parameters gi’s are estimated

by implementing the orthogonal estimator [11]. The

algorithm is simple and easy to implement as the aux-
iliary regressors wiðtÞ are orthogonal. Numerical ill-

condition can be avoided by deleting wjðkÞ if
P

w2
j ðkÞ

for all data points is less than some threshold. The

prediction errors must be estimated from Eq. (3) as [13]

êðkÞ ¼ yðkÞ �
Xnh
i¼1

giwiðkÞ ð4Þ

and an estimate of r2 ¼ E½e2ðkÞ�, i.e., the mathematical
prediction of estimation error, can be obtained by

br ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � nh

XN
k¼1

e2ðkÞ

vuut ð5Þ

where N represents the number of data points.

3.2. Term selection method

Although the orthogonal algorithm presented above

can estimate all the unknown coefficients in the model of

Eq. (1), the exclusion of some terms is helpful for sim-

plifying the model. This can be achieved by computing

the error reduction ratio for each term by [13]

½eRR�i ¼
ĝ2i
PN

k¼1 w
2
i ðkÞPN

k¼1 y
2ðkÞ

� 100% ð6Þ

where ĝi is the estimate of gi in Eq. (3). As ½eRR�i rep-
resents the relative reduction in mean squared error,
which would result from including the ith term giwiðkÞ in
Eq. (3) (i.e., hipiðkÞ in the NARMAX model of Eq. (2)),

it is tested against a threshold and the ith term is in-

cluded in the model only if ½eRR�i exceeds the threshold.
If consider all the possible piðkÞ (i ¼ 1; 2; . . . ; nh) as

candidates for w1ðkÞ, by finding

½eRR�j1 ¼ maxf½eRR�i1; 16 i6 nhg ð7Þ
where

½eRR�i1 ¼
ðĝi1Þ

2PN
k¼1ðwi

1ðkÞÞ
2PN

k¼1 yðkÞ
2

; ĝi1 ¼
PN

k¼1 w
i
1ðkÞyðkÞPN

k¼1ðwi
1ðkÞÞ

2
;

wi
1ðkÞ ¼ yðkÞ ð8Þ

the first term included in the model is selected as

w1ðkÞ ¼ wj
1ðkÞ, ĝ1 ¼ ĝj1ðkÞ and ½eRR�1 ¼ ½eRR�j1 associated

with pjðkÞ. Thus, for i ¼ 1; . . . ; nh, i 6¼ j compute

½eRR�i2 ¼
ðĝi2Þ

2PN
k¼1ðwi

2ðkÞÞ
2PN

k¼1 yðkÞ
2

; ĝi2 ¼
PN

k¼1 w
i
2ðkÞyðkÞPN

k¼1ðwi
2ðkÞÞ

2
;

wi
2ðkÞ ¼ piðkÞ � ai12w1ðkÞ ð9Þ

where

ai12 ¼
PN

k¼1 w1ðkÞpiðkÞPN
k¼1 w

2
1ðkÞ

ð10Þ

½eRR�l2 ¼ maxf½eRR�i2; 16 i6 nh; i 6¼ jg ð11Þ
is obtained, and then, the second term is selected as

w2ðkÞ ¼ wl
2ðkÞ ¼ plðkÞ � al12w1ðkÞ, a12 ¼ al12, ĝ2 ¼ ĝl2ðkÞ

and ½eRR�2 ¼ ½eRR�j2 associated with plðkÞ. Suppose Cd

and Ce are the thresholds for the process and noise

terms, respectively, the above procedure will be termi-

nated at any step, say q, when ½eRR�q < Cd (or Ce) or

when the total parameter set has been searched. Once

term selection is completed, the coefficient of each se-

lected term can be calculated by the backward algorithm

hns ¼ gns; hi ¼ gi �
Xns
j¼iþ1

aijhj ðns� 1P iP 1Þ ð12Þ

where ns is the number of all selected terms of the

NARMAX model.

