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ABSTRACT: An inverse analysis based on the artificial neural network technique is
introduced for effective identification of crack damage in aluminum plates. The concepts of
digital damage fingerprints and damage parameter database, which are prerequisites for
neural network developing and training, are presented. Parameterized modeling for finite
element analysis and an information mapping approach are applied to constitute the damage
parameter database cost-effectively. The generalization performance of the neural network
is examined by a process of ‘leave-one-out’ cross-validation and diverse factors are discussed,
based on which the optimization of the neural network architecture is evaluated. The
capability of this inverse approach is assessed by two crack cases from experiments, with good
accuracy obtained in damage parameters (central position, size, and orientation).

Key Words: Lamb waves, artificial neural network, damage detection, digital damage
fingerprints.

INTRODUCTION

T
HE artificial neural network (ANN) technique is
a promising solution for effective damage identifica-

tion as a typical nonlinear inverse problem. Various
changes in the characteristics of structural dynamic/
static signals associated with damage have been
employed for network training because they are easy
to capture and sensitive to the existence of damage
in some cases. These parameters include modal shapes
and frequencies (Chang et al., 2000; Suh et al., 2000;
Yun and Bahng, 2000; Ni et al., 2002; Yuan et al., 2003),
displacement (Xu et al., 2001), velocity (Xu et al., 2004),
and strain (Kudva et al., 1992; Shaw et al., 1995; Hwu
and Liang, 2001). For identification of crack damage,
Mahmoud and Kiefa (1999) input the first six natural
frequencies into a neural network to estimate the
location and size of surface cracks (15% deeper than
the beam depth) in a steel cantilevered beam. Using
natural frequencies and modal shapes as input patterns,
Choubey et al. (2006) determined the size and location
of through-thickness cracks which were 30% larger than
the effective length of vessel structures. Liu et al. (2002)
validated the feasibility of the ANN technique for crack
detection using the responses of surface displacement.
However, it is understood in general that initial or local

damage leads to less detectable or undetectable changes
in global structural dynamic parameters at low frequen-
cies, which, as input vectors, compromise the perfor-
mance of the ANN technique (Su, 2004).

Lamb waves propagating through damaged plate-like
structures carry characteristics that can be correlated
with the location and severity of a defect, providing
another set of information for effective damage evalua-
tion. For example, forward estimation of crack para-
meters (location, size, and orientation) and their effects
on Lamb wave propagation have been extensively
investigated in previous studies. It has been observed
that, with an increase in excitation frequency, the value
of the reflection coefficient of Lamb waves approaches
a plateau of crack depth to plate thickness for surface-
breaking cracks, and of crack length to plate width for
through-thickness cracks (Lowe, 1998; Lowe and
Diligent, 2002). Similar results have also been obtained
in pipes for the reflection of the fundamental torsional
mode by notches and cracks of different depths and
circumferences in a frequency range of 0.01–0.3MHz
(Demma et al., 2003). However, a single actuator/sensor
pair might be appropriate for evaluating only one crack
parameter in simple cases, and crack size and orientation
cannot be determined simultaneously with certainty
because different cracks may show the same reflection/
transmission coefficient, resulting in an incorrect judg-
ment (Lu et al., 2007, 2008). As an inverse problem, it is
difficult to employ these characteristics directly from
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scattered waves for quantitative determination of
multiple parameters of damage (Xu et al., 2001).
Based on these observations, Su and Ye (2005a,b)

assessed the location and size of hole and delamination
damage in composite laminates using the ANN techni-
que with the unique concepts of digital damage
fingerprints (DDFs) and damage parameter database
(DPD). An active sensor network was used for cross-
examining the Lamb wave signals scattered by damage
to bridge the implicit relation between damage param-
eters and unique characteristics in acquired signals using
an ANN model as a typical inverse analysis.
In this study, the ANN technique for quantitative

crack identification in aluminum plates was developed
with the aid of DDFs verified by experiments.
Parameterized modeling was adopted for finite element
analysis (FEA) to effectively generate crack scenarios
with randomly selected parameters. The information
mapping technique (Su and Ye, 2005a,b) was applied
to constitute the DPD of interest, which comprised
extracted DDFs from the sensor network. The config-
uration of the proposed ANN was also optimized, based
on evaluation of generalization performance with
a process of cross-validation.

