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Abstract
In this study, crack damage detection for a honeycomb sandwich plate is
studied using the energy spectrum of dynamic response decomposed by
wavelet transform and the artificial neural network (NN). The results show
that taking the energy spectrum of the decomposed wavelet signals of
dynamic responses as the inputs of the NN can simplify the NN design for
structural damage detection and it possesses a high sensitivity to small
damage. Experimental results also show that the NN designed in this study
can accurately detect multiple damage parameters or give some significant
reference range of the damage parameters.

1. Introduction

Inputs and outputs of an artificial neural network (ANN)
can form some nonlinear mapping between two state
spaces. In particular, a typical supervised feed-forward
back propagation (BP) ANN with hidden layers and sigmoid
activation functions can approximate any smooth mapping.
Such characteristics of ANN have been widely applied to
the identification and detection of engineering structural
damage [1–3]. As is known, the mapping relation of the ANN
between the abstract features (e.g. the natural frequency, modal
energy and transform function of structural vibration) and the
physical parameters (e.g. structural damage parameters, such
as crack locations and magnitudes) is obtained by sample
training of the ANN. The integrality and accuracy of the
mapping relationship between the two state spaces is the key
factor for an accurate identification and detection of structural
damage status. This depends on the training precision, the
number of training samples and the number of inputs and
outputs, as well as the design of the hidden layer of the ANN,
etc. Besides, the selection of a structural damage index as
the inputs of ANN and the indicative ability of the damage
index for practical damage are also essential factors for the

3 Author to whom any correspondence should be addressed.

successful detection and identification of structural damage
using the designed ANN.

The mechanical damage in a structure will cause some
variation of structural dynamic characteristics, and various
structural vibration parameters have been used as the input of
the ANN in structural damage identification. The dynamic
response of a servicing structure can be easily measured
using a piezoelectric smart structure technique [4], which
is technically simple, economical and feasible in practical
engineering. Much published literature has shown the
feasibility of this method in structural damage detection.
Tsou and Shen [5] presented a method of on-line damage
identification for two spring–mass systems. The damage
characteristics (location and severity) of the system were
detected and identified from the change of its dynamic
properties (eigenvalues and mode shapes) through a BP neural
network (NN). Stavroulakis and Antes [6] showed an inverse
crack identification problem in linear elastodynamics using
harmonic excitation, BP NN methods and boundary element
techniques. The existence and characteristics of a hidden
crack within an elastic structure were determined by means
of measurements of the structural response at the accessible
boundary for given external time-periodic loadings. Chang
et al [7] proposed a structural damage detection method based
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on parameter identification using an iterative NN technique for
a clamped–clamped T beam. The structural parameters were
assumed with different levels of reduction to simulate various
degrees of structural damage. The trained NN model is used
to predict the structural parameters by feeding in measured
structural dynamic characteristics.

However, the structural model and damage status in the
previous research are often simple and idealized, and only a
few output categories of the ANN are considered. Thus, the
acquired results may be inapplicable for the identification and
detection of complex damage status of practical engineering
structures. Because the final purpose of the theoretical
research is its practical application, it is necessary to select
a research model close to the application background of
practical engineering. In this study, a honeycomb sandwich
plate similar to practical engineering structures is taken
as the study model for structural damage detection using
ANN. Honeycomb sandwich composite plates have been
widely applied to aeronautical structures as well as building,
automobile and train structures, because it possesses many
advantages, such as lighter weight, higher stiffness, heat
insulation and preservation, and anti-radiation. Usually, this
kind of structural material is made of very thin aluminum
alloy, FRP (fiberglass-reinforced plastics), PVC and CERBP
(ceramic fiber round braided rope), etc. One of its excellent
properties is its light weight, typically only 10–15% of that
of a solid structure using the same material. However,
the ability to resist impact of a honeycomb sandwich plate
is very poor, so crack and delamination damage occurs
frequently. This will seriously affect the function of the
structural components, such as the propeller of a helicopter,
an aerofoil and a sealed cabin. Obviously, the study of in-
service damage detection for honeycomb sandwich structures
possesses significant application values.

