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Abstract

A three-dimensional finite element model for the delaminated fiber reinforced composites is proposed to analyze the

dynamics of multi-layer composite plates with internal delamination. Virtual elements are adopted in the region of

delamination to prevent element penetration. Natural frequency, modal displacement and modal strain are analyzed for

samples with different dimensions of delamination. Numerical results show a good agreement with the available

experimental data and an enhancement of the accuracy of the results when the proposed model is adopted. The results

of this study are useful for detecting delamination in multi-layer composite materials.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Multi-layer composites; Finite element model; Virtual elements; Internal delamination; Modal parameters; Numerical

analysis
1. Introduction

The use of composite materials in space vehicles and

various machine components has increased considerably

over the past decades. Under repeated or impact loads

these materials are subjected to various forms of dam-

age, mostly delaminations and cracks [1–4]. Such dam-

age becomes an obstacle to the more extensive usage of

composite materials. Therefore, the monitoring of

internal or hidden damage in composite material is

critical in engineering practice [5]. The use of vibration-

based techniques as nondestructive testing methods for

damage monitoring of laminated composite is a field

attracting the interest of many researchers [6–12].

The effective damage monitoring for this kind of

material or structure depends largely on the accurate

prediction or estimation of mechanical or dynamic

behaviors of both intact and damaged composite
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materials [13]. As it is difficult to obtain accurate ana-

lytical solution for multi-layer material problem theo-

retically, the computational approach, e.g., finite

element method, plays an important role in the imple-

ment of damage detection for laminated composites.

There are contributions on both numerical and experi-

mental investigations into the behavior of delaminated

multi-layer composites [14–19].

After Sankar [20] had modeled a delaminated beam

as two sublaminates by offset beam finite elements, Ri-

kards [21] developed a model of finite superelements for

sandwich composite beam and plate without delamina-

tion, each layer being considered as a simple Timo-

shenko beam. Later, Gabelrab [3] discussed the modal

variation of delaminated beam for different boundary

conditions and Ousset and Roudolff [4] analyzed the

delaminated multi-layer composite plate based on

Mindlin Reissner plate model. Zak et al. [22] and Ousset

and Roudolff [4] developed models of finite elements for

beams and plates with boundary delamination. Among

most of the publications the prediction of material

mechanical or dynamic behaviors is based on the clas-

sical laminated plate theory [23]. Due to the ignorance of
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the transverse shear deformation effect, the classical

layerwise theory based on the straight normal assump-

tion of elastic thin plate cannot provide accurate results

for moderately thick laminated plates, for which the in-

plane elastic modulus is much higher than the transverse

shear modulus [24]. Besides, the Poisson’s effect is sig-

nificant for angle-ply laminated plates. Therefore, three-

dimensional layerwise theory must be adopted in order

to obtain an accurate prediction of dynamic response

for multi-layer composite plates. In addition, potential

dangers are often induced by hidden or internal delam-

inations in the in-service laminated composites. How-

ever, there is a lack of both numerical and experimental

investigations on internal delaminations with different

geometries in laminated composites.

In this paper, a three-dimensional finite element

model for multi-layer composites with internal delami-

nation is established, and the fiber orientation of indi-

vidual lamina as well as the transverse shear effect are

taken into account. Numerical calculation is carried out

for different plates. Natural frequencies, modal dis-

placements and strains of the intact and damaged multi-

layer composite plates are subsequently analyzed for

various samples.
2. Three-dimensional elastic theory for laminated com-

posite plates

2.1. Geometric equation

By introducing a Cartesian global coordinate system

x, y, z to a rectangular plate with uniform thickness as

shown in Fig. 1, the displacements of a point ðx; y; zÞ in
the plate can be expressed as
Fig. 1. The cross-ply laminated plate and the coordinate sys-

tems.
fug ¼ ðu1; u2; u3ÞT ¼ ðuðx; y; zÞ; vðx; y; zÞ;wðx; y; zÞÞT ð1Þ

where u, v and w represent the displacements along x, y
and z axes, respectively.
The linear strain–displacement relationships are