Based on the above description, a program code is

developed for term selection and coefficient determina-

tion of NARMAX model. Fig. 5 shows the approach of

the above forward regression algorithm with a noise

model estimator.
4. NARMAX model description for multi-layer compos-
ites

4.1. Structure identification of NARMAX model

To initially identify the best linear model is helpful for

a suitable choice of nx, ny and ne as well as term structure

in the NARMAX model of Eq. (1).
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A white noise signal with a bandwidth of 1–1600 Hz

is used as the input for the intact sample described in

Section 2. Fig. 6 shows the data records of input and

output. For each signal, 2048 points are recorded within

1 s. Table 1 lists the computation results of prediction

errors obtained using Eq. (5) for different time delay and

forward orders. For simplicity, the same forward orders
of input, output and noise terms are adopted. It is seen

that when the time delay is 1, as shown by the bold

values in Table 1, r reaches the minimum for almost all

forward orders. The table also shows that r will nearly

monotonically decrease with the increase of forward

order until it reaches 12 (as shown by the bold values in
Table 1

Values of r for different ARMAX models for the intact plate

Forward

order (nx)
Time delay (d)

0 1 2 3

1 1.02E)2 9.85E)3 9.85E)3 9.85E)3
2 9.99E)3 9.82E)3 9.82E)3 9.82E)3
3 7.45E)3 7.46E)3 7.55E)3 7.83E)3
4 7.14E)3 7.14E)3 7.18E)3 7.50E)3
5 7.22E)3 7.22E)3 7.22E)3 7.49E)3
6 7.03E)3 7.03E)3 7.03E)3 6.91E)3
7 6.83E)3 6.83E)3 6.83E)3 6.79E)3
8 6.05E)3 6.16E)3 6.16E)3 6.05E)3
9 5.51E)3 5.66E)3 5.66E)3 6.08E)3
10 4.65E)3 4.10E)3 4.66E)3 4.56E)3
11 3.96E)3 3.80E)3 3.96E)3 4.48E)3
12 3.94E)3 3.73E)3 3.94E)3 4.48E)3
13 4.10E)3 3.77E)3 4.12E)3 4.86E)3
the table), and go up slightly after this order when d ¼ 1.

Therefore, the time delay of 1 will be used to fit the

NARMAX model and an appropriate model order will

be nx ¼ ny ¼ ne ¼ 12.
Based on the above-mentioned initial guess of nx, ny ,

ne and d the linear model is estimated by selecting

Cd ¼ 10�3 and Ce ¼ 10�4. The results are summarized in

Table 2, where err represents the root-mean-square error

calculated using

err ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

ê2ðkÞ

vuut ð13Þ

It is seen that 16 process terms and 9 noise terms have

been selected. The root-mean-square errors decrease

with the increase of the selected terms, and the decrease
rate becomes slow with the completion of the selection.

Following the above suggestions of the model struc-

ture and the initial values of forward order and time
4 5 6 Average

9.85E)3 9.85E)3 9.85E)3 9.90E)3
9.82E)3 9.82E)3 9.82E)3 9.84E)3
7.91E)3 7.91E)3 7.91E)3 7.72E)3
7.50E)3 7.41E)3 7.41E)3 7.33E)3
7.49E)3 7.39E)3 7.39E)3 7.35E)3
6.91E)3 7.01E)3 7.01E)3 6.99E)3
6.95E)3 6.97E)3 6.97E)3 6.88E)3
6.18E)3 6.21E)3 6.21E)3 6.15E)3
6.23E)3 6.00E)3 6.00E)3 5.88E)3
4.80E)3 5.06E)3 5.06E)3 4.70E)3
4.48E)3 4.77E)3 4.77E)3 4.32E)3
4.48E)3 4.78E)3 4.78E)3 4.30E)3
4.86E)3 4.88E)3 4.88E)3 4.50E)3
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Fig. 7. The predicted outputs of ARMAX and NARMAX models for

the intact composite system.