Although structural dynamic response data can be applied
to ANN for damage detection, a very serious obstacle exists:
the amount of dynamic response data, which is determined
by the number of spatial response locations and the number
of spectral lines, is too large for the neural network to solve
engineering problems. The direct use of such data will lead to a
very large number of input nodes of the NN, which will in turn
require a very large number of connections. Such networks are
impractical in both training effort and convergence stability. In
order to avoid large NNs, the energy spectrum of the structural
dynamic response decomposed by wavelet transform is used to
establish the input state space of the ANN. Wavelet analysis of
a time-varying signal is a kind of localization analysis method
in time and frequency domains, and the signal processing
method has higher frequency and time resolution because
its time and frequency windows can both be changed [8].
Researchers [9, 10] have shown that the energy spectrum of the
structural dynamic response decomposed by wavelet transform
has a high sensitivity to small structural damage. Generally, it
is enough to select several tens (10–50) of orders of the energy
spectrum for damage detection, i.e. only several tens of ANN
inputs are needed. Therefore, this approach cannot only reduce
the size of the ANN, but also detect small structural damage.

Although taking the energy spectrum of the decomposed
wavelet signals of the structural dynamic response as the inputs
of the ANN can decrease the required number of inputs and

training samples, whether the trained ANN can accurately
indicate the complex damage status in engineering practice
still needs further discussion. Because there is no universal
rule for the determination of the nodal number of an ANN
hidden layer, how to select the number of training samples
so as to optimize the performance of the designed ANN will
depend on the case to be analyzed. Only a little literature is
found to be relevant to the determination of training sample
number, nodal number of the hidden layer and the training
precision of the ANN. Zang and Imregun [11] suggested a
design criterion s = 1 + h(n + m + 1)/m for the number of
training samples, where s is the number of training samples, n
is the nodal number of the input layer, m is the nodal number of
the output layer and h is the nodal number of the hidden layer.
However, Weigend et al [12] pointed out that the criterion
should be 1.1s/10 � h(n + 1) < 3s/10. The difference
between these two criteria is obvious.

This study presents a method for the detection of locations
and extents of crack damage in honeycomb sandwich plates
using both numerical simulations and experiments. Based on
structural dynamic responses, wavelet transform is used for
enhancing damage identification precision and compressing
the total amount of input data. Back-propagation artificial
neural networks (BP ANN) are used for classifying and
identifying structural crack damage.

2. Dynamic model and responses of a honeycomb
sandwich plate with crack damage

When the ANN is trained for establishing a mapping
relationship between structural damage parameters (such
as crack length, crack number, etc) and damage feature
proxy (energy spectrum of the structural dynamic response
decomposed using wavelet transform), a large number of
sample data of the damage feature proxy and damage
parameters are necessary. If all of these sample data are
acquired only by experiment, it is too costly and inadvisable.
The finite element dynamics model of damaged structures can
be used to produce these sample data. Then, the ability of the
trained ANN to identify structural damage can be verified using
a small quantity of experimental sample data. Therefore, the
finite element dynamics model of a honeycomb sandwich plate
with crack damage is first established for acquiring the data
of the structural vibration response. Then the feature proxy of
structural damage can be extracted from these response signals.

When a crack exists in a honeycomb sandwich plate,
it can be described using five parameters: depth d, length
l , directional angle α and location coordinates xc and yc.
Assuming that only a very narrow crack is considered, the crack
width can be approximately taken as zero. A crack damage
status can be expressed as

g = g(xc, yc, l, d, α). (1)

A model of the honeycomb sandwich plate with crack
damage is shown in figure 1(a) and the finite element grids are
shown in figures 1(b) and (c). In this model, the dimensional
changes of crack damage are expressed using different mesh
divisions for the surface plates and the sandwich plate. In order
to condense the contents of this paper, the detailed procedures
for establishing the finite element model is omitted (see [13]).
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Figure 1. Crack damage in a honeycomb sandwich plate. (a) Model
and vibration response measurement of a honeycomb plate with
crack, (b) FEM grid division in the surface plate for indicating crack
damage and (c) FEM grid division in stiffened plate for indicating
crack damage.

The equation of motion of the composite plate with crack
damage can be written as

M�̈(t) + C(g)�̇(t) + K(g)�(t) = F (t) (2)

where M , K(g) and C(g) are the global mass, damping and
stiffness matrices of the structure, respectively, and F (t) is
the external force vector. �̈, �̇ and � are the global nodal
acceleration, velocity and displacement vectors, respectively.
In equation (2), the influence of crack damage on the mass
matrix is ignored because the mass matrix rarely varies with
crack status.