CRACK CASES FOR EXAMINATION

In this study, a 500� 500mm2 aluminum plate
(1.6mm in thickness) with encastre boundary condition

was considered. It is assumed that the structure and
material properties are isotropic in the plate without any
prestress. Any changes in the propagation characteristics
of Lamb waves are therefore correlated with the exist-
ence of damage only. Sufficient crack scenarios for ANN
training can be developed by numerical simulation to
replace the need for a large amount of experiments.
However, under most circumstances, FEA software
currently available can provide only a single modeling
interface for a specific geometry. Such a procedure is
extremely onerous and repetitive with various geometric
parameters, since the whole system has to be remodeled.
This concern becomes more serious when the damage
parameters involved are also changed. For effective
model construction with minimal effort, a parameterized
modeling program was applied with the PATRAN
command language (PCL)� (Huang et al., 2004).

Four PZT actuators/sensors were simulated on the
upper surface of the specimen at positions illustrated in
Figure 1, which can be recognized as a standard unit of
an active sensor network. Crack cases were distributed in
four sensor-enclosed quadrants (Zones I–IV in Figure 1),
with the same width (0.6mm) but with a variety of
length (05l� 65mm) and orientation (0� �� 1808)
generated by a random function. All parameters, as
summarized in Table 1, were input to the parameterized
modeling program for automated mesh generation. The
size of eight-node solid elements in the plate plane was
set to be 1mm, and two layers of elements were modeled
through the thickness (1.6mm), which is adequate for
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Figure 1. Configuration of specimen and PZT discs
in FEA modeling and experiments.
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describing the characteristics of Lamb waves at a low
product range of frequency and plate thickness, where
the mode shapes of Lamb waves through the thickness
are quite simple (Diligent and Lowe, 2005).
Three-dimensional dynamic simulation for each crack

case was subsequently conducted using ABAQUS/
EXPLICIT� code. A five-cycle toneburst modulated
with a Hanning window at a central frequency of
0.3MHz was imposed, as in-plane shear force, on the
nodes along the radial direction of the simulated PZT
actuators P1–P4 in turn (Yang et al., 2006). Lamb wave
signals were collected by the other three PZT discs as
sensors at a sampling frequency of 20.48MHz (Yang
et al., 2006). The acquired wave signal via actuator–sensor
path P1-P2 from simulation is displayed in Figure 2 for
a typical crack case. Twelve actuator–sensor paths were
therefore involved for each crack case for further
extraction of characteristics, which provided exclusive
parameter information for individual crack cases.

DIGITAL DAMAGE FINGERPRINTS AND

DAMAGE PARAMETER DATABASE

The raw Lamb wave signals were decomposed into
multiple frequency regions via discrete wavelet

analysis (db10, Daubechies wavelet 10). The relevant
level comprising the excitation frequency (0.3MHz in
this study) was selected, and noise from other frequency
bands was filtered out. Previous studies substantiated
that Lamb wave signals with a dominant S0 mode at the
excitation frequency of 0.3MHz show the best sensitiv-
ity to a through-thickness crack (Lu et al., 2007, 2008).
In reconstructed wave signals, the point of time at which
the magnitude of signal amplitude is larger or smaller
than those of its contiguous neighbors can be marked as
a ‘characteristic point’ and its corresponding amplitude
is denoted as the ‘characteristic amplitude’ (Su and Ye,
2005a,b), as depicted in Figure 3. These items are
recorded as principal components of the signals whereas
the others are ‘non-characteristic components’, which
are eliminated to accomplish efficient data compression.