eij ¼ 1
2
ðui;j þ uj;iÞ ði; j ¼ 1; 2; 3Þ ð2Þ
2.2. Physical equation

Assume that the individual lamina is orthotropic

with fiber orientation along x1 axis of the Cartesian
coordinate system x1, x2, x3 (local material coordinates)
as shown in Fig. 1, the constitutive equation for the

lamina is

fr�g ¼ ½C	fe�g ð3Þ

where

fr�g ¼ ðr�
11; r

�
22; r

�
33; r

�
23; r

�
13; r

�
12Þ

T
and

fe�g ¼ ðe�11; e�22; e�33; e�23; e�13; e�12Þ
T

are vectors of stress and strain along the main directions

in local coordinate system, respectively. ½C	 is the elastic
constant matrix of the material expressed as

½C	
1 ¼

1
E1


v12
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v13
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1
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v23
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E1, E2, E3, G12, G13, G23, v12, v13 and v23 are the ortho-
tropic elastic constants of the lamina.

The stresses in the global coordinate system can be

obtained as follows:

frg ¼ ðrxx; ryy ; rzz; ryz; rxz; rxyÞT ¼ ½A	fr�g ð5Þ

where ½A	 is the matrix of directional cosines relevant to
coordinate transformation from local material coordi-

nates to the global ones, i.e.

½A	 ¼

cos2 h sin2 h 0 0 0 
2 sin h cos h
sin2 h cos2 h 0 0 0 2 sin h cos h
0 0 1 0 0 0

0 0 0 cos h sin h 0

0 0 0 
 sin h cos h 0

sin h cos h 
 sin h cos h 0 0 0 cos2 h 
 sin2 h

2
66666664

3
77777775

ð6Þ

Therefore, the constitutive equation in the global coor-

dinate system can be expressed as

frg ¼ ½A	½C	½A	
1feg ð7Þ



L.H. Yam et al. / Computers and Structures 82 (2004) 627–637 629
where

feg ¼ ðexx; eyy ; ezz; eyz; exz; exyÞT

is the strain vector in the global coordinate system x, y, z.
3. Finite element modeling

3.1. Element model description

The finite element used for multi-layer plate dynamic

behavior analysis is a kind of eight-node rectangular

thin plate element as shown in Fig. 2. For each node,

there are three degrees of freedom, i.e., translations

along x, y and z axes. The element thickness is assigned
to be equal to that of the corresponding individual

lamina, which may not be the same for all the elements.

The element coordinate system is arranged such that

the first axis is coincident with the fiber direction. All

physical parameters throughout an element are assumed

to be the same.

3.2. Expressions for displacement and strain

For an eight-node finite element with three degrees of

freedom per node, the displacement field over an ele-

ment is given by

fug ¼
X8
i¼1

½Ni	fdig ð8Þ

where

fdig ¼ ðui; vi;wiÞT

is the displacement vector at node i and

½Ni	 ¼ Ni½I3	

where ½I3	 is a three-order unit matrix and Ni the shape

function for node i [25]. Then the strain of each element
can be expressed in terms of displacement in the global

coordinate system as
i j

kl 

m n

op

x1

x2

x3

Fig. 2. The eight-node thin plate element and the local coor-

dinate system.
feeg ¼
X8
i¼1

½Bi	fdig ð9Þ

where

½Bi	 ¼ ½D	½Ni	 ð10Þ

and

½D	 ¼

o
ox 0 0

0 o
oy 0

0 0 o
oz

0 o
2oz

o
2oy

o
2oz 0 o
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o
2ox 0

2
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ð11Þ

Thus, for a given element, the strain can be expressed in

terms of nodal displacements as

feeg ¼ ½B	fdeg ð12Þ

where

½B	 ¼ ½½B1	; ½B2	; . . . ;B8		

and

fdeg ¼ ðfd1gT; . . . ; fd8gTÞT:
3.3. Stress–strain relationship and equation of motion