Table 2

Results of ARMAX model estimation for the intact composite system

i piðkÞ hi err i piðkÞ hi err i piðkÞ hi err

1 yðk � 3Þ 4.92E)1 6.61E)3 9 xðk � 3Þ )1.68E)3 3.67E)3 17 eðk � 7Þ )3.33E)1 2.46E)3
2 yðk � 11Þ 4.81E)1 5.60E)3 10 xðk � 1Þ )7.05E)4 3.52E)3 18 eðk � 2Þ 3.88E)1 2.44E)3
3 yðk � 10Þ )5.58E)1 5.40E)3 11 yðk � 6Þ 2.85E)1 3.43E)3 19 eðk � 11Þ )2.53E)1 2.40E)3
4 yðk � 7Þ 4.39E)1 4.58E)3 12 yðk � 9Þ )1.92E)1 3.34E)3 20 eðk � 6Þ )3.24E)1 2.28E)3
5 xðk � 4Þ 2.91E)4 4.40E)3 13 yðk � 1Þ 1.34E)1 3.21E)3 21 eðk � 10Þ 1.42E)1 2.25E)3
6 xðk � 8Þ 1.06E)3 4.24E)3 14 yðk � 8Þ )2.19E)1 2.95E)3 22 eðk � 3Þ )1.30E)1 2.25E)3
7 xðk � 2Þ 1.96E)3 3.99E)3 15 yðk � 2Þ 1.36E)1 2.67E)3 23 eðk � 12Þ )2.29E)1 2.23E)3
8 xðk � 9Þ )4.17E)4 3.78E)3 16 xðk � 7Þ )5.01E)4 2.52E)3 24 eðk � 4Þ 2.03E)1 2.20E)3

25 eðk � 1Þ 1.81E)1 2.14E)3
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delay, the NARMAX model is estimated using the same

data and thresholds as those used in linear estimation.

4.2. NARMAX model and its validation

As the fourth-order polynomial model, there are
hundreds of possible terms to be selected, but Table 3

indicates that only 34 of them are significant. Table 3

shows that 4 and 5 nonlinear terms have been added to

the model for terms of process and noise, respectively.

Using the NARMAX model the final root-mean-square

errors err is reduced by 10.75% in comparison with the

ARMAX model. Fig. 7 shows the model output of

acceleration response to random excitation for the intact
specimen. It is seen that the NARMAX model has a

better prediction of the acceleration data than the AR-

MAX model.

To investigate the robustness of the proposed model,

the acceleration response to sinusoidal sweep signal is

also measured for the same composite system as used to

estimate the model as illustrated in Table 3. Let the

percentage variance accounted for (VAF) by the
NARMAX model be defined as

VAF ¼ 1

 
�
PN

k¼1 e
2ðkÞ=NPN

k¼1 y
2ðkÞ=N

!
� 100% ð14Þ

Using the recorded data of sinusoidal excitation as

input the model VAF is 98.4%, i.e., the predicted output
Table 3

Results of NARMAX model estimation for the intact composite system

i piðkÞ hi err I piðkÞ hi

1 yðk � 3Þ 4.58E)1 6.61E)3 12 xðk � 1Þ 1.3

2 yðk � 11Þ 5.22E)1 5.60E)3 13 y2ðk � 8Þ )3.5
3 y2ðk � 10Þ )2.69E)0 5.37E)3 14 y3ðk � 9Þ )8.4
4 yðk � 7Þ 3.59E)1 4.70E)3 15 yðk � 1Þ 1.0

5 yðk � 10Þ )3.70E)1 4.55E)3 16 xðk � 3Þ )1.3
6 xðk � 4Þ )3.28E)5 4.39E)3 17 xðk � 1Þ )5.7
7 xðk � 8Þ 1.47E)3 4.21E)3 18 y2ðk � 6Þ 4.0

8 xðk � 2Þ 1.70E)3 3.96E)3 19 y2ðk � 11Þ )1.1
9 xðk � 9Þ )7.11E)4 3.75E)3 20 yðk � 5Þ )5.7
10 xðk � 7Þ )6.59E)4 3.64E)3 21 e3ðk � 3Þ 8.9

11 xðk � 5Þ 1.40E)4 3.56E)3 22 e3ðk � 10Þ 1.1
of the proposed NARMAX model matches the mea-

sured output with over 98% VAF in this case. Fig. 8
shows the comparison between the outputs of the

NARMAX model and the tested data. It is clear that

the proposed model can predict the output well when

the input is sinusoidal signal although the model is

determined using the band-limited white noise signal for

the identical composite system. Therefore, the model is
err i piðkÞ hi err

3E)1 3.47E)3 23 eðk � 1Þ 5.95E)1 2.39E)3
9E+0 3.31E)3 24 e3ðk � 1Þ )1.39E+3 2.33E)3
9E+1 3.22E)3 25 eðk � 8Þ )2.25E)1 2.29E)3
7E)1 3.11E)3 26 e4ðk � 7Þ 2.23E+3 2.26E)3
5E)3 2.99E)3 27 e2ðk � 11Þ 1.20E+1 2.23E)3
4E)4 2.84E)3 28 eðk � 9Þ 2.14E)1 2.18E)3
3E+0 2.71E)3 29 e4ðk � 2Þ )1.23E+3 2.12E)3
4E+0 2.69E)3 30 e4ðk � 3Þ 1.88E+4 2.11E)3
9E)2 2.59E)3 31 e2ðk � 2Þ 2.43E)1 2.05E)3
3E+2 2.55E)3 32 eðk � 2Þ 1.77E)1 2.03E)3
9E+2 2.50E)3 33 e4ðk � 1Þ )1.88E+4 1.92E)3

