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Abstract

Current methods for structural damage identification, such as genetic algorithms and artificial neural networks, are often imple-
mented based on a few measured data and a large number of simulation data. The tremendous time-consuming computational work
needed for calculating the response data to establish the dynamic model of damaged structures is an important issue for dynamic damage
detection. In this paper through using the advanced modeling method of element stiffness matrix modification, the order of the global
stiffness matrix can be kept invariable in establishing the model of intact and damaged structures. Then, eigenvalue perturbation theory is
introduced to obtain the eigenvalues and eigenvectors of the damaged structure for reducing the computation load. Two artificial neural
networks (ANN) are trained based on the response data simulated using finite element method (FEM) and perturbation theory enhanced
finite element method (PFEM), respectively. The damage identification capability of these two ANN’s are compared. Results show that
the PFEM using the first order eigenvalue perturbation theory provides enough precision for detecting small structural damage and the
computational requirement is greatly reduced. Typically, the eigensolution computational time for obtaining the train sample data using
PFEM is only 1% of that using the traditional FEM.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Online detection of the location and severity of structural
damages is of great significance for ensuring the safety and
reliability of in-service structures in many important fields
of engineering. Structural damage detection using changes
in dynamic characteristics has received much attention in
recent years [1]. Various damage indices have been used to
characterize the change in dynamic characteristics caused
by damage, such as natural frequencies [2], frequency
response function [3], flexibility matrix [4], mode shapes [5]
and structure dynamic responses [6]. In the study of non-
linear mapping relationships between the structural damage
indices and various damage statuses, soft computing
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techniques, such as the neural networks and genetic algo-
rithm (GA), have been increasingly utilized owing to their
excellent pattern recognition capability [7–9].

However, most of the vibration based methods rely on a
few measured data and a large number of simulation data,
usually obtained using finite element method. For instance,
the GA with a population of 100 used by Chou and Gha-
boussi [8], needs to perform up to 2000 generations to
accomplish damage detection for a truss structure with 26
elements. In fact, in order to get enough precise damage
information, much more elements should usually be used
for large complex structure when FEM is adopted, and it
is well known that for a dynamic problem the required
computation load increases exponentially with the number
of elements. Then, for large complex structures, even one
analysis cycle is already very time-consuming. For damage
detection purpose, heavy dynamic analyses are usually
required. For this reason, most of the vibration methods
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reported in the literature can only be applied to simple
beam-like or truss structures. There is an obvious lack of
work on the identification of damage in large complex
structures.

The FEM dynamic structural analysis can be divided
into four steps: (1) meshing of the structure, (2) calculating
the element stiffness and mass matrices for each element
and then assembling them to form the global stiffness and
mass matrices, (3) calculating the eigenvalues and eigenvec-
tors of the global stiffness and mass matrices, and (4) per-
forming post-processing to obtain the required dynamic
characteristics. Among these four steps the main computa-
tional workload is the calculation of eigensolution. When
analysing the intact structure, the classic eigensolution
algorithms are used to find the eigenvalues and eigenvec-
tors. However, when the damaged structure is to be subse-
quently analyzed, most of the published work for vibration
based damage detection uses the same algorithms again,
which turns out to be very time-consuming. In fact, a better
method can be used for this purpose. If the eigenvalues and
eigenvectors of a matrix are known, then after this matrix
is changed, the new eigenvalues and eigenvectors of the
changed matrix can be quickly calculated based on the pre-
calculated eigenvalues and eigenvectors of the original
matrix. This method, called eigenvalue perturbation the-
ory, was developed over the past few decades, and has been
successfully applied in many areas. In holographic vibra-
tion analysis, the first-order eigenvalue perturbation theory
was used in the re-analysis method to quickly calculate the
new mode shapes and natural frequencies from the
known vibration mode of a structure [10]. In the area of
structure dynamic modification, the eigenvalue perturba-
tion theory has been proved to be highly efficient [11]. In
the area of damage detection, although an iterative method
based on the general-order perturbation theory and optimi-
zation method for multiple structural damage detection has
been developed by Wong et al. [12], the most valuable
advantage of eigenvalue perturbation theory, i.e. its time-
saving feature, has not been paid enough attention to.
The damage detection methods presented in this paper
clearly show the benefit of using eigenvalue perturbation
theory.