According to Eqs. (7) and (12), the stresses of an

element in the global coordinate system can be expressed

by the nodal displacements as

freg ¼ ½A	½C	½A	
1½B	fdeg ð13Þ

Thus, the element stiffness matrix may be written as

½Ke	 ¼
Z
Ve

½B	T½A	½C	½A	
1½B	dV ð14Þ

Then, the strain energy of the kth element is

Ue
k ¼ 1

2

Z
Vk

feegTfregdV ¼ 1
2
fde

kg
T½Ke

k 	fd
e
kg ð15Þ

where fde
kg represents the displacement vector of the kth

element. The total strain energy for a composite plate

consisting of N elements can be expressed as

U ¼
XN
k¼1

Ue
k ¼ 1

2

XN
k¼1

fde
kg
Tfde

kg
T½Ke	fde

kg ð16Þ

Therefore, after assembly of nodal displacements of all

elements, the total strain energy of a multi-layer com-

posite plate can be represented as

U ¼ 1
2
fdgT½K	fdg ð17Þ

where fdg and ½K	 are the global nodal displacement
vector and stiffness matrix, respectively.
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Similarly, if the composite plate experiences a har-

monic motion with angular frequency x, the kinetic
energy of the composite plate will be

T ¼ 1
2
x2fdgT½M 	fdg ð18Þ

where ½M 	 is the global mass matrix. Then, using the
Lagrange’s principle the equation of motion for free

vibration of the composite plate is reduced to the

eigenvalue problem of

ð½K	 
 x2½M 	Þfdg ¼ 0: ð19Þ

z1 x

Fig. 4. Virtual spring element and the coordinate systems.
3.4. Continuity between adjacent laminas and delamina-

tion description

For an arbitrary laminated plate with an internal

delamination as shown in Fig. 3, suppose that the

delamination region is between two separate sublami-

nates called the upper and lower sublaminates, respec-

tively. To ensure the material continuity, displacements

and their variations of each pair of coincident nodes on

any two upper and lower adjacent laminas have to be

equal except those in the delaminated region.

To simulate the actual status of delamination, an

extremely thin layer is inserted between the upper and

lower sublaminates within the delaminated region.

When the plate is in motion, it is physically impossible

that elements of the upper and lower sublaminates

penetrate into each other within the delamination re-

gion. Therefore, virtual elements are inserted between

the penetrated nodes of the upper and lower sublami-

nates within the delaminated region to ensure a rea-

sonable deformation without penetration.

Virtual/artificial spring elements have been previ-

ously used to simulate various conditions of structures

[26] and the mechanical coupling between different

components [27,28]. Further studies extended their use

to vibroacoustic systems in which a structure is coupled

to an acoustic medium [29]. This technique is used

here to bring desirable effect to the interface in the del-

aminated region. Every inserted virtual element is a

spring with a stiffness constant kr. The local and global
z

y

o

Fig. 3. Geometry of multi-layer composite p
coordinate systems are x1, y2, z3 and x, y, z, respectively
as shown in Fig. 4. If the displacements of nodes i and j
are ui, vi, wi and uj, vj, wj, respectively, in the global

coordinates the components of the distance change be-

tween the two nodes of a virtual element are expressed in

terms of nodal displacements as

fdrg ¼ ðuj 
 ui; vj 
 vi;wj 
 wiÞT ¼ ½Br	fdeg ð20Þ

where

½Br	 ¼

1 0 0 1 0 0
0 
1 0 0 1 0

0 0 
1 0 0 1

2
4

3
5

The internal spring force can be expressed as

fNrg ¼ ðNrx;Nry ;NrzÞT ¼ ½Ar	½Kr	½Ar	
1fdrg ð21Þ

where

½Kr	 ¼
kr 0 0

0 0 0

0 0 0

2
4

3
5 ð22Þ

is the local stiffness matrix of the spring with constant kr,
and

½Ar	 ¼
0 0 
1
0 1 0

1 0 0

2
4

3
5

C

Delamination region 

x

late with local internal delamination.
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is the transformation matrix between the global and

local coordinate systems.