34 eðk � 5Þ 9.57E)2 1.91E)3
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Fig. 8. The output of NARMAX model of the response to sinusoidal

sweep excitation for the composite system.
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well suited to model the input/output behavior of the

multi-layer composite plate dynamics.
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Fig. 9. Parameter variations in NARMAX model induced by delam-

inations of different areas in the composite plates.
5. Delamination assessment using NARMAX model

5.1. Extraction of damage features

The NARMAX approach is a parametric estimation

methodology for identifying both the structure and the

parameters of an unknown nonlinear system. For a gi-

ven composite system, the parameter class of the model

is identical. If some physical property changes in the

system, e.g., internal damage occurs in the composite

plate, the model parameters estimated using measured
input/output data are different from those of the intact

system. Thus, the change of model parameter class can

be a representation of the damage features in the com-

posite system.

As the differences of signals between intact and

damaged structures are generally insignificant in the

early stage of damage, extraction of damage index di-

rectly from the parameter change is difficult. Therefore,
the square of relative parameter change is used to en-

hance the sensitivity of features to damage. If h0i and hdi
represent coefficients of the NARMAX models associ-

ated with intact and damaged systems, respectively, the

dimensionless index

gi ¼
qdi � q0i

q0i

� �2

ð15Þ

is adopted to demonstrate the feature of damage-in-

duced parameter variation of the ith coefficient in the

model. Therefore, according to the model of each

damaged case, a series of columns can be plotted for gi.
Let the sum of all these columns be equal to 1 in a

particular case, each of the columns can, therefore,
represent the percentage of the total parameter variation

for the considered damage case, i.e., the height of each

column is

fi ¼
giPnh
i¼1 gi

ð16Þ
5.2. Experimental analysis on parameters of NARMAX

model

5.2.1. Parameter change with damage severity

Four damaged composite plates have been fabricated,

and named as Plates A, B, C and D, respectively. Each

damaged plate has only one rectangular delamination
located at the position with the center as shown in Fig.

1. The delamination areas of Plates A, B, C and D are

18 · 12, 36 · 24, 54 · 36 and 72 · 48 mm2, respectively.

During experiment, the excitation signal and bound-

ary conditions as well as the test set-up are the same for

the intact and damaged plates. The input/output data

are used to estimate the parameters of NARMAX

model with the same structure and terms as those of the
intact system. Fig. 9 shows the parameter variations for

each delaminated plate. It is seen that when there is

delamination in the plate, even as small as 0.5% of the

whole plate area, the parameter change in the NAR-

MAX model can still be observed. However, not all

parameters have the same extent of change for different

delamination areas, only some of them are especially

significant. When the delamination is small, e.g., in
Plates A and B, the number of the varied coefficients is

very limited and the variation of different coefficients is

nearly identical, but with the increase of delamination

area more and more coefficients vary. Therefore,

according to the variation manner of coefficients in the
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NARMAX model of the composite system, the internal

delamination can be fund and assessed.
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5.2.2. Parameter change with damage location

In order to further investigate the distribution of

varying parameters in NARMAX model five cantilever

composite plates are also prepared, one is intact and

four named E, F, G and H, respectively, are damaged.
They are the same as those described in Section 5.2.1

except that their width is as shown in Fig. 10. Each

damaged plate is delaminated at a specified region with

an identical delaminated area. The damage locations of

Plates E, F, G and H are also shown in Fig. 10.

After static and dynamic investigation on the nature

of nonlinearity for the intact cantilever composite plate

the term and coefficients of NARMAX model are esti-
mated as shown in Table 4. The input signal excites the

piezoelectric patch bonded on the top surface near the

fixed end of the plate (the center of the bounded area is

just at the point with coordinates x ¼ 18 and y ¼ 45),

and the output data are measured by the accelerometer

adhered to the point as shown in Fig. 10.