It is presumed that any possible damage in a structure
presents unique characteristics in wave signals. The
extracted principal components originating from all
available actuator–sensor paths in a sensor network
can be assembled to form a feature pattern, called DDFs,
exclusively portraying the mutual relation between
distinctive changes in the characteristics of Lamb wave
signals and damage parameters. For a typical crack case,
the normalized principal components assembled as
DDFs are schematically illustrated in Figure 4,
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Figure 2. Typical Lamb wave signal acquired
in FEA.

Table 1. Parameters considered in FEA modeling.

Specimen Crack PZT disc FEA parameters Load case Others

Length, width,
thickness

Position, length,
width, orientation

Number, position, size Mesh density,
element type

Load type, corresponding
nodes

Boundary condition,
material properties
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implicitly correlating with the parameters of the crack
(location, size, and orientation).
A DPD, comprising DDF vectors extracted from

randomly selected crack scenarios, can be subsequently
developed as a library. A well trained ANN with the
DPD can thus be used to predict a crack of unknown
parameters with the DDFs experimentally acquired
from a sensor network, as a typical inverse analysis.
In this study, a total of 50 randomly selected crack cases
with different parameters were numerically simulated
for a defective plate, based on the concept of an ortho-
gonal array (OA), to achieve a good training result
(Chang et al., 2000).
Given that the specimen geometry and actuator/

sensor positions are symmetrical with regard to the
horizontal and vertical axes of the coordinate system
in Figure 1, the available DDFs in the other quadrants
can be mapped onto the quadrant of interest (Su and
Ye, 2005a,b). As an example, according to the procedure
in Table 2, the actuator–sensor path for one crack case
in Zones II–IV can be mapped to the corresponding
path for a crack with mirrored position and orientation
in Zone I. It is noteworthy that the angle of the mapped
crack from Zone II or IV into Zone I is changed to its
supplementary angle. Without losing generality and
sacrificing the amount of information about crack
scenarios, redundant modeling and calculation can
thus be avoided with the information mapping
technique.
As a result, four parallel DPDs for the four quadrants

respectively can be constructed with the vectors of the
DDFs extracted from crack scenarios originally in the
quadrant and those mirrored into it. However, it should
be noted that successful application of the information
mapping is on the basis of geometrical symmetry and the

high quality of FEA modeling for various crack cases,
which guarantees the equivalence of wave signals
collected via different actuator–sensor paths.

ANN TRAINING AND PERFORMANCE

Feedforward ANN Model and Backpropagation Training

It has been demonstrated that ANN models with two
hidden layers are adequate in most structure-related
analysis for damage identification (Su, 2004). As one
of the most used models, the feedforward network has
information passed through the network in the forward
direction with the connections of neurons between
adjacent layers (Staszewski et al., 2004). As illustrated
in Figure 5, such an ANN model for damage identifica-
tion features one input layer with DDFs
�ip p ¼ 1, . . . ,mð Þ, two processing (hidden) layers contain-
ing j and k neurons respectively, and one output layer
with the damage parameters �os s ¼ 1, . . . , nð Þ to be
correlated. The neurons are joined to each other via
the weight matrix and a set of biases. Mathematically,
the sth output parameter in the designed ANN model
is calculated by:

�os ¼ F3

  Xk
q¼1

�w3
q�i � F2

  Xj
r¼1

�w2
r�q

� F1

  Xm
p¼1

�w1
p�r �

�ip

!
þ �b1r

!!
þ �b2q

!!
þ �b3i

!
ð1Þ

where �w l
u�v l ¼ 1, 2ð Þ represents the weight connecting

the uth neuron in the lth layer and the vth neuron in the
(lþ 1)th layer, while �b l

v and ni lv are the added bias and the
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Figure 3. Principal components vs. non-
characteristic components in signal fraction.
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net input in the lth layer for the vth neuron in the (lþ 1)th
layer. Fl (l¼ 1, 2, 3) is the transfer function for activating
neurons in different layers (Mathworks Inc., 2001).
As one of the best known supervised learning

approaches, backpropagation (BP) is associated with

a stochastic steepest descent algorithm for ANN
training within a required error tolerance. In detail,
the mean square error function (MSE) Er is defined as
(Mathworks Inc., 2001):