Because it is very difficult to determine the damping of
materials and structures using calculation, many hypotheses
are often adopted in establishing a structural dynamics model.
One of the most commonly used hypotheses is the proportional
damping, i.e. C = β1M + β2K, where C, M and K are
structural damping, mass and stiffness matrices, respectively.
β1 and β2 are constant coefficients. The determination of
β1 and β2 was reported in many papers based on various
hypotheses. Here, a method for determining the proportional
damping based on modal transform is presented. Let � be
the normalized modal matrix of structural vibration. Then the
damping matrix C can be transformed as

�TC� = �T(β1M + β2K)� ⇒ 2ζiωi = β1 + β2ω
2
i

(i = 1, 2, . . . , n) (3a)

where ωi and ζi are the i th natural frequency and modal
damping ratio, respectively. Obviously, if ωi and ζi are known,

Table 1. Natural frequencies of the intact honeycomb sandwich
plate obtained by experiment and numerical simulation.

Order Numerical (Hz) Experiment (Hz) Errors (%)

1 29.711 28.5 4.2
2 50.900 52.5 3.0
3 80.826 82 1.4
4 106.99 108 1.0
5 139.70 134 4.2
6 162.70 158.5 2.6
7 192.16 184 4.4
8 212.43 208 2.1
9 250.42 261.5 4.2

10 277.07 287.5 3.6

β1 and β2 could be determined. In practice, ωi can be easily
acquired using experiment or model simulation, but ζi is
generally obtained only using experimental modal analysis.
The ζi mainly depends on material properties. Generally,
ζi = 0.1–1% for most steel products and ζi = 0.5–5% for
fiber composite materials. Since using experimental modal
analysis to determine ζi is time consuming and not accurate,
a simple method is to assume that ζ1 = ζ2 = · · · = ζ , and
ζ is selected based on the structural materials. In this paper,
ζ is selected as 0.8%. Using the experimentally measured 10
natural frequencies (see table 1) and ζ = 0.8%, one can obtain
a set of simultaneous equations

β1 + β2ω
2
1 = 2ζω1

β1 + β2ω
2
2 = 2ζω2

· · · · · · · · · · · · · · · · · ·
β1 + β2ω

2
10 = 2ζω10.

(3b)

Using the least square method to solve equation (3b) gives[ ∑10
i=1 1

∑10
i=1 ω2

i∑10
i=1 ω2

i

∑10
i=1 (ω2

i )2

]{
β1

β2

}
=

{ ∑10
i=1 2ζωi∑10

i=1 (ω2
i × 2ζωi )

}
.

(4)
Substituting the known 10 ωi and ζ = 0.8% into equation (4)
yields β1 = 1.005 777 91 and β2 = 0.000 047 79 ⇒ β1 +β2 ≈
1. It must be pointed out that this is only valid for a limited
range of ζ values. On the other hand, since β1M and β2K

have the same units, β1 and β2 should have different units, then
β1 + β2 = 1 may not be valid for all engineering materials.

Three specimens of the above-mentioned numerical
model with dimensions of length L = 295 mm, width B =
98 mm and thickness h = 8 mm are manufactured. These
honeycomb sandwich plates are composed of PVC materials,
and the top surface has a thin layer of aluminum coating. The
plate weight is only 12.67% of a solid structure with the same
dimensions and material. The PVC material parameters are
E = 3.5 GPa, µ = 0.34 and ρ = 1.36 kg m−3.

The natural frequencies of an undamaged specimen
of honeycomb sandwich plate are experimentally measured
to verify the reliability of the theoretical formula and the
programs. The veracity and reliability of the established
FEM structural dynamics model are verified using the
experimentally measured natural frequencies for the intact
structure only. The variations of structural natural frequencies
and mode shapes due to small damage are not obvious, and
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∆∆ µ

Figure 2. Experimental frequency response curve of the specimen.

they are quite difficult to detect using experimental methods.
However, if the vibration responses for damaged structures are
experimentally measured and the structural damage features
are extracted based on wavelet transform, it is possible to
detect small damage of structures. An experimentally obtained
frequency response curve is given in figure 2. The lowest 10
features are extracted based on wavelet transform. The natural
frequencies acquired by experiment and numerical simulation
as well as the percentage errors between these two kinds of
results are listed in table 1, which shows that the errors are
below 5%. This is an acceptable numerical precision for
engineering problems.

3. Construction of crack damage index vector based
on wavelet transform

3.1. Wavelet transform

The traditionally used Fourier analysis is a kind of collectivity
transform, i.e. either in time domain or in frequency domain, so
it cannot synchronously express the local features of a signal
in both time and frequency domains. However, this kind of
feature is often the most pivotal in complex signal processing.