Let

½Dr	 ¼ ½Ar	½Kr	½Ar	
1

the nodal forces of the virtual element can be expressed

as

fFrg ¼ ðFrx; Fry ; FrzÞT ¼ ½Br	T½Dr	½Br	fdeg

Hence the stiffness matrix of the virtual element is

½Ke
r 	 ¼ ½Br	T½Dr	½Br	 ð23Þ

The spring constant kr in Eq. (22) will be so selected
that the upper and lower parts within the delaminated

region can keep a reasonable gap or contact without

penetration when the plate is in motion. It will be dis-

cussed later.
4. Numerical examples and results

The proposed finite element formulation is then

incorporated into a finite element analysis computer

program for validation. Some examples are investigated

numerically to analyze the variation of the natural fre-

quencies and modal displacements and modal strains

induced by delamination.

4.1. Sample description

The samples for numerical simulation are multi-layer

square plates composed of different fiber reinforced

laminae with four edges free. Assume that all samples

are orthotropic.
Table 1

Natural frequencies of the intact plates for different meshes (Hz)

Mode Element number for each lamina

4 25 1

Plate 1

1 85.94 83.37

2 130.58 120.52 1

3 217.04 219.99 2

4 417.07 373.08 3

5 729.89 503.21 4

6 765.70 667.43 5

Plate 2

1 97.56 96.58

2 174.70 154.81 1

3 278.83 247.23 2

4 305.11 261.72 2

5 328.38 310.92 2

6 521.88 513.10 4
Three types of laminated composite plates are con-

sidered in this study. Plate 1 is an 8-layer CFRP square

plate with a side length of 178 mm and a thickness of

1.58 mm. All the ply orientations are equal to 0� and the
material constants are E1 ¼ 172:7 GPa, E2 ¼ E3 ¼ 7:2
GPa, G12 ¼ G13 ¼ 3:76 GPa, G23 ¼ 2:71 GPa, v12 ¼
v13 ¼ 0:3, v23 ¼ 0:33 and q ¼ 1566 kgm
3.

Plate 2 is a 12-layer GFRP square laminated plate

with a side length of 204.6 mm and a thickness of 2.11

mm. The ply orientation distribution along the plate

thickness is (0�/)60�/60�/0�/)60�/60�)s and the material
constants are E1 ¼ 37:78 GPa, E2 ¼ E3 ¼ 10:9 Pa,

G12 ¼ G23 ¼ G13 ¼ 4:91 GPa, t12 ¼ t13 ¼ 0:3, t23 ¼ 0:11
and q ¼ 2003:5 kgm
3.

Plate 3 is an 8-layer GFRP rectangular square lam-

inated plate with a side length of 225.5 mm and a

thickness of 2.05 mm. The ply orientation distribution

along the plate thickness is (0�/90�/0�//90�/90�/0�/90�/0�),
where the �//’ denotes the location of delamination as
shown in Fig. 3. The interspace between the upper and

lower sublaminates is assumed as 10
3 mm within the

delaminated region. The material constants are the same

as those of Plate 2 except that q ¼ 1813:9 kgm
3. The

center of the delamination region is located at point C
with coordinates x ¼ 169:125 mm, y ¼ 169:125 mm and
z ¼ 1:28125 mm.

4.2. Results and discussions

4.2.1. Natural frequencies for plates without delamination

FE discretization effect is one of the dominant factors

for result accuracy of computation. For the special

structure used as the sample each lamina is meshed the

same as each other, i.e. the element area is foursquare

and the thickness is equal to that of the lamina. Table 1

shows the computation results of natural frequencies for
00 400 900

82.50 82.26 82.22

16.39 113.10 114.70

11.90 207.29 208.32

33.16 325.28 326.08

49.33 408.51 407.64

71.10 539.92 539.06

95.78 95.66 95.62

53.04 152.53 152.47

40.57 238.74 239.13

58.99 258.03 257.72

78.61 277.50 277.35

98.02 496.54 497.01



Table 2

Natural frequencies of the intact plates for different methods (Hz)