Er ¼
1

n

Xn
s¼1

�ts � �os
� �2

ð2Þ

where �ts is the sth target vector, as shown in Figure 5.
In the present study, n¼ 4 and �ts corresponds to the
coordinates of crack center, crack size, and crack
orientation. A matrix with 50 columns symbolizing
a total of 50 crack scenarios was allied as an input layer
for ANN training. In the training process, the weight or
bias was modified based on the steepest descent method
so as to minimize the error Er (Suh et al., 2000). The
input and target data were normalized into the range
[�1, 1], and the weights and biases were accordingly
initialized to small random values with zero-mean.

The appropriate selection of neuron numbers is
generally a rule of thumb, decided by the nature of the
problem. One suggested criterion is that the neuron
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Figure 4. DDFs composed by extracted principal components in a sensor network. (With the actuator-sensor path marked at the top-right corner
of the graph.)

Table 2. Mapping of actuator–sensor paths from other
quadrants to Zone I.

Zone II Zone I Zone III Zone I Zone IV Zone I

Actuator– P1-P2 P2-P1 P1-P2 P3-P4 P1-P2 P4-P3
sensor path P1-P3 P2-P4 P1-P3 P3-P1 P1-P3 P4-P2

P1-P4 P2-P3 P1-P4 P3-P2 P1-P4 P4-P1
P2-P1 P1-P2 P2-P1 P4-P3 P2-P1 P3-P4
P2-P3 P1-P4 P2-P3 P4-P1 P2-P3 P3-P2
P2-P4 P1-P3 P2-P4 P4-P2 P2-P4 P3-P1
P3-P1 P4-P2 P3-P1 P1-P3 P3-P1 P2-P4
P3-P2 P4-P1 P3-P2 P1-P4 P3-P2 P2-P3
P3-P4 P4-P3 P3-P4 P1-P2 P3-P4 P2-P1
P4-P1 P3-P2 P4-P1 P2-P3 P4-P1 P1-P4
P4-P2 P3-P1 P4-P2 P2-P4 P4-P2 P1-P3
P4-P3 P3-P4 P4-P3 P2-P1 P4-P3 P1-P2
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numbers can be approximately determined by (Su and
Ye, 2005b):

i ¼
ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

þ B ð3Þ

where i, p, and q are the number of neurons, input
elements, and output elements for each hidden layer,
respectively. B is an empirical constant ranging from 4
to 8, depending on different applications. For the
current case, a neural network model designated
as ANN1 was configured with the neuron numbers for
the first and second hidden layers as 32 and 12,
respectively.
The network training was performed using the

‘Neural Network Toolbox’ of Matlab (version 4.0)
(Mathworks Inc., 2001). Tan-sigmoid and log-sigmoid
transfer functions (Mathworks Inc., 2001) were applied
between the input and first hidden layers, and the first
and second hidden layers, respectively. The linear
transfer function was selected for the second hidden
and output layers so as to avoid the situation that the
output values are limited to a small range (Zhang and
Friedrich, 2003). The scaled conjugate gradient (SCG)
algorithm was chosen for network training because of
its excellent performance in reaching the target and
convergence (Su, 2004). As plotted in Figure 6, an
exponentially accelerated performance is exhibited in
convergence history with an increase in iteration step,
with a plateau indicating that the stabilization and
saturation have been reached.