Wavelet transform possesses features of multi-resolution
analysis and can express the local features of a signal in
both time and frequency domains, i.e. its time window
and frequency window can both be changed. Generally,
wavelet transform possesses higher frequency resolution in
the low frequency range for a signal, but it possesses higher
time resolution in the high frequency range. These special
characteristics are very useful for detecting transient or
abnormal phenomena mixed in with normal signals, and
it is also useful to exhibit the detailed components of
such an abnormality. There are many published papers
on wavelet analysis theory and its application in different
fields [14]. It is shown that wavelet analysis is more powerful

than traditional Fourier analysis in vibration-based structural
damage detection.

3.2. Vector of crack damage index

Vibration responses at a few spots of an in-service structure can
be easily measured using the technology of piezoelectric smart
structures. However, the raw response signal cannot be used
directly to identify structural damage quantitatively. Some
representative indexes have to be selected and constructed.

A comparison of the energy of dynamic responses between
cracked and intact structures in some special frequency
bands exhibits some remarkable differences. This is because
structural damage will suppress or enhance certain components
of the response signals in some special frequency bands,
i.e. structural damage can cause an energy increase of
some response signal components or an energy decrease of
some other response signal components. Therefore, the
energy of structural vibration signals with different frequency
components contains ample information on structural damage
and the energy variation of one or several frequency
components of the signals can indicate a special status of
structural damage.

In order to extract structural damage information from
structural response signals, the signal is first decomposed into
multiple sub-signals in various frequency bands using WPA.
Let S0,0(t) denote the original signal of the structural response,
which can be expressed as

S0,0(t) =
2k−1∑
j=1

Sk, j (t) (5)

where Sk, j (t) is the sub-signal with orthogonal frequency band
and k indicates the layer number of the tree structure of wavelet
decomposition. The energy of the j th order sub-signals can

664



Identification of complex crack damage for honeycomb sandwich plate using wavelet analysis and neural networks

be expressed as

Uk, j =
∫

|Sk, j (t)|2 dt. (6)

Assuming that the energy of the j th-order sub-signals
of the intact and damaged structures are U 0

k, j and U d
k, j ,

respectively, a non-dimensional index vector can be composed
as follows:

Vd = {v1, v2, . . . , v2k−1}T

=
{

1 − U d
k,1

U 0
k,1

, 1 − U d
k,2

U 0
k,2

, . . . , 1 − U d
k,2k−1

U 0
k,2k−1

}T

. (7)

Obviously, the element magnitudes of different index
vectors Vd not only indicate the differences between the intact
and damaged structures, but also imply the changes of different
structural damage status.

4. Crack damage identification using neural
networks

4.1. Neural networks and classifier

ANNs could provide a general, non-linear parameterized
mapping between a set of inputs and outputs. A three-layer
network with sigmoid activation functions can approximate
any smooth mapping and it will be used here. A typical
supervised feed-forward multi-layer NN is referred to as a BP
NN. The network consists of three types of layers:

(1) the input layer that receives the structural damage index
data;

(2) the hidden layer, which processes the data; and
(3) the output layer, that indicates the structural crack damage

status.

The ability of identifying the structural crack damage status
is acquired through neural network training using the known
samples by the generalized delta learning algorithm. For a NN
with n input nodes, m output nodes and N known training
samples, the learning algorithm is designed to minimize
recursively an error function Er of the form

EN =
√√√√ 1

N

N∑
i=1

m∑
j=1

(yi j − di j )2, (8)

where yi j and di j are the desired output (target) and the actual
output values at the j th output node of the i th training sample,
respectively. Let the input and output vectors of the NN be
denoted by x = {x1, x2, . . . , xn}T and d = {d1, d2, . . . , dm}T,
respectively. The corresponding target output vector is
y = {y1, y2, . . . , ym}, and {wkl}p is the weight function
between the input node k and the output node l at the pth
layer. A non-linear sigmoid function f can be defined as

f (x) = 1

1 + e−x
. (9)

The output of the kth node in the hidden and output layers
can be described by

dl = f (netl) = f

(∑
k=1

wkl dk

)
(10)

where netl is the input of the kth node.