The basic requirement for applying eigenvalue perturba-
tion theory is that the order of matrix must be kept invari-
able. There are two methods for simulating crack in a FEM
model, i.e. direct mesh and modification of local structural
material elastic coefficients. The former changes the
order of the global stiffness and mass matrices, while the
latter will not. Therefore, the latter allows the application
of eigenvalue perturbation theory. Our previous work
showed that if a structure with small damage is directly
meshed to depict the geometry of the small damage for
establishing structural dynamics model, excessive mesh will
be required. Then, it is time-consuming for subsequent
calculations, and different meshings required by different
damage sizes will cause significant numerical error. Such
error may even cover the effect produced by small struc-
tural damage on structural dynamic characteristics, such
as natural frequencies. Therefore, the direct mesh method
is not suitable for simulating crack in damage detection
[13]. In fact, local damage in a structure always causes a
decrease in structural local stiffness, and these variations
can be reflected by changes in the local structural material
elastic coefficients [14]. Hence, dynamic model of a dam-
aged structure can be established using the modified mate-
rial elastic coefficients at the damage location. Thus, it is
possible to avoid problems caused by direct mesh of struc-
tures and keep the degree of freedom (DOF) of the FEM
invariable for the application of eigenvalue perturbation
theory.
2. First order eigenvalue perturbation theory

The free vibration eigenvalue problem for an n-DOF
undamped dynamic structure is given by

½K0�fU 0g ¼ k0½M0�fU 0g ð1Þ

where [K0] and [M0] are the n · n global stiffness and mass
matrices, respectively. Classic eigensolution algorithms,
such as Lanczos algorithm, can be used to obtain the eigen-
value k0 and eigenvector {U0} of the intact structure from
Eq. (1).

When damage is introduced, the free vibration eigen-
value problem for the damaged structure becomes

½Kd�fU dg ¼ kd½Md�fU dg ð2Þ

where [Kd] and [Md] are the global stiffness and mass matri-
ces of the damaged structure, respectively, which can be ex-
pressed as:

½Kd� ¼ ½K0� þ ½K1� ð3Þ
½Md� ¼ ½M0� þ ½M1� ð4Þ

where [K1] and [M1] are the perturbation of global stiffness
and mass matrices, respectively caused by the modification
of local structural material elastic coefficients.

The eigenvalue kd and eigenvector {Ud} of the damaged
structure can be solved from Eq. (2) using the classic eigen-
solution algorithms. Besides, the approximate eigenvalue
kP

d and eigenvector fU P
dg of the damaged structure can be

obtained using the eigenvalue perturbation theory. It has
been pointed out that when the change of structural
parameter is more than 15%, the second order perturbation
should be taken into account [15]. In practice, the variation
of local elastic modulus caused by small damage is usually
far below 15%, so only the first order perturbation is used
in this study.

According to the eigenvalue perturbation theory, for
structures with distinct eigenvalues, the first order pertur-
bation of eigenvalue and eigenvector can be respectively
obtained as follows:

k1i ¼ fU 0igT½K1�fU 0ig � k0ifU 0igT½M1�fU 0ig ð5Þ
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fU 1ig ¼
XN

s¼1 s 6¼i

1

k0i � k0s
ðfU 0sgT½K1�fU 0ig

� k0ifU 0sgT½M1�fU 0igÞfU 0sg

� 1

2
fU 0igT½M1�fU 0igfU 0ig ð6Þ

where k0i is the eigenvalue of order i for the intact struc-
ture; k1i the first order perturbation of k0i; {U0i} the eigen-
vector of order i for the intact structure and {U1i} the first
order perturbation of {U0i}. Then, kP

d and fU P
dg can be ob-

tained as:

kP
d ¼ k0 þ k1 ð7Þ
fU P

dg ¼ fU 0g þ fU 1g ð8Þ
Compared with the amount of computation needed for

solving Eq. (2), the computational time for obtaining the
approximate eigenvalue and eigenvector can be greatly
reduced by using perturbation method. For instance, for
a 20-bar truss, when one bar’s cross-section is changed,
the reanalysis time of using Eqs. (5)–(8) is only 4.5% of that
by the classic eigensolution algorithms [11].

For dynamic damage detection, the damage-induced
change in mass distribution is negligible. Then,
[M1] = [0], Eqs. (5) and (6) can be reduced to

k1i ¼ fU 0igT½K1�fU 0ig ð9Þ

fU 1ig ¼
XN

s¼1 s 6¼i

1

k0i � k0s
ðfU 0sgT½K1�fU 0igÞfU 0sg ð10Þ

This can reduce the computational load of Eqs. (5) and (6).
Besides, Eqs. (9) and (10) are also the simplified form of
improved precise perturbation method by William [16] in
the absence of mass changes.