Evaluation of ANN Generalization

Generalization is one of the most important capacities
of a neural network, demonstrating the potential of
a well-trained neural network to approximate or predict
target values with input vectors that are not in the
training set (Sarle, 1997). Generalization is particularly

sensitive to the number of neurons in the hidden layers.
Too few neurons lead to underfitting, whereas too many
neurons can cause overfitting (Mathworks Inc., 2001).
Under the latter circumstance, the neural network would
generate excessively complex functions to memorize all
the training examples well, but it might be incapable of
generalizing to new situations that are not included in
the training set (Zhang and Friedrich, 2003).

Generalization can be evaluated by a process known
as cross-validation, in which one from all the samples is
extracted from training as a test data set to compute the
MSE (Hjorth, 1994). Cross-validation is markedly
superior for small data sets and can be applied for
selecting the number of neurons in hidden layers or for
optimizing a subset as ANN input (Sarle, 1997). In this
study, one of the 50 DDF sets was selected in turn as
a test data set and the other 49 DDF sets were used for
network training, accomplishing a process of ‘leave-
one-out’ cross-validation, which is advantageous for
estimating the generalization of a neural network with
continuous error functions such as MSE (Kohavi, 1995;
Sarle, 1997).

Another neural network model with 40 and 14
neurons in the two hidden layers, referred to as
ANN2, was established for the purpose of comparison.
The other parameters for ANN training were set to be
identical. The MSE was used to estimate the general-
ization quality of proposed neural networks. From the
statistical histogram of the MSE in Figure 7, over 70%
of crack cases are predicted satisfactorily by both ANN1
and ANN2 with the MSE value50.1, which is 10% of
the normalized maximum of target vectors. Therefore,
both neural networks demonstrated good capability of
generalization to new situations. On the other hand, the
MSE distribution was quite stable and no obvious
improvement in prediction accuracy was found with an
increase in the number of neurons.
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On the basis of these observations, it can be
summarized that the proposed neural networks trained
with the 50 crack cases were sufficient to portray the
implicit relation between the DDFs and the crack
parameters. A more complex neural network with
more neurons might be unnecessary for this problem
and may lead to overfitting with weak generalization
capability and enormous calculation cost.

RESULTS AND DISCUSSION

Two aluminum plates with the same geometry,
mechanical properties, and boundary condition as in
the simulations were used to experimentally validate the
performance of the well-trained neural networks. Four
PZT discs were bonded using adhesive epoxy at
positions on the upper surface of the plates consistent

with the numerical simulations. Two through-thickness
cracks with the parameters listed in Table 3, which were
not included in the data set for the ANN training, were
introduced by a 0.6mm thick blade, one in each
aluminum plate. With the same configuration as in the
simulations, actuators P1–P4 were excited separately to
generate Lamb waves and the other discs acted as sen-
sors to acquire wave signals. These two crack cases were
also calculated using FEA simulations as references.

Two sets of DDFs experimentally extracted from
12 paths of the active sensor network on two plates
were therefore individually fed into the neural networks as
an input vector to predict crack parameters that were
unknown to the neural network beforehand. The
triangulation tracing method was applied first to deter-
mine the quadrant where the crack existed (Lu et al.,
2006). With this approach, Cracks I and II were initially
located in Quadrants I and III, respectively. Subsequently,
the trained neural networks (ANN1 and ANN2) with
DPDs constructed for Quadrants I and III exclusively
were evoked to provide detailed crack parameters. The
diagnostic results are summarized in Table 4 and
compared with the actual cracks in Figure 8, where the
corresponding zones are magnified. The dashed lines
schematically represent the crack cases involved for ANN
training while the solid lines correspond to the prediction
results of different neural networks. The results based on
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Table 3. Parameters of cracks in two aluminum plates
in experiments.

Central position Length Angle

Crack I (�12 mm, �25 mm) 30 mm 958
Crack II (26 mm, 15 mm) 35 mm 1608
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Figure 7. Comparison of ANN generalization with different
configurations.
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the DDFs extracted from the parallel numerical simula-
tion are also listed in Table 4 for comparison.