Mode Plate 1 Plate 2

Present Reference [30] Present Reference [30]

Numerical Experimental Numerical Experimental

1 82.26 83.57 81.5 95.66 108.17 90.4

2 113.10 118.42 107.4 152.53 168.64 144.7

3 207.29 207.79 196.6 238.74 218.64 222.3

4 325.28 329.41 285.5 258.03 280.15 264.1

5 408.51 419.83 382.5 277.50 301.00 281.1

6 539.92 546.93 531 496.54 505.15 492.6

P1, P2, P3

Q1, Q2, Q3

2

1 3
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Delamination area = 2475.5 mm2

Delamination area = 165 mm2

ModeModeMode

Mode Mode Mode

Mode

Fig. 5. Maximum displacements of selected points for the first

10 modes of Plate 3 without virtual spring within the delami-

nated region.
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Plates 1 and 2 for different meshes for one lamina. It is

seen that the results converge after each lamina is dis-

cretized by 400 or more elements. Therefore, in order to

save CPU time, 400 elements are adopted for each

lamina in the subsequent computations except that the

delamination region is fractionized.

Table 2 shows the natural frequencies of the first six

modes for bending vibration of Plates 1 and 2 while the

referential numerical and experimental results from Ref.

[30] are also listed for comparison. It demonstrates a

better agreement between the present results and the

experimental results in Ref. [30].

4.2.2. Effect of spring constant on natural frequency

The distance change of the adjacent points just above

and below the delamination region may be different if

the value of kr in Eq. (22) varies for the delaminated
plate. In fact, the virtual spring with certain stiffness can

introduce additional constraint, which may result in

increase of vibration frequency [26–28]. Without such

inserted virtual spring elements, the movements of nodes

on the free surface of the delamination will not be re-

stricted. With nearly complete restriction, i.e. the spring

constant of the virtual element being extremely large

(e.g. larger than 106 Nm
1), the natural frequencies of

the plate will increase significantly especially for high

modes with large delamination.

Fig. 5 shows the displacements of the upper and

lower points within the delaminated region for the first

10 modes for Plate 3 with delamination areas of 165 and

2475.5 mm2, respectively, when the virtual spring ele-

ment is not inserted. The names and locations of the

above points are listed in Table 3. It is apparent that

penetration between the upper and lower parts within

the delaminated region occurs in modes 6 and 7 when

delamination area is 165 mm2, and for the case of

delamination area 2475.5 mm2 penetration is obviously

seen in the sixth, seventh and ninth modes.

Further numerical simulation for Plate 3 with the

delamination areas of 165 and 2475.5 mm2 shows that

when kr is larger than 0.1 Nm
1 the upper and lower

sublaminates in the delamintion region do not penetrate
into each other for the above three modes when the plate

is in motion. Variations of natural frequencies with

different values of kr are shown in Table 4 for the first 10
modes of Plate 3 with the delamination area of 2475.5

mm2. It is seen that the spring-induced increase of fre-

quency is not significant when the spring constant is less

than 103 Nm
1. Fig. 6 shows the decreases of natural

frequencies of the first 15 modes for Plate 3 with dif-

ferent delamination areas without the virtual spring

elements in the delaminated region. Table 5 shows the

influence of spring constant on natural frequencies of

the sixth, seventh and ninth modes for Plate 3 with

different delamination areas when kr ¼ 106 Nm
1.

A combination of comparison between Fig. 5 and

Table 5 with Table 4 reveals that the effect of the spring



Table 4

Natural frequency increases with virtual spring constants for Plate 3 with delamination area of 2475.5 mm2 (Hz)

Mode Spring constant kr (Nm
1)

