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Abstract

A vibration-based damage detection method for a static laminated composite shell partially filled with fluid (LCSFF) is presented and
validated by experiment. The crack damage is simulated using advanced composite damage mechanics in a dynamic finite element model,
in which the interaction between the fluid and the composite shell is considered. The accuracy of FE model is first validated by comparing
the computed and measured structural frequency response function. Structural damage indexes are constructed and calculated based on
energy variation of the structural vibration responses decomposed using wavelet package before and after the occurrence of structural
damage. An artificial neural network (ANN) is trained using numerically simulated structural damage index to establish the mapping
relationship between the structural damage index and damage status. The test specimen used in experiment contains a cut in its surface
made by laser cutting system. Response signals of both intact and damaged specimen are measured and used to construct the correspond-
ing damage indices. The damage status is successfully identified using ANN, indicating that the method adopted in this paper can be
applied to online structural damage detection and health monitoring for static LCSFF.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Shell structures made of composite materials have been
extensively used in industry and engineering, e.g. aero-
space, civil engineering, marine, petrochemical engineering
and nuclear power generation due to their high strength-to-
weight ratio, better corrosion resistance as well as the
advantages of composite materials. However, many fac-
tors, such as aging, impact and fatigue will inevitably cause
damages in composite material structures. Damages in the
laminated composite shells partially filled with fluid will
cause serious fluid leakage problems, and lead to catastro-
phe and economic loss. Damage detection systems for the
LCSFF are therefore crucial to the safety and cost-effective
operation of various composite pipelines and vessels.
0263-8223/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compstruct.2006.11.008

* Corresponding author. Tel.: +852 2766 6769; fax: +852 2365 4703.
E-mail address: mmlcheng@polyu.edu.hk (L. Cheng).
Online damage detection is needed for some special
devices, such as airplanes and spacecraft during flight,
chemical engineering facilities located in poisonous or
harmful environments, or underground pipelines, which
cannot be easily accessed. Existing damage detection sys-
tems, such as X-ray and ultrasonic scan, cannot meet the
requirement of online damage detection for such situations,
since manual installation and inspection are usually
required, and the actuators and sensors are sometimes
bulky.

Dynamic damage detection methods have the potential
to meet such requirements. There methods are based on
the fact that damages in a structure result in a change in
structural dynamic characteristics. Early investigations
about dynamic damage detection method were conducted
by Schultz and Warwick [1] (1971) and DiBennedetto
et al. [2] (1972). Since then, research work in this field con-
tinued to flourish. Dynamic damage detection usually con-
tains three basic steps: i.e., the measurement of structural
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dynamic data, the construction of damage index from the
data, and provision of information for structural damage
status from damage index. In each step, various methods
have been developed.

The main requirement on measurement equipment for
damage detection is high sensitivity. Due to the limit of
online implementation, small volume and light weight are
also necessary. Piezoelectric patches have the advantage
in sensitivity, weight and volume. Furthermore, they also
have the capacity to function in either passive or active
modes, to serve as both sensors and actuators. Therefore,
many researchers use embedded and/or surface mounted
piezoceramic patches to generate the excitation, and to
measure the corresponding dynamic data [3,4]. Other
methods, such as optical fibre, have also been adopted in
some work [5].

For the early discovery of incipient damage and contin-
uous monitoring of the growth and location of damage, an
online damage detection system must be able to indicate
small damage. However, small damage only produces a
very small change in structural dynamic characteristics.
Therefore, the damage indices with high sensitivity are
required. Possible candidates, which have been explored
in the past, are natural frequencies [6], frequency response
function (FRF) [7,8], flexibility matrix [9], mode shapes [10]
and structure dynamic responses [11,12]. Now, even when
the ratio of damage size to the total structural size is as
small as the order of 0.01–0.1%, the structural damage
can still be detected using the energy spectrum variation
obtained by wavelet analysis [12]. However, the variation
of environmental conditions can also cause the change in
structural dynamic characteristics. Therefore, it is impor-
tant to study how to remove the effect caused by environ-
mental conditions while still keeping in the advantage of
the high sensitivity of the index to damage [13,14].

Deduction from structural damage index to practical
damage status is mathematically an inverse problem which
is difficult to acquire precise solution using mathematical
analysis only. Therefore, the soft computing techniques,
such as ANN [7,12,15,16] and genetic algorithm (GA)
[10,17,18], have been used by many researchers to solve this
inverse problem as an optimization problem owing to their
excellent pattern recognition capability. Data required for
training ANN or running GA are usually provided by
numerical simulations based on established FE structural
model.