Using Eqs. (15) and (16) for each damaged cantilever

plate, the delamination-induced change of parameters in
H G  F E

102

54 90

x

y

363636

Output point
PZT patch actuator

3642

Unit: mm 
204

162

Fig. 10. Delamination locations and dimensions of the cantilever

plates.

Table 4

Results of NARMAX model estimation for the intact cantilever plate

i piðkÞ hi err i piðkÞ hi

1 yðk � 9Þ )8.88E)2 1.02E+0 12 xðk � 3Þ 1.8

2 yðk � 4Þ )1.40E+0 8.37E)1 13 yðk � 8Þ 1.0

3 yðk � 2Þ )1.13E+0 6.83E)1 14 y4ðk � 3Þ 4.9

4 xðk � 2Þ )1.66E)2 6.48E)1 15 y4ðk � 4Þ 7.7

5 xðk � 7Þ 5.00E)4 6.12E)1 16 yðk � 5Þ 1.0

6 xðk � 1Þ 4.70E)3 5.76E)1 17 e3ðk � 1Þ )5.3
7 yðk � 7Þ )1.26E)1 5.47E)1 18 e4ðk � 4Þ )1.3
8 yðk � 3Þ 9.57E)1 4.46E)1 19 e2ðk � 3Þ 1.2

9 xðk � 4Þ )7.35E)3 4.04E)1 20 e4ðk � 2Þ )9.8
10 yðk � 1Þ 1.57E+0 3.65E)1 21 eðk � 8Þ )3.3
11 yðk � 6Þ )6.63E)2 2.65E)1 22 e4ðk � 5Þ )8.9
NARMAX model can be computed, and the input/

output data are used to estimate coefficients of the

model with the same structure and terms as that for the

intact plate. Fig. 11 shows parameter variations for each
delaminated plate. It is seen that quite a lot of coeffi-

cients vary for each damaged plate when the delami-

nated region is as large as 9% of the whole plate area. It

is also obvious that the variation distribution of coeffi-

cients is different when delamination locates at different

regions. The maximum variation occurs in different

coefficients for plates with different damage locations.

Therefore, it is practical to identify damage location
according to the variation distribution of coefficients in

NARMAX model, but further investigation is necessary

for much more samples.
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Fig. 11. Parameter variations in NARMAX model induced by del-

aminations at different locations in the cantilever plates.

err i piðkÞ hi err

8E)2 2.45E)1 23 eðk � 5Þ 4.41E)1 1.62E)1
2E)1 2.16E)1 24 eðk � 3Þ 3.56E)1 1.58E)1
6E)2 2.17E)1 25 eðk � 6Þ 2.90E)1 1.53E)1
4E)3 2.18E)1 26 e2ðk � 6Þ 4.58E)1 1.50E)1
6E+0 2.12E)1 27 e3ðk � 5Þ )8.18E+1 1.47E)1
3E+0 1.98E)1 28 e2ðk � 1Þ )3.71E+0 1.47E)1
9E+0 1.88E)1 29 eðk � 2Þ )1.62E)1 1.45E)1
5E+0 1.79E)1 30 e3ðk � 8Þ 3.21E)1 1.43E)1
0E)1 1.74E)1 31 eðk � 1Þ )1.15E)1 1.41E)1
5E)1 1.69E)1 32 eðk � 9Þ )3.04E)1 1.39E)1
4E+1 1.67E)1 33 e3ðk � 9Þ 4.08E)1 1.36E)1
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6. Conclusions

A complete but elementary damage detection meth-

odology for a composite vibration system is presented in
this paper. Both static and dynamic investigations on

nonlinear nature of the system are carried out. Then, the

structure of the nonlinear discrete model is identified

using the measured input/output data by analysis on

mean square errors of forward order and time delay in

linear model. Parameters in the NARMAX model of the

undamaged composite system is then estimated and val-

idated. Finally, the structure of the proposed model is
used to estimate model parameters for damaged vibration

systems, and internal delamination is detected by com-

paring model parameters between intact and damaged

systems. Results show that it is effective and practical to

investigate dynamic behavior and to assess damage in

composite system by means of analysis on properties of

NARMAXmodel. This paper contributes to not only the

understanding of the use of parametric identification
method for modeling of composite vibration systems, but

also the exploration of internal damage detection, espe-

cially in the early stage, for composite systems.
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