10
2 10
1 102 103 105 107

1 0 0 0 0 0.001 0.003

2 0 0 0 0 0.01 0.07

3 0 0 0 0 0.01 0.2

4 0 0 0 0 0.1 0.63

5 0 0 0 0 0.07 0.49

6 0 0 0 0 0.03 0.17

7 0 0 0 0.01 0.12 0.69

8 0 0 0 0 0.2 1.59

9 0 0 0 0 0.1 1.02

10 0 0 0 0 1.04 6.1

Table 3

Points and their locations for computation of displacements as shown in Fig. 5

Point name Description Coordinate (mm)

x y z

P1 On bottom surface of the upper sublaminate 164 56.375 1.28125

P2 169.125 56.375 1.28125

P3 174.25 56.375 1.28125

Q1 On top surface of the lower sublaminate 164 56.375 1.28025

Q2 169.125 56.375 1.28025

Q3 174.25 56.375 1.28025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00
0.04
0.08
0.12

Fr
eq

ue
nc

y 
de

cr
ea

se
 (H

z)

Mode number

Delamination area: 165 mm2

0.0
0.2
0.4
0.6

Delamination area: 1650.3 mm2

0.0
0.5
1.0
1.5
2.0 Delamination area: 990.2 mm2

0.0
1.5
3.0
4.5
6.0

Delamination area: 495.1 mm2

0
4
8

12
16 Delamination area: 2475.5 mm2

Fig. 6. Natural frequency decreases with delamination areas

for Plate 3 without virtual spring elements.
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constant on natural frequency increases with the

delamination area and becomes relatively remarkable

when the value of kr goes up. Therefore, virtual spring
elements with spring constant kr ¼ 10
1 Nm
1 are

adopted for numerical computation of modes 6, 7 and 9
of the delaminated plates. The variations of natural

frequencies with the delamination areas are listed in

Table 6 for the above three modes when kr is 10
1

Nm
1. It is seen that although the effect of virtual spring

element increases when the delamination grows, but it is

not as significant as that of delamination.
4.2.3. Effect of delamination area on natural frequencies

The effect of delamination area on natural frequen-

cies of the multi-layer composite plate is studied

numerically for Plate 3. As shown in Fig. 3, the delam-

ination region is assumed elliptic with center C. From
Fig. 6 and Table 6, it can be seen that the natural fre-

quency decreases with the increase of delamination area.

The only exception occurs when the delamination area is

165 mm2 (the smallest area for analysis) for mode 6. This

may be caused by the introduction of the virtual spring

elements because the location of the delamination is just

near the peak of mode shape for mode 6 as shown in

Fig. 7. But even in this case the percentage change of

natural frequency is less than 0.05%. Therefore errors

introduced by the virtual element will not become a

menace in study on delamination-induced variations of

other parameters more applicable than frequency, such

as displacement and strain.



Table 6

Natural frequency decreases of Plate 3 with different dimensions of delaminations and virtual elements of spring constant kr ¼ 0:1
Nm
1 (Hz)

Mode Delamination area (mm2)

165.0 495.1 990.2 1650.3 2475.5

6 )0.21 0.02 0.11 0.36 0.92

7 0 0.05 0.23 0.62 1.38

9 0 0.02 0.13 0.48 1.37

Table 5

Natural frequency decreases with delamination areas for Plate 3 with virtual elements of spring constant kr ¼ 106 Nm
1

Mode Delamination area (mm2)

165.0 495.1 990.2 1650.3 2475.5

6 )0.21 0.02 0.11 0.33 0.81

7 0 0.05 0.22 0.61 0.9

9 0 0.02 0.12 0.43 0.83

Fig. 7. The sixth displacement mode shape for Plate 3.
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From Fig. 6 and Table 6, it can be seen that the natural

frequency generally decreases with the increase of

delamination area. The only exception occurs when the

delamination area is 165 mm2 (the smallest area to be

analyzed) for mode 6. This may be caused by the intro-

duction of the virtual spring elements because the location

of the delamination is very near the peak of mode shape

for mode 6 as shown in Fig. 7. However, even in this case

the percentage change of natural frequency is less than

0.05%. Therefore, errors introduced by the virtual ele-

ments cannot become a menace in study on delamination-

induced variations of other parameters more applicable

than frequency, such as displacement and strain.