Although great progress has been made in the past, most
of the presented works only demonstrated their feasibility
through numerical simulations. A few experimentally vali-
dated works are limited in beam-like [3] and plate [19,20]
structures. To our knowledge, investigation on on-line
damage detection for shells partially filled with fluid
(SFF) can scarcely be found.

A shell structure is considered as a simple structure in
FE modeling. Once filled with fluid, however, the interac-
tion between the fluid and the shell significantly increases
the degree of difficulty in FE modeling.
In this paper, a practical damage detection method for
static SFF is investigated; and experimental validation is
successfully carried out in a static laminated composite
SFF (LCSFF). A dynamic FE model of static LCSFF is
established using the fluid–structure interaction theory.
The crack is simulated in the FE model using advanced
composite damage mechanics and is machined in the test
specimen using a laser-engraving system. The change in
energy spectrum of the decomposed wavelet signals of
structural dynamic responses is adopted as the damage
index. An ANN is trained using the numerically simulated
data. The accuracy of the FE model is firstly validated
through the experimental measurement of FRF. Then the
experimental damage identification is carried out. The
damage status of the experimental specimen is successfully
identified by the ANN, showing that the damage detection
method adopted in this paper provides effective ways for
online health monitoring of static LCSFF.

2. Finite element model of static LCSFF with damage

2.1. Fluid-structural interaction theory in finite element
method

In this study, the fluid (water) contained in the static
LCSFF is static without sloshing and mean flow. The mean
density and pressure are uniform throughout the fluid. The
fluid is also assumed to be compressible and inviscid with-
out viscous dissipation.

Under these assumptions, the fluid momentum (Navier–
Stokes) and continuity equations can be simplified to get
the discretized wave equation as follows:

½M f �f€P eg þ ½Cf �f _P eg þ ½K f �fP eg þ qf ½Re�Tf€ug ¼ 0 ð1Þ
where [Mf], [Cf] and [Kf] are the fluid mass, damping and
stiffness matrices, respectively. Pe is the nodal pressure vec-
tor; qf the mean fluid density; qf ½Re� the coupling mass ma-
trix at the fluid–structure interface, and is given by

qf ½Re� ¼ qf

Z
s

fN 0gfNgTfngdS ð2Þ

where fN 0g is the element shape function for displacement
components u, v, and w (obtained from the structural ele-
ment); {n} the normal at the fluid boundary; {N} the ele-
ment shape function for pressure; S the surface where the
derivative of pressure normal to the surface is applied.

The equation of motion for a linear structure with the
fluid loading acting at the interface is:

½M s�f€ug þ ½Cs�f _ug þ ½Ks�fug ¼ fF ag þ fF pr
e g ð3Þ

in which fF pr
e g is the fluid loading vector exerted on the

interface S, and can be obtained by integrating the pressure
over the area of the surface:

fF pr
e g ¼

Z
S
fN 0gfNgTfngdSfP eg ¼ ½Re�fP eg ð4Þ

Then, the fluid–structure interaction problem can be writ-
ten in an assembled form as:
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½M s� ½0�
½M fs� ½M f �
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f€P eg

� �
þ
½Cs� ½0�
½0� ½Cf �

� � f _ug
f _P eg

� �

þ ½Ks� ½K fs�
½0� ½K f �

" #
fug
fP eg

� �
¼
fF ag
f0g

� �
ð5Þ

where ½M fs� ¼ qf ½Re�T and ½K fs� ¼ �½Re�.
2.2. Finite element realization

The FE model is established according to an LCSFF
specimen, which will be later used for experimental study,
having the following dimensions: mean radius
R ¼ 36 mm, wall thickness t ¼ 2 mm, and length
L ¼ 280 mm. The shell is made of resin glass fibre with
orthogonal layer ð�60�=0�=60�Þ30, having the following
material properties: E1 ¼ 47:518 GPa, E2 ¼ 4:588 GPa,
G12 ¼ 2:10 GPa, l12 ¼ 0:4495, l21 ¼ 0:0434, and
q ¼ 1860 kg=m3.