The prediction results indicate that quantitative
evaluation for crack location, size, and orientation can
be achieved using the proposed ANN technique. No
substantial improvement in prediction accuracy is
observed with an increase in the number of neurons.
The overall error in prediction for the experimental cases
is greater than that for the numerical cases. This is
mostly attributable to inevitable differences between
numerical simulation and experimental measurement,
rather than to error from the network training. Other
factors also affect the accuracy for crack identification,
e.g., the selection of different signal processing method
(wavelet transform in this study). Nevertheless, the
prediction errors of both neural networks still fall
in a reasonable range, considering that the ratio of
crack size to specimen dimension is58%.

In addition to the number of neurons in the hidden
layers, the performance of a neural network is strongly
related to the data size of the input layer, that is, the
amount of DDFs from actuator–sensor paths in each
crack case, and the amount of crack cases involved for
training. To investigate network sensitivity to the size of
training data, a neural network (ANN3) was configured
with 50 crack cases but with limited DDFs from six
actuator–sensor paths where P1 and P2 were excited as
actuators only. Meanwhile, two neural networks,
designated as ANN4 and ANN5 respectively, were
established with the DDFs from 12 actuator–sensor
paths but with 20 and 40 randomly selected crack cases
individually from the full DPD.

Alternatively, based on the MSE distribution of crack
cases in ‘leave-one-out’ cross-validation, a better subset
of training data can be extracted to further improve the
generalization performance of a designed neural
network (Sarle, 1997). A neural network designated as
ANN6 was therefore established by selecting 40 crack
cases as an optimal subset for ANN training, after
deleting the 10 crack cases with the greatest MSEs
judged in cross-validation. The neuron numbers in the

Table 4. Diagnostic results of ANN1 and ANN2 for crack parameters.

Central position Length Angle

Crack parameter (�12.00 mm, �25.00 mm) 30.00 mm 958
ANN1 DDFs (Experiment) (�2.84 mm, �31.29 mm) 45.25 mm 80.38

Crack I DDFs (FEA) (�11.66 mm, �27.96 mm) 32.72 mm 75.68
ANN2 DDFs (Experiment) (�4.70 mm, �30.15 mm) 44.08 mm 73.28

DDFs (FEA) (�11.98 mm, �28.75 mm) 32.55 mm 72.78
Crack parameter (26.00 mm, 15.00 mm) 35.00 mm 1608

ANN1 DDFs (Experiment) (18.43 mm, 20.46 mm) 36.67 mm 121.28
Crack II DDFs (FEA) (27.66 mm, 15.35 mm) 41.06 mm 133.88

ANN2 DDFs (Experiment) (20.93 mm, 23.34 mm) 34.44 mm 124.28
DDFs (FEA) (27.28 mm, 15.90 mm) 41.47 mm 133.28
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Figure 8. Schematic illustration of results from ANNs (1 and 2)
based on the DDFs extracted from experiments (a) for Crack I and
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two hidden layers of ANN3–ANN6 were 32 and 12,
respectively identical to the configurations of ANN1.
The network configurations of ANN1–ANN6 are
summarized together in Table 5.
The prediction results for the two cracks by ANN3–

ANN6 are listed in Table 6 and schematically compared
with the actual cracks in Figure 9, where the results from
ANN3 are not included. The results based on the DDFs
extracted from parallel numerical simulation are also
listed in Table 6. From the results of ANN3, it is evident
that the DDFs from six actuator–sensor paths are
insufficient to estimate all crack parameters, although
some parameters might be determined effectively.
Compared with the prediction of ANN1 and ANN2,
the results of ANN4 and ANN5 with fewer crack cases
are considerably poorer, whereas ANN6 based on cross-
validation optimization exhibits improved prediction
accuracy over ANN1 for both cracks, especially for the
estimation of crack orientation.