Fig. 6 and Table 6 show that delamination with small

area has very little influence on natural frequencies for

all computed modes. The average percentage change of

natural frequencies is only about 0.066% when the

delamination area reaches 990.2 mm2, and even the

maximum value is about 0.18% for mode 10. A similar

variation pattern is also seen when the delamination

area increases gradually. The frequency changes are
greater than 1% for modes 11 and 12, and the maximum

is about 1.16% for the fifth mode when the delamination

area is 2475.5 mm2. This implies that the natural fre-

quency is not sensitive to delamination for multi-layer

composite plates.

The above results show that the influence of delam-

ination on natural frequency varies with vibration

modes, and this phenomenon may be useful to deter-

mine the location or area of delamination. However, this

is basically impracticable, because, the experimental

equipment can hardly extract modes higher than 10 for

composite plates, and it is difficult to measure the small

delamination-induced change of frequency.

If internal delamination occurs in the vibrating plate,

there may be interactive motion or impact between the

upper and lower sublaminates within the delamination

region. Further investigation on the local displacements

of the plate shows that the differences of displacements

between the points just on the upper and lower surfaces

of the delamination region vary with modes. The relative

displacements in x–y plane are also larger in some modes
than in other modes, i.e., the interactive motion between

the upper and lower surfaces within the delamination

region occurs when the plate vibrates. Thus, when

internal delamination occurs somewhere in a composite

plate, there may be interactive motion or impact within

the delamination region during vibration of the plate.

These phenomena cause the variations of energy dissi-

pation in the plate. Hence, the variation of energy dis-

sipation in the plate during vibration can be the hint for

delamination detection. Therefore, the relative dis-

placement in z direction within the delamination region
is restricted using virtual spring to avoid the physically

impossible penetration, and the selection of kr with res-
pect to the transverse properties of the orthotropic

lamina is not necessary.
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Fig. 8. Relative changes of modal parameters at a point on top

surface just above the center of the delamination region for

Plate 3 with a delamination area of 165.0 mm2.

Fig. 9. The third displacement mode shape for Plate 3.
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4.2.4. Variation of displacement and strain due to

delamination of the vibrating composite plate

Analysis of modal parameters is known as one of the

practical experimental methods for damage detection.

As delamination of multi-layer composites means local

structural change, it can, to some extent, induce varia-

tions of vibration responses. To investigate the delami-

nation-dependent vibration responses the changes of

modal deformation have been computed for delami-

nated composite of Plate 3. For the first 15 modes the

modal displacements along z-direction and modal

strains along x-direction and y-direction are computed
respectively at some concerned points.

For the first 15 modes, displacements and strains are

computed at the point with the same x and y coordinates
as those of point C as shown in Fig. 3, and z ¼ 2:05 mm,
i.e. the point on the top free surface of Plate 3. Fig. 8

shows the results of relative changes of frequencies, peak

displacements and strains when the delamination area is

165.0 mm2 for Plate 3. In the table wm represents the

unit-normalized displacement along z axis at the con-
sidered point.

Fig. 8 shows that delamination-induced changes of

displacement and strain are much greater than that of

frequency. The changes of displacement and strain are

more remarkable in the third, fifth, sixth and seventh

modes than those in other modes. Both the most

remarkable changes of displacement and strain appear

in the same mode––the third mode. It should be noted

that the most remarkable decrease of frequency also

occurs in the third mode for the computed case. From

the third mode shape of Plate 3 as shown in Fig. 9, it is

noted that the delamination is close to the region of

plate displacements transition from positive to negative.
Table 7

Relative changes of displacements and strains at the points with the maximum displacements on top surface for Plate 3 with a

delamination area of 165.0 mm2

Mode Coordinate of point for computation (mm) Relative change

of wm (%)