Dimensions and the meshing of the LCSFF model are
shown in Fig. 1. The FE model consists of 552 ð23� 24Þ
eight-node shell elements with three degrees of freedom
(DOF) at each node [21,22] in the part of the shell wall,
and 108 shell elements of the same type for the bottom
part. 1944 3-D fluid elements [23] are used for fluid, when
the fluid level is 78.26% of the shell’s height. Although dif-
ferent kinds of boundary conditions are allowed in this FE
Fig. 1. Model of a composite sh
model, free boundary conditions are used for the sake of
convenience in experiment.
2.3. Crack damage simulation in the FE model

Depicting the geometry of the damage directly seems to
be a natural way for simulating damage in structural
dynamics FE model. However, in addition to the require-
ment of excessive meshes and the subsequent time-consum-
ing calculations due to the large number of meshes
involved, different meshings required by different damage
sizes will also cause significant numerical error. Such error
may even cover the effect produced by small structural
damages on structural dynamic characteristics, such as nat-
ural frequencies. Therefore, the direct mesh method is not
suitable for simulating crack in damage detection [24]. In
fact, local damage in a structure always causes a decrease
in structural local stiffness, and these variations can be
reflected by changes in local structural material elastic coef-
ficients. Hence, damage in a structure can be simulated in
the FE model by modifying the elastic moduli of the ele-
ments at damage location. In some work [16,25], all of
the elastic moduli are supposed to have the same decease
after damage, which seem to be appropriate in the theoret-
ical studies. However, studies in micro-damage mechanics
show that the percentage of reduction for different elastic
ell partially filled with fluid.
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Fig. 2. Schematic diagram of experimental set-up for a FRF
measurement.
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moduli caused by damage is different [26]. Therefore, the
following formulation for composite materials with crack
damage proposed in ref [26] is adopted to calculate the
variations of local elastic modulus in this paper.

E1 ¼ E0
1 þ 2x3ðC3 þ C6ðl0

12Þ
2 � C12l0

12Þ
E2 ¼ E0

2 þ 2x3ðC6 þ C3ðl0
21Þ

2 � C12l0
21Þ

l12 ¼ l0
12 þ x3

1�l0
12

l0
21

E0
2

ðC12 � 2C6l0
12Þ

l21 ¼ E2

E1
l12; l12 � l21

G12 ¼ E2

2ð1þl12Þ
;G23 ¼ G13 ¼ G12

9>>>>>>>>=
>>>>>>>>;

ð6Þ

where E1, E2, l12, l21 and G12 are the elastic moduli, Pois-
son’s ratios and shear modulus of the thin wall composite
shell with crack damage, respectively. E0

1;E
0
2; l

0
12;

l0
12 and G0

12 are their counterparts in the intact composite
structure, respectively. C1–C12 are material coefficients
independent of strains and damage, but dependent on the
composite configuration, i.e., fiber geometry and orienta-
tions, fiber volume fraction, ply stacking sequence, etc.
These parameters can be determined by measuring the
specimen made of the same composite materials. Let x3

be a variable representing the crack damage status, which
is related to the number, length and width of the crack.
It can be expressed as

x3 ¼ gc�ac
�bc

�f c ð7Þ
where gc is the crack density, which is defined as the crack
number in a unit area; �ac and �bc are the average length and
width of the crack, respectively, and �f c is an adjustment
coefficient, which has been discussed in ref [26].

For other types of damage in a resin glass fibre struc-
ture, such as delamination, the variations of local elastic
modulus can also be calculated using Eq. (6) with its corre-
sponding material coefficients.

3. Experimental verification of FE model using measured

FRF

The FE model is used to generate the training samples
for ANN. Although it is impossible to have the FE model
completely matched with the experiment specimen, high
accuracy is still necessary in order to show the tendency
of change in structural dynamic characteristics due to dam-
ages. It is understandable that, if the difference in dynamic
characteristics between the FE simulation and the experi-
ment data are large, the trained ANN using the FE model
will definitely fail to identify the damage status of the
experiment specimen. Therefore, the accuracy of the FE
model should be verified first.

The FRF’s of an empty laminated composite shell and a
LCSFF are calculated and compared with experimentally
measured results. In addition to verification of the FE
model, this experiment can also help to determinate the
sensors’ locations, which will be discussed in Section 5.