The interconnection weights, adjusted in such a way that
the prediction errors on the training set can be minimized, are
given by

�N w j i = βδN j dNi (11)

where 0 < β < 1 is the learning rate coefficient, � is the actual
change in the weight and δ is the error at the node, which can
be expressed as

δN j = (yN j − dN j )(1 − dN j )dN j

(if node j is in the output layer) (12)

δN j = dN j (1 − dN j )
∑

i

δNiwi j

(if node j is in the hidden layer). (13)

In order to control the network oscillations during the
training process, a momentum coefficient 0 < α < 1 is
introduced to the definition of the weight change:

�N w j i(t + 1) = βδN j dN j + α�N w j i(t). (14)

Once the change is computed, the new weight is given by

w j i(t + 1) = w j i(t) + �N w j i(t + 1). (15)

The training of a BP NN is a two-step procedure. In
the first stage, the network propagates an input through each
layer until an output is generated. The error between the
actual output dNi and the target output yNi is then computed
using equation (8). In the second stage, the calculated error is
transmitted backwards from the output layer and the weights
are adjusted according to equations (14) and (15) in order to
minimize the error. The training process is terminated when
the error Er is sufficiently small for all training samples.

4.2. Implementation of neural network algorithm

As mentioned earlier, a sample of structural dynamic responses
with 2048 sample data can be expressed using an index vector
with 32 elements, which are composed of the energy spectrum
of structural dynamic responses decomposed using wavelet
transform. Thus, the nodal number of the input layer can be
determined as n = 32. If the structural dynamic responses
are directly used as the input to the NN, 2048 input nodes are
needed. Obviously, the currently required nodal number in the
input layer is greatly reduced because of the data compression
ability of wavelet transform. The training data are extracted
from numerical simulation of a structural dynamics model. A
large number of sample data are required in NN training, and
it is costly and time-consuming if these data were acquired
by experiment only. In this paper, the structural dynamics
model is verified using experimental measurement of structural
natural frequencies and vibration responses to excitation.

The node number of the output layer m depends on the pre-
selected crack damage status. In this study for crack detection
of a honeycomb sandwich plate, the following crack damage
statuses are considered:

(1) crack direction of 0◦ or 90◦ (longitudinal or transverse
crack) is expressed using one binary nodal output (0 or 1);

(2) the three kinds of crack depth (5%h, 10%h and 15%h) are
denoted using the nodal outputs with two digits (10, 01,
and 11);
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Output value=0, 1
Crack direction:

Output value=10,01,11
Crack depth:
5%h, 10%h, 15%h

Output value=1000,0100, ,1111
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Output value=1000,0100, ,1111
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Output of each
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Input layer
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Output layer

15 nodes
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Crack damage status
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.

.

.

.

.

.

Figure 3. Back propagation neural network for identification of multiple crack parameters.

(3) the 15 kinds of crack length (1%L , 2%L , 3%L , 4%L , . . .,
15%L) are represented using the nodal outputs with four
digits (1000, 0100, 1100, 0010, . . . , 1111);

(4) the 15 kinds of x and 15 kinds of y coordinates of
the crack location, i.e. X1–X15 = 5, 15, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75, 85, 95% of plate
length L , and Y1–Y15 = 5, 15, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 85, 95% of plate width B,
are described using two sets of nodal outputs with four
digits (1000, 0100, 1100, 0010, . . . , 1111), respectively
(see figure 3).

Thus, there are altogether 15 nodes in the output layer of this
NN. Because the maximum decimal value of the 15 binary
nodes is 215−1 = 32 767, the output layer can represent 32 767
kinds of crack damage status. The case without damage will
be indicated using the value 0 at all 15 nodes in the output
layer.

The nodal number of the hidden layer h is generally
selected as half of that of the input layer, i.e. h = n/2 =
16 [11]. This BP network is shown in figure 3. The relationship
among the number of training samples N , the number of input
variable n, the number of output variables m and the number of
hidden layer nodes h can be approximately expressed as [15]

N = 1 + h(n + m + 1)/m. (16)

In this study, n = 32, m = 15 and h = 16, then the
required number of training samples N should equal 53, which
is a reasonable number of training samples for experiment and
numerical simulation. Equation (16) shows that the number of
required training samples increases with that of input variables.
If the number of input variables is much larger than the number

of training samples, the NNs will focus on local details of
individual training samples, which may be meaningless in a
global context. On the other hand, equation (16) also implies
that the larger the number of output variables, the smaller the
number of required training samples will be. However, more
output variables will take a longer time for the training of neural
networks and the performance of the NN may be reduced.

Generally, better training results for NNs will be obtained
if more training samples are used. However, the required
workload for acquiring training data is an important issue.
Although using numerical simulation to acquire the training
data may be easier than using experiments, it is very time-
consuming for numerical analysis on complex structures if a
large number of training data are required. How to reduce
the number of training samples while still keeping the training
effect is a very important issue in the design of NNs. So far,
there have been various methods for determining the number
of training samples and this number will depend on the final
effect of NN training.