CONCLUSIONS

Inverse ratiocination for crack identification in
aluminum plates was developed by virtue of the ANN
technique, whose generalization capacity was investi-
gated with a process of ‘leave-one-out’ cross-validation.
A parameterized modeling program for FEA modeling
was applied for cost-effective simulation of crack cases,
and an information mapping technique was adopted on
the basis of geometrical symmetry and high quality of
FEA modeling. Using well-trained neural networks
configured with the concepts of DDFs and DPD, the
estimation of crack parameters was achieved with good
accuracy.

It is noted that the diagnostic efficiency and precision
are highly dependent on the network architecture.
The following conclusions can be drawn:

1. A feedforward neural network with two hidden layers
using a SCG-based BP algorithm demonstrates good
capacity and capability to map the implicit relation
between the DDFs and crack parameters;

2. Fifty crack cases in one-fourth of the area enclosed
by four PZT sensors provide sufficient patterns with
affordable computational cost;

3. Four PZT sensors, which are integrated as a standard
unit of an active sensor network, provide appropriate
DDFs for ANN training and quantitative crack
evaluation;

4. ‘Leave-one-out’ cross-validation is a robust and
elaborate approach for evaluating network general-
ization, providing an option for optimizing a data
subset as an input layer, so as to prevent overfitting
that could jeopardize the performance of the
proposed network.

Table 5. Network configurations of ANN1–ANN6 for
crack prediction.

Crack cases
for ANN
training

Number
of neurons
in the first

hidden layer

Number
of neurons

in the second
hidden layer

Number
of DDFs
for each

crack case

ANN1 50 32 12 528
ANN2 50 40 14 528
ANN3 50 32 12 264
ANN4 20 32 12 528
ANN5 40a 32 12 528
ANN6 40b 32 12 528

aRandomly selected from 50 crack cases.
bOptimally selected from 50 crack cases based on the MSE in cross--
validation.

Table 6. Diagnostic results for cracks by different neural networks.

Central position Length Angle

Crack parameter (�12.00 mm, �25.00 mm) 30.00 mm 958
ANN3 DDFs (Experiment) (�18.27 mm, �0.63 mm) 50.10 mm N/A

DDFs (FEA) (�16.99 mm, �20.12 mm) 35.10 mm 96.98
ANN4 DDFs (Experiment) (�32.54 mm, �23.32 mm) 44.32 mm 76.48

Crack I DDFs (FEA) (�40.00 mm, �20.57 mm) 62.91 mm 147.28
ANN5 DDFs (Experiment) (�11.15 mm, �10.87 mm) 45.52 mm 79.78

DDFs (FEA) (�13.68 mm, �26.98 mm) 33.09 mm 69.38
ANN6 DDFs (Experiment) (�10.93 mm, �26.37 mm) 45.86 mm 74.68

DDFs (FEA) (�15.94 mm, �22.34 mm) 31.26 mm 85.38
Crack parameter (26.00 mm, 15.00 mm) 35.00 mm 1608

ANN3 DDFs (Experiment) (33.35 mm, 19.90 mm) N/A 130.58
DDFs (FEA) (26.11 mm, 16.38 mm) 42.42 mm 134.38

ANN4 DDFs (Experiment) (26.92 mm, 9.61 mm) 54.18 mm 142.88
Crack II DDFs (FEA) (22.31 mm, 15.73 mm) 41.15 mm 162.88

ANN5 DDFs (Experiment) (18.90 mm, 14.12 mm) 33.09 mm 62.18
DDFs (FEA) (29.03 mm, 13.41 mm) 40.14 mm 149.28

ANN6 DDFs (Experiment) (31.70 mm, 14.82 mm) 35.61 mm 145.38
DDFs (FEA) (29.17 mm, 14.02 mm) 40.69 mm 155.68
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Figure 9. Schematic illustration of results from ANNs (3-6) based
on the DDFs extracted from experiments (a) for Crack I and (b) for
Crack II.
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