During the experiment, the LCSFF specimen was put on
a large piece of soft sponge to achieve free boundary
conditions. The structure was excited by a B&K 8206
impact hammer at location 1 and the responses were mea-
sured at location 2 (see Fig. 1) by B&K 4397 piezoelectric
deltaShear accelerometers connected to a B&K 2635
Charge amplifier (see Fig. 2). The FRF was measured using
a Brüel & Kjær (B&K) 2035 Signal Analyzer unit.

The measured and computed magnitudes of the FRF for
the empty shell and shell partially filled with water
(H=L ¼ 0:7826, H: height of fluid’s surface lever; L: length
of the shell) are shown in Figs. 3 and 4, respectively.

Natural frequencies can be obtained from FRF data.
The measured and computed natural frequencies for the
empty shell and the LCSFF are tabulated in Tables 1
and 2, respectively. The modes of vibration are denoted
by a circumferential nodal number n and the axial nodal
number m throughout the paper. Because the LCSFF
studied in this paper is an axially symmetric structure, all
natural frequencies listed in Tables 1 and 2 are in fact
repeated natural frequencies. Table 1 shows a maximum
error of 1.295% for the first two natural frequencies of
the empty composite shell. Table 2 shows that the maxi-
mum error is 3.765% and the average error is 2.152% for
the first seven natural frequencies of the LCSFF with water
level H=L ¼ 0:7826. The agreement between numerical and
experimental results is generally satisfactory.

There are some modes in which only the fluid part is
deformed while the shell part is kept undeformed. There-
fore, these modes cannot be measured by the sensors
attached on the side wall of the LCSFF. Besides these fluid
modes, the numerically calculated mode with a natural fre-
quency of 1349.7 Hz has no corresponding measured data,
because this mode is mainly due to the deformation of the
bottom of the LCSFF. There is no discriminable peak for
this mode even in the computed FRF curve shown in
Fig. 4.

It can be seen from Figs. 3 and 4 that the numerically
simulated and measured FRFs are very similar, both for
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Fig. 3. Measured and computed FRFs of the empty shell: (a) calculated; (b) measured.
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Fig. 4. Measured and computed FRFs of the static LCSFF with H=L ¼ 0:7826: (a) calculated; (b) measured.
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the empty shell and the static LCSFF. It suggests that the
FE model used in this paper can simulate the dynamic per-
formance of the static LCSFF with satisfactory accuracy.
A comparison between Figs. 3 and 4 clearly also shows a
shift of the resonance peaks towards low frequency due
to the mass loading of the fluid in LCSFF.



Table 1
Natural frequencies of the laminated composite cylindrical shell with
H=L ¼ 0

Mode Experiment results (Hz) FEM results (Hz) Error (%)

m n

1 2 638 640.48 0.372
2 2 1006 1019.2 1.295

Table 2
Natural frequencies of the laminated composite cylindrical shell filled with
water with H=L ¼ 0:7826

Mode Experiment results (Hz) FEM results (Hz) Error (%)

m n

1 2 338 336.08 0.568
2 2 636 639.21 0.505
2 3 894 906.34 1.380
3 3 1084 1115.9 2.943
3 2 1240 1286.5 3.750
1 1 – 1349.7 –
4 3 1482 1537.8 3.765
Average 2.152

Table 3
Change caused by damage in natural frequencies of the LCSFF with
H=L ¼ 0:7826

Mode Natural
frequencies
of intact
LCSFF
(Hz)

Natural
frequencies
of LCSFF
with
damage
case 1 (Hz)

Percent
of
change
(%)

Natural
frequencies
of LCSFF
with
damage
case 2 (Hz)

Percent
of
change
(%)

m n

1 2 336.08 336.02 0.0179 335.99 0.0268
2 2 639.21 638.92 0.0454 638.78 0.0673
2 3 906.34 905.95 0.0430 905.82 0.0574

906.30 0.0044 906.00 0.0375
3 3 1115.9 1115.1 0.0717 1114.9 0.0896

1115.9 0 1115.3 0.0538
3 2 1286.5 1286.4 0.0078 1286.2 0.0233
1 1 1349.7 1349.6 0.0074 1349.6 0.0074

1349.7 0 1349.7 0
4 3 1537.8 1537.1 0.0455 1536.9 0.0585

1537.7 0.0065 1537.2 0.0390
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4. Damage index