4.3. Neural network training and verification

All combinations of the above-mentioned crack damage and
undamaged status will produce 215 = 32 768 cases. Using
all these cases as samples for NN training is neither necessary
nor possible for practical implementation, even if numerical
simulation is used. According to equation (16), 60 samples of
the damaged structures and one sample of the intact structure
are selected for training and verification of this NN. The cases
of crack damage of these 60 samples are shown in figure 4
and their output codes are listed in table 2. Obviously, each
input sample corresponds to one output string code with 15 bits
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Figure 4. Crack damage status of 60 samples for training and
simulation of the ANN.
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Figure 5. Training errors for the designed neural network.

binary. The 1st–55th samples of the damaged structures and
one sample of the intact structure are used for ANN training,
and the 56–60th samples of the damaged structures are used
for verification.

In fact, to select a set of widely representative train sample
data will be very profitable for reducing the number of required
training data and enhancing the efficiency of neural network
training. Many complex special methods have been studied in
this field. Since this paper mainly focuses on research into the
integrated application of various methods of structural damage
detection, the study into ways of selecting training samples was
not emphasized here.

The training error versus times of iterations is plotted
in figure 5. As can be seen from figure 5, the training
error decreases with times of iteration and satisfies the given
criterion 0.02 after about 80 iterations. The anticipated outputs
and the real outputs of this trained NN for the five verification
samples are listed in table 3. The data in table 3 show that
the maximum error between the anticipated and real output
values is about 15%. This error level is acceptable, since the
anticipated output is either 0 or 1, and it also indicates that the
network is well trained and stable.

It is worth pointing out that, after an ANN is trained using
the real-valued inputs and the binary type outputs, the outputs
corresponding to the inputs which are used for the training data
must be binary values. However, if a set of inputs, which does
not belong to the training input data, is fed into the trained

Computer

Piezo-patch sensor

Piezo-patch actuator

Crack

Measuring Amplifier
B&K Type 2525

Piezo Driver

Model 700

Signal Generator
TGA 1230

Figure 6. Schematic diagram of the experimental set-up for crack
damage detection.

(This figure is in colour only in the electronic version)

ANN, the corresponding outputs are not always the binary
values. Generally, the better the NN is trained, the closer to
the binary values the output values will be. Since all initial
link weights are randomly and automatically selected based
on the range of input values to be used, these link weight
values must be real values, so that the initial outputs are also
real values. With the progress of training, the outputs will
gradually converge to either 0 or 1. The advantage of taking
binary as output is that this will make it easier to distinguish
true or false output results in a large range of allowable error.

5. Structural dynamic testing and crack damage
identification

In order to acquire the dynamic responses of the honeycomb
sandwich plate, two piezo-patches with a dimension of
25 mm × 10 mm × 0.28 mm are bonded on the surface of
the plate. A square wave signal with 150 mV magnitude
and 5 Hz frequency generated by the signal generator TGA
1230 is fed into the TRek Model 700 Piezo-driver. The 30 V
voltage signal from the output of the Piezo-driver is exerted on
the piezo-patch actuator. The dynamic responses of the plate
are measured by the piezo-patch sensor and they are first fed
into the B&K 2525 measuring amplifier, which can amplify
the signal and filter out the noise using the 3–3 kHz band-
pass function. Then, the output signal from the measuring
amplifier is taken as the input to a computer with an A/D card
for data sampling and storage. The experimental set-up for
acquisition of the dynamic responses of the plate with different
crack lengths is shown in figure 6. The measured excitation
signal and the dynamic response signals for the intact and
damaged honeycomb sandwich plates are shown in figure 7.
An example of raw time signals of the plate dynamic response
and its wavelet decomposition is shown in figure 8. One can
see that it is difficult to make a quantitative analysis for plate
damage detection using the time domain dynamic response
or the decomposed wavelet signals. However, the energy
spectrum established according to equation (7) can show more
detailed information. Figure 9 shows the energy spectrum
distribution of the dynamic response decomposed by wavelet
transform for three plate specimens, which contain a crack with
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Table 2. Known binary output codes with 15 bits of 55 train and 5 verification samples.