Relative change

of exx (%)
Relative change

of eyy (%)x y z

1 0 0 2.05 )0.02 )0.051 )0.049
2 112.75 225.5 2.05 0 0.119 0.123

3 225.5 225.5 2.05 0.001 )13.488 )1.085
4 225.5 0 2.05 0 0.388 0.204

5 0 225.5 2.05 )1.929 )1.543 )1.061
6 225.5 0 2.05 )14.081 )19.229 )7.27
7 0 66.625 2.05 )13.154 )15.299 )5.614
8 0 10.25 2.05 )0.665 0.183 )0.219
9 225.5 0 2.05 )0.001 )0.384 )0.291
10 112.75 0 2.05 )0.051 0.134 0.127

11 0 112.75 2.05 0 )0.109 )0.111
12 30.75 0 2.05 )0.27 )0.062 )0.064
13 225.5 225.5 2.05 0 0.036 0.522

14 225.5 153.75 2.05 )0.714 0.04 0

15 112.75 0 2.05 0.001 0 )0.217
Average of absolute values 2.059 3.404 3.131
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In order to investigate the local variation of defor-

mation induced by delamination, changes of displace-

ments and strains at another point are computed for the

considered modes. Table 7 shows the relative changes of

displacements and strains at the point with the maxi-

mum displacement on the top surface of Plate 3 before

delamination. It can be seen that unlike the results in

Fig. 8, neither the displacement change nor the strain

change is the largest for the third mode although this

point (with coordinates 225.5, 225.5, 2.05) in Table 7 is

not far away from the point, the results of which are

shown in Fig. 8.

Therefore, the influence of delamination on defor-

mation of a composite plate is dependent on modes. It is

an effective method to detect damage by investigation

into damage-induced local changes of structural geo-

metric, physical and mechanical parameters by means of

displacement and strain measurement with consider-

ation of natural frequency change. In fact, experimental

modal strain analysis has already been proved as rea-

sonable and practical for investigation of local variation

of structural parameters [31].
5. Conclusions

The delamination problem for multi-layer composite

plates has been analyzed using finite element method

and modal analysis. To achieve accurate results for

delamination detection of multi-layer composite plate,

different fiber orientations, orthotropy of laminated

composites and transverse shear effect are taken into

account in the finite element computation. For practical

nondestructive damage detection, internal elliptic

delamination is considered and virtual interface ele-

ments are introduced to simulate local delamination and

to prevent physically impossible penetration. The fol-

lowing conclusions may be drawn from the results of

numerical simulation in this study.

(a) The finite element model proposed in this paper

can predict accurately the dynamic behaviors of a

multi-layer composite plate with internal delamina-

tion at arbitrary location. It is not as computationally

expensive as the usually used three-dimensional brick

elements when the proposed element is used because

there is no restriction of ratio between element length

and thickness. The virtual element with very small

spring constant has very slight influence on natural

frequencies and mode shapes of the computed plates

but can successfully prevent physically impossible

penetration of the upper and lower parts within the

delaminated region.

(b) Local internal delamination has slight effect on

natural frequencies of a multi-layer composite plate

although the extent of natural frequency variation in-
creases with both the delamination dimension and

the order of natural frequency.

(c) Delamination-induced change of deformation is

more sensitive than that of frequency, and changes

of both displacement and strain are mode-dependent.

The most remarkable delamination-induced changes

of displacement and strain occur in the same mode

as the most remarkable decrease of frequency when

the delamination area is relatively small for the cases

considered in this paper.

(d) The results of numerical analysis in this study can

be taken as guidance for arrangement of displace-

ment and strain measurements on the surface of spec-

imen when experimental modal analysis is carried out

to investigate local changes of structural parameters

for damage detection. The finite element model, strat-

egy and numerical method provided in this paper can

be used for dynamic response analysis of damaged

engineering structures, especially for multi-layer

composite plates.

(e) If the layers are also damaged, for example cracks

occur in a laminar, the damage in the related ele-

ments must be considered via describing the variation

of material elastic parameters. In this case, the elastic

matrix of damaged element is not the same as that of

the intact one. By introducing special variables

into the elastic matrix to indicate the damage fea-

tures, the dynamic behaviors of the damaged com-

posites can be computed, and the damage-induced

variations of modal parameters can then be investi-

gated for damage detection. This topic is also under

research in our project.
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