Changes in structural dynamic properties due to struc-
tural damage are generally very small. Yan and Yam [12]
pointed out that when the crack length in a composite plate
reached 1% of the plate length, the relative variation of the
natural frequency is generally about 0.01–0.1%. For the
static LCSFF studied in this paper, the relative variations
of the natural frequency caused by two damages are tabu-
lated in Table 3, respectively. The length of damage case 1
is 5 mm (1.785% of the model’s height) and 10 mm (3.57%
of the model’s height) for case 2, both having the same
width (1 mm), depth (0.5 mm) and location (shown in
Fig. 1). All natural frequencies of the intact LCSFF listed
in Table 3 are repeated natural frequencies. This is still
the case for some modes after damage is introduced, while
others are split into two close natural frequencies. It can
also be seen that the sensitivities of natural frequencies to
the damage are different. However, the relative variations
of the natural frequency are generally less than 0.1%, and
the absolute variations are all less than 1 Hz. This variation
is too small to be observed in most of the experiments.
Therefore, a more sensitive index needs to be found.

Due to the ability of performing local analysis on a sig-
nal, i.e. to zoom in any interval of time or space, wavelet
analysis is capable of revealing some hidden aspects of
the data that other signal analysis techniques fail to detect.
Many works [11,25,27–30] have proved that the damage
index built with wavelet analysis is sensitive to damage.

The wavelet transform of a continuous vibration
response x(t) is defined as

W xða; bÞ ¼ ðjajÞ�
1
2

Z
R

xðtÞW� t � b
a

� �
dt ð8Þ
where b is the translation parameter; a the scale parameter;
x(t) the vibration response to be decomposed; W�ðtÞ the
transforming function (mother wavelet); and Wx the calcu-
lated wavelet coefficients, which can be used to recompose
the original function x(t). The equation for recomposing
x(t) can be expressed as

xðtÞ ¼ 1

CW

Z þ1

�1

Z þ1

�1

1

a2
W xða; bÞW

t � b
a

� �
dadb ð9Þ

where CW ¼ 2p
Rþ1

0 ðjWðrÞjÞ2 dr=r.
Various forms of wavelet base function W(t) have been

developed.
One of wavelet methods introduced to damage detection

is wavelet packet analysis (WPA) algorithm. WPA algo-
rithm is a generalization of wavelet decomposition that
offers a richer signal analysis. For a given orthogonal wave-
let function, a library of wavelet packets bases is generated.
Each of these bases offers a particular way of coding sig-
nals, preserving global energy and reconstructing exact
features.

In the orthogonal wavelet decomposition procedure, the
generic step splits the approximation coefficients into two
parts. A vector of approximation coefficients and a vector
of detail coefficients can be obtained after splitting, and
both at a coarser scale. The information lost between two
successive approximations is captured in the detail coeffi-
cients. The next step consists in splitting the new approxi-
mation coefficient vector; successive details are never re-
analyzed.

In the corresponding wavelet packets situation, each
detail coefficient vector is also decomposed into two parts
using the same approach as in approximation vector split-
ting. This offers the richest analysis: the complete binary
tree is produced in the one-dimensional case or a quater-
nary tree in the two-dimensional case. The algorithm used
for the wavelet packets decomposition follows the same
line as the wavelet decomposition process.
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Details of WPA algorithm are discussed as follows:
Let gn

j ðtÞ 2 Un
j , then gn

j ðtÞ can be expressed as

gn
j ðtÞ ¼

X
l

dj;n
l unð2jt � lÞ ð10Þ

In WPA decomposition algorithm, fdj;2n
l g and fdj;2nþ1

l g
can be calculated as follows:

dj;2n
l ¼

P
k

ak�2ld
jþ1;n
k

dj;2nþ1
l ¼

P
k

bk�2ld
jþ1;n
k

9>=
>; ð11Þ

and the formula for recomposing fdjþ1;n
l g using

fdj;2n
l g and fdj;2nþ1

l g is

djþ1;n
l ¼

X
k

½hl�2kdj;2n
k þ gl�2kdj;2nþ1

k � ð12Þ

The WPA method can adaptively choose the corre-
sponding frequency bandwidth according to the character-
istics of the signal to be analyzed, and the decomposed sub-
wavelet functions possess orthogonality in both frequency
and time domains.