Crack status α d l Xi Yi

Output bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
Case 2 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0
Case 3 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1
Case 4 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1
Case 5 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1
Case 6 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1
Case 7 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1
Case 8 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1
Case 9 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1
Case 10 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1
Case 11 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0
Case 12 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0
Case 13 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1
Case 14 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1
Case 15 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1
Case 16 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1
Case 17 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1
Case 18 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1
Case 19 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1
Case 20 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
Case 21 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0
Case 22 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0
Case 23 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1
Case 24 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1
Case 25 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
Case 26 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1
Case 27 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1
Case 28 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1
Case 29 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1
Case 30 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
Case 31 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0
Case 32 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0
Case 33 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1
Case 34 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1
Case 35 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1
Case 36 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1
Case 37 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1
Case 38 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1
Case 39 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1
Case 40 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1
Case 41 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0
Case 42 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0
Case 43 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1
Case 44 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1
Case 45 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1
Case 46 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1
Case 47 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1
Case 48 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1
Case 49 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1
Case 50 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
Case 51 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
Case 52 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0
Case 53 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
Case 54 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1
Case 55 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1

Case 56 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
Case 57 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1
Case 58 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1
Case 59 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1
Case 60 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1

a length of 3%L , 6%L and 9%L , respectively. One can find
that, among the element values of the damage index vector Vd,
several element values exhibit the tendency to increase with

the crack length, such as the 25th-order element. Obviously,
the magnitudes and order number of the energy spectrum can
quantitatively indicate a structural damage status.
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Figure 7. Excitation and dynamic responses of a plate specimen. (a) Excitation signal exerted on a piezoelectric patch actuator, (b) dynamic
response from a piezoelectric patch sensor bonded on the intact plate, and (c) dynamic response from a piezoelectric patch sensor bonded on
the plate with a crack.

Table 3. Anticipated outputs and real outputs of the trained NN for the five verification samples (AO = anticipated output; RO = real
output).

Case 56 Case 57 Case 58 Case 59 Case 60
Output
bit AO RO AO RO AO RO AO RO AO RO

1 1 0.9409 1 0.9071 1 1.1261 1 1.0516 1 1.1032
2 1 1.0674 1 1.0358 1 1.1476 1 1.0228 1 1.0746
3 1 1.1067 1 1.0081 1 1.0152 1 1.0593 1 1.0443
4 1 1.1463 1 1.1503 0 0.1970 1 0.8486 0 −0.1329
5 0 0.0510 1 1.0242 1 1.0162 0 0.0980 0 0.0562
6 0 0.1836 0 −0.0587 1 0.9968 0 0.0182 1 1.0181
7 0 0.1976 0 0.1960 0 0.0257 1 1.1028 1 1.0016
8 1 1.0846 0 0.0977 0 0.0000 0 0.0423 1 1.0000
9 0 0.0081 0 0.1903 0 0.0537 0 0.1927 1 1.0367

10 0 0.0436 1 1.0188 0 0.0267 1 1.0240 1 1.0185
11 0 0.1880 0 0.1012 1 0.7108 1 0.9538 1 1.1901
12 1 0.9773 1 1.0505 1 1.0393 1 1.0496 1 1.1096
13 1 0.9408 1 1.0953 1 1.1075 1 1.0819 1 1.0988
14 1 0.9574 1 1.0565 1 1.1623 1 0.9847 1 0.8683
15 1 1.0423 1 0.9784 1 1.0053 1 1.0143 1 1.0011

Table 4. Real outputs of the trained ANN and the theoretical outputs corresponding to practical damage for the three plate specimens.
EP1–EP3: number of plate samples; RO: real outputs of the trained ANN; AO: approximate output values according to a maximum
allowable error of 25%; TO: theoretic outputs and ∗ may be 0 or 1 (unable to be determined).

EP1 EP2 EP3
Crack status and

output bit RO AO TO RO AO TO RO AO TO

Direct. angle 1 1.24 1 1 1.22 1 1 −0.15 0 0

Crack depth 2 −0.28 0 0 0.06 0 0 0.06 0 0
3 1.14 1 1 1.25 1 1 1.12 1 1

Crack length 4 1.20 1 1 0.16 0 0 1.06 1 1
5 1.24 1 1 1.26 1 1 −0.17 0 0
6 0.18 0 0 1.14 1 1 0.14 0 0
7 0.33 ∗ 0 0.19 0 0 0.89 1 1

Location in 8 0.19 0 0 0.26 0 0 −0.16 0 0
x direction 9 0.49 ∗ 1 1.23 1 1 1.12 1 1