Assuming that the original vibration response xðiÞ0;0ðtÞ at
the ith measurement location of a structure is decomposed
into xðiÞL;jðtÞðj ¼ 1; 2; . . . ; 2L�1Þ, with L being the selected
layer number of the wavelet tree, xðiÞ0;0ðtÞ can then be
expressed as

xðiÞ0;0ðtÞ ¼
X2L�1

j¼1

xðiÞL;jðtÞ ð13Þ

Let the energy of the jth order sub-signals of the intact
and damaged structures be U 0

L;j and U d
L;j, respectively. A

non-dimensional damage feature index vector can be com-
posed as follows:

V d ¼ fv1; v2; . . . ; v2L�1gT

¼ 1�
U d

L;1

U 0
L;1

; 1�
U d

L;2

U 0
L;2

; . . . ; 1�
Ud

L;2L�1

U 0
L;2L�1

( )T

ð14Þ

After structural vibration response signals in time
domain are decomposed into multiple sub-signals using
wavelet transform, the change corresponding to structural
damage in each subsignal may manifest notable difference,
and some of the sub-signals may possess high sensitivity to
small damage in structures. The energy of each sub-signal
in a given time-interval is calculated in order to quantify
variations in these sub-signals caused by structural dam-
age, so that an energy spectrum can be formed for each
structural vibration response. After damage, the energy
spectrum is changed. The variation in energy spectrum of
damage structure with respect to that of the intact structure
is taken as the index of structural damage. In this paper,
the WPA level is five, so the damage index has 32 elements;
each of them corresponds to an energy spectrum of
subsignals.
5. Measurement of response signals in experiment

5.1. Arrangements of actuator and sensors

The locations of actuators and sensors are determined
based on the following considerations:

1. Symmetric character of the LCSFF.
The LCSFF studied in this paper is axial symmetric. If
the sensors are in the plan determined by the actuator
and the axis of the LCSFF, the LCSFF model will be
divided into two symmetric parts. Two damages with
the same dimensions but at symmetric locations about
this plan will have the same damage index. Then, the
range of possibly damage location can be reduced by
half. This will make remarkable timesaving in comput-
ing the train sample and the training process of the
ANN.
Using this method, the exact location of damage in one
half of the model can be known. This however, cannot
tell in which half the damage is. The two possible solu-
tions can be referred as ‘‘true’’ and ‘‘ghost’’ solutions,
respectively. However, determining the damage location
from just two symmetric candidate locations is very
easy. As one of many possible methods, the identifica-
tion after rotating the actuator and sensors around the
axis of the LCSFF model needs to be repeated; and then
combined results from these two-step identifications can
finally give the exactly location of the damage. Although
one additional time of measurement and ANN identifi-
cation are needed, it is still worthy to adopt this two-step
identification method.

2. Rigid body motion in measured signals.
Same as the FRF experiment, the LCSFF specimen is
put on a large piece of sponge to realize the free bound-
ary conditions, which will lead to the problem of rigid
body motion. The rigid body motion is however
excluded in the computation of response signals. In
order to eliminate the rigid body motion from experi-
ment, two axially symmetric sensors are needed. The
rigid body motion can be eliminated by subtracting
the response signals measured by sensor A from those
measured by sensor B. Corresponding subtraction has
also been conducted for the computed signals in order
to be consistent with the measured signals. Furthermore,
this subtraction can also eliminate some measurement
noise, because these two signals are measured simulta-
neously and recorded by the same equipment.

3. Frequency components in the measured response sig-
nals.Because the structural damage information is dis-
tributed in different vibration modes, the measured
response signals should contain as many frequency com-
ponents as possible. The power spectral density (PSD) of
the response signals is determined by the PSD of excita-
tion signal and FRF of the model. In this paper, the
adopted excitation signal is a 50 Hz square wave, which
is suitable for vibration response based damage
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detection as discussed in Ref [20]. Therefore, locations
of actuator and sensors can be selected using its FRF
as index.
After a simple search process based on the above consid-
eration, the excitation force is selected at location 3 and
two sensors are arranged at locations 2 and 4.

5.2. Measurement of the response signals in experiment and

damage identification

A 50 Hz square wave is generated using a TGA 1241
arbitray waveform generator and amplified using a B&K
2706 power amplifier. It is then fed to the actuator, B&K
4890 Vibration Exciter, as the excitation signal. The output
of the actuator is recorded after amplified using a B&K
2525 Measuring Amplifier. The response signals are mea-
sured by two B&K 4397 piezoelectric deltaShear acceler-
ometers connected to a B&K 2635 charge amplifier. A
B&K 2035 signal analyzer unit is used to record the actuate
and response signals (see Fig. 5).

Using piezoelectric accelerometers and vibration exciter
instead of embedded and/or surface mounted piezoceramic
patches will not affect the effectiveness of the present
 Brüel & Kjær (B&K) 2035 Sign
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Fig. 5. Schematic diagram of the experime
method for online damage detection, since the types of
the sensors and actuators are not the kernel of the present
method. If this method were proved feasible when using
piezoelectric accelerometers and vibration exciter, it would
be reasonable to believe that this method can work well
when using embedded and/or surface mounted piezoce-
ramic patches.

In order to eliminate the noise, the measurement of
response signals is conducted in the following two steps.
Firstly, the measurement begins when the experiment spec-
imen has been excited for a while and the response signals
are steady. Secondly, the measurement repeats five times.
Then the averages of these five measurements are com-
puted as the final results.

6. Damage identification by ANN

After establishing the FE model of intact and damaged
static LCSFF, damage indices of a static LCSFF with var-
ious damage locations and lengths can be simulated, and
then an ANN can be trained using the simulated data,
and then adopted to identify the practical structural
damage.
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6.1. Design of ANN

Experience accumulated from exploratory investigations
is still the main guideline for design of ANN, because there
appears to be a lack of a generic procedure in the design of
ANN according to the character of the identification prob-
lem itself.

Among many different forms of network topologies, the
multi-layer feed-forward (MLP) network, which possesses
layered structure and allows only connections from neu-
rons in one layer to those in the forward layers, has been
widely applied due to its effectiveness and simplicity. A typ-
ical MLP network mainly includes the input layer for
receiving input data, the hidden layer for processing data
and the output layer to indicate the identified results.

The design of an MLP includes the selection the numbers
of neurons in the input, hidden and output layers, the num-
ber of hidden layers and transfer function for each layer.

The numbers of neurons in the input and output layers
are determined by damage index (input data) and damage
status code (output data). The present damage index has 32
elements. Then, the input layer has 32 neurons. Because the
mesh in present FE model is regular, the damage status can
be expressed by three numbers: the row and column num-
ber of the damaged element, and the length of the crack.
The row number is counted from the bottom to the top
of the model. The column number is counted clockwise
and the column at the right of sensor A is selected as the
first column. Then the output layer has 3 neurons.

It has been proven that a network with only one hidden
layer can approximate any continuous function to arbi-
trary accuracy if the number of hidden neurons H is suffi-
ciently large [31,32]. Moreover, most of the work in
damage detection adopted MLP with only one hidden
layer. Therefore, one hidden layer is adopted.

H should be chosen according to the complexity of the
problem processed by the network. If the H, is too small,
the capability of the network will be restrained. Eberhart
R.C. and Dobbins R.W. suggested that H should not be
less than

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ o
p

, where N and o are the neuron numbers
of input layer and output layer, respectively [33]. Zang
and Imregun suggested that H should be selected as half
of N [34]. In the present case, N has been determined as
32, and o is 3. Then, H is selected as 16, which is half of
N and is larger than

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ o
p

¼
ffiffiffiffiffi
35
p

.
Same as most of the MLP neural networks, the transfer

function of the hidden layer and output layer is selected as
Tan-Sigmoid transfer function and Liner transfer function,
respectively.

6.2. Training of the ANN

The training process of an MLP neural network includes
providing training data (data patterns) to the MLP neural
network and adjusting the interconnection weights contin-
uously according to the error of outputs until a predefined
error criterion is reached.
Before the damage index and damage status code are
directly used in the training procedure, a data scaling pro-
cess is usually required. The damage index and damage sta-
tus code are normalized to fall within a prescribed region.
The values of the present damage index are limited by its
nature, so it does not need to be normalized. The code of
damage status is normalized as follows: the row and col-
umn number are normalized by dividing them by the total
row number and the total column number, respectively; the
lengths of the cracks are expressed as

C ¼ Lc

L
� 10 ð15Þ

where C is the coding value of the lengths of cracks, Lc the
actual lengths of cracks, and L the height of the LCSFF.
The maximal length of crack studied in this paper is 10%
of L, so the value of C calculated from Eq. (15) will be
in the range of [0 1].