10 0.76 # 0 0.20 0 0 0.12 0 0
11 0.21 0 0 0.24 0 0 0.17 0 0

Location in 12 0.19 0 0 1.10 1 1 1.10 1 1
y direction 13 1.22 1 1 0.29 ∗ 0 0.14 0 0

14 0.59 ∗ 0 0.78 1 1 0.16 0 0
15 0.54 ∗ 0 0.34 ∗ 0 1.10 1 1

Finally, damage detection of three practical honeycomb

sandwich plates is carried out. The crack damage of three
plate specimens EP1, EP2 and EP3 are in turn as follows:

crack direction = 90◦, 90◦ and 0◦; crack depth = 10%h,

10%h and 10%h; crack length = 3%L , 6%L and 9%L;

the locations in x-coordinate = 15%L(x2), 15%L(x2) and

15%L(x2); the locations in y-coordinate = 15%B(y2),
35%B(y5) and 55%B(y9). According to figure 3, the three

sets of theoretical output codes should be 101110001000100,

101011001001010 and 001100101001001, respectively. The
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Figure 8. Raw time signals of dynamic responses and their wavelet
decomposition.

Figure 9. Element values of damage index vector Vd with different
crack lengths.

dynamic responses of the three plate specimens are measured
using the set-up shown in figure 6 and each set of the
response data is decomposed into 32 orders of wavelet signals.
The energy spectrum of the decomposed wavelet signals is
calculated according to equation (7) and fed into the trained
ANN. The actual outputs of the ANN and the theoretical
outputs corresponding to the real damage status of these three
plate specimens are listed in table 4.

In table 4, RO is the real output of the trained ANN,
AO is the approximate output value according to a maximum
allowable error of 25% and TO is the theoretical output. Here,
AO is not the anticipated or theoretical output, it is obtained
by transforming RO into an integer with the error limited to
±25%. When the value of RO is in the range of 1 ± 25%, it
is transformed into 1; when the value of RO is in the range
of 0 ± 25%, it is transformed into 0; otherwise, the value of
RO is taken as uncertain. Thus, the real number output can be
converted into binary, so that the difference between RO and
TO can be compared.

The output data of the ANN must be converted to 0 or 1
for the determination of crack damage status. Therefore, the
real output data should be converted according to some error
criterion. A maximum allowable error is set approximately
as 25%, which is changeable according to the actual effect

of damage detection. The converted values (AO) of the real
outputs (RO) of cases EP1, EP2 and EP3 are also listed in
table 4. From table 4 one can find that the results of cases
EP2 and EP3 can accurately indicate the crack damage status
of the plate specimens, and the average error of case EP3 is
about 15%, but the average error of case EP2 is about 25%. In
case EP1, because the errors of several output bits are too large
to determine the value of AO as 0 or 1, some crack damage
parameters cannot be confirmed. For instance, in case EP1 the
errors of the 7th, 9th, 14th and 15th output bits almost reach
40–50%. Thus one cannot determine if they are 0 or 1 and there
is an unmatched result for the 10th output bit. As a result, the
crack length and location in x and y coordinates in case EP1
cannot be determined, because the crack length is too short.

After more prudent analysis, one can find that the output
error of the ANN increases gradually from EP3 to EP1, and
some data in EP1 are not available. This is because the crack
damage severity (crack length) decreases gradually from EP3
to EP1 and this phenomenon indicates that the damage severity
(crack length) is a key factor in damage detection using the
ANN.

Although one cannot accurately confirm all damage
parameters for very small structural damage using the method
proposed in this study, we can still acquire some valuable
information about the structural damage status. In this way, a
possible range for some structural damage parameters can be
determined and this can provide very important guidance to
practical engineering problems.

6. Conclusions

Dynamic responses of an in-service structure can be
conveniently acquired using piezoelectric smart structure
technology. It is feasible for crack damage detection of
a honeycomb sandwich plate using the energy spectrum of
dynamic responses decomposed by wavelet transform and
the artificial neural network to be done. Based on the
experimental results of crack damage detection for three plate
specimens, various issues of detecting small cracks using
the method proposed in this study are discussed. Results
show that, using the energy spectrum of structural dynamic
responses decomposed using wavelet transform, the sensitivity
of structural damage detection can be enhanced. In addition,
the required number of inputs to the NN can be greatly reduced
so as to reduce the time and effort needed for ANN training.
Though for very small structural damage not all the damage
parameters can be accurately determined using the method
proposed in this study, a possible range of structural damage
parameters can still be obtained and this has very important
instructive value for practical engineering problems.
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