The determination of the training sample number and the
training precision of the ANN is an ongoing topic. Hassel-
man and Anderson [35] suggested a design criterion
s ¼ 1þ HðN þ oþ 1Þ=o for the number of training samples,
where s is the number of training samples. According this cri-
terion, the vibration responses of 192 damaged cases and one
intact case are numerically simulated using FEM. The dam-
age length of these 192 samples is randomly selected and
ranges from 2% to 10% of the height of the LCSFF; all dam-
ages are evenly distribute in one half of the shell. Then, dam-
age indices of these 192 damage cases are obtained by
comparing the energy spectrum of the decomposed wavelet
signals for each case with that of the intact structure. Then,
the widely used Levenburg–Marquardt back-propagation
training algorithm is adopted to carry out the neural network
learning towards minimizing a predefined error function,
which is generally formulated as the mean square error
between the network outputs and the actual values corre-
sponding to the given set of input vectors. As a result, an
optimal set of weights are obtained.
6.3. Identification of the damage status by numerical

simulation

Damage indices of two other damage cases are numeri-
cally simulated. These two damage cases, case A and case
B, are taken as verification samples after the training pro-
cess. The damage length in case A and case B are 4% and
5%, respectively. Their locations are shown in Fig. 1.

Feeding the damage index of case A to the ANN yields
the following result: (0.4923, 0.9390, 0.9195). These three
numbers means the scaled length, scaled column and row
numbers. The corresponding physical values are (4.923,
11.268, 11.034). It means that the damage length is
4.923% of L (the height of the LCSFF), and the column
and row numbers of the damaged element are both equal
to 11 (The column and row numbers are rounded to inte-
ger.). Because of symmetry, the damage may also be
located at (14, 11) element. Determining the final damage



Fig. 6. Damage case in the test specimen.

Table 4
ANN identification results of case A and case B

Results of the ANN
identification

Converted result Real
damage
status

Case A (4.923,11.266,11.034) (4.923,11,11)
(4.923,14,11)a

(5,14,11)

Case B (3.978,2.982,8.883) (3.978,3,9)
(3.978,22,9)a

(4,3,9)

a Ghost solution.
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location from the above two symmetric candidate locations
is easy in both theory and experiment, and can be realized
using the present method. Therefore, this part is neglected.
If the real damage location is included in the two symmet-
ric candidate locations, the target of validating the present
method is achieved.

The converted results for case A and case B are tabu-
lated in Table 4. Compared with the real damage status,
the ANN obviously provides satisfactory accuracy in dam-
age identification for the LCSFF.

6.4. Identification of damage status by experiments

In the test specimen, a crack is machined using a 75-watt
Epilog’s Legend 36EXT laser engraving and cutting system
that has 1200 DPI engraving resolution. The dimensions of
the damage are 10 mm in length (3.57% of the LCSFF’s
height), 1 mm in width and 0.5 mm in depth (see Fig. 6).

The damage index acquired from the experimentally
measured data and the numerically simulated data are
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of the trained ANN, the converted results are (3.1, 4.109,
4.934). The identified length of damage is 3.1% of the
LCSFF height, which is a slightly smaller than the true
vale: 3.57%. The second and the third number, once
rounded to integer numbers, give the right location of the
damage: (4,5). The error is due to the unavoidable differ-
ence between the simulated damage and the actual struc-
tural damage, and the effect of the exciter attachment.
Generally speaking, the presented damage detection
method for the static LCSFF is shown to provide a reliable
result when compared with the reality.
7. Conclusions

In this paper, the damage detection for a static LCSFF
is studied with numerical simulation and experimental val-
idation. The following conclusions can be drawn:

1. The change in natural frequencies of the LCSFF due to
the small damage is generally very small. For instance,
this change is less than 0.1% when the damage length
is 1% of the structural height. Therefore, the change in
natural frequencies is not a suitable damage index for
the static LCSFF.

2. The change in energy spectrum of the decomposed
wavelet signals of structural dynamic responses provides
a more sensitive damage index. Then conventional ones,
suitable to be used in LCSFF structure.

3. A MLP neural network trained using the numerically
simulated data can successfully identify the damage sta-
tus of the static LCSFF.

Experimental results validated the method presented in
this paper. The overall methodology proposed in this paper
provides a practical and relatively reliable tool for the dam-
age detection of the LCSFF.
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