Because both [K0] and [Kd] are diagonal and symmetric
matrices, and the modifications of structural material elas-
tic coefficients for simulating crack take place locally, only
a few elements in the stiffness matrix undergo changes.
Therefore, [K1] is a diagonal, symmetric and sparse matrix
as follows:

½K1� ¼

0

. .
.

kkk � � � kkj

..

. . .
.

kjk kjj

. .
.

0

2
666666666666664

3
777777777777775

ð11Þ

This characteristic of [K1] can be further employed to
reduce the computational load, because the locations of
non-zero elements in [K1] can be determined based on the
location of damage in the structure before the use of Eq.
(9). The non-zero elements of [K1] and the corresponding
elements in {U0i} can form a new low-order matrix and a
new vector. Then the calculation of eigenvalue and eigen-
vector for damaged structure using Eq. (9) can be reduced
to low-order matrix multiplication as follows.

k1i ¼ fU 0igT½K1�fU 0ig ¼ fuk � � � ujg0i

kkk � � � kkj

..

. . .
. ..

.

kjk � � � kjj

2
664

3
775

uk

..

.

uj

8>><
>>:

9>>=
>>;

0i

ð12Þ
A similar reduction can be performed for Eq. (10). So

without change in mass matrix and with only small local
change in stiffness matrix, the application of perturbation
method in dynamic damage detection will be more efficient
than in other areas, such as structure dynamic modifica-
tion. Furthermore, the workload for the classic eigensolu-
tion algorithms increases exponentially with n, while it
only increases linearly with n in the present case. When n

is very large for large complex structure problem, the
reduction in workload will be very significant.
3. Numerical verifications

When the perturbation method is used to calculate the
dynamic characteristics for other applications, such as
structure dynamic modification, an error of about 1% is
acceptable. In damage detection applications, however,
the change in dynamic characteristics caused by small dam-
age is usually very small, for instance, the change in natural
frequencies is generally less than 1%. So whether the error
of perturbation method caused by neglecting the high order
parts is acceptable in damage detection should be verified.

The origin of errors indicates that the smaller the change
of matrix is, the more precise the perturbation method will
be. The change in stiffness matrix caused by small damage
is very small, so the perturbation method can have enough
precision in damage detection. A cantilever composite plate
is used as an example to support this point of view.
3.1. Composite plate specimen

A square cantilever plate, shown in Fig. 1 is used as an
example. The side length of the plate is 550 mm and its
thickness is 10 mm. It is made of resin glass fibre with
orthogonal layer (�45�/45�)10. Material parameters of the
sample are E1 = 47.518 GPa, E2 = 4.588 GPa, G12 =
2.201 GPa, l12 = 0.0419, l21 = 0.434, and q = 1850
kg/m3. The plate is divided into 10 · 10 elements in the
FEM model. Two identical piezoelectric patches (one as
the actuator, and the other as the sensor) embedded in
the composite plate are used to provide the excitation
and sensing system for plate vibration. The size of the
patch is 30 · 27.49 · 0.25 mm3, and its piezoelectric strain
coefficients are d33 = 285 · 10�12 C/N and d31 = 170 ·
10�12 C/N. The elastic parameters of the piezoelectric
material are Ep = 65 GPa, Gp = 25 GPa and lp = 0.3. A
square wave signal with a fundamental frequency of 4 Hz



Fig. 1. Model of a laminated square composite plate.
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and magnitude of 100 V is fed into the piezoelectric actua-
tor embedded in the composite plate.
3.2. Crack simulation in FEM model

For a composite structure with crack damage, the mod-
ified local elastic modulus can be calculated using Eq. (13)
as follows [14]

Ed
1 ¼ E1 þ 2x3ðC3 þ C6ðl12Þ

2 � C12l12Þ
Ed

2 ¼ E2 þ 2x3ðC6 þ C3ðl21Þ
2 � C12l21Þ

ld
12 ¼ l12 þ x3

1� l12l21

E2

ðC12 � 2C6l12Þ

ld
21 ¼

Ed
2

Ed
1

ld
12; ld

12 � ld
21

Gd
12 ¼

Ed
2

2ð1þ ld
12Þ
; Gd

23 ¼ Gd
13 ¼ Gd

12

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð13Þ

where Ed
1, Ed

2, ld
12 and Gd

12 are the elastic moduli, Poisson’s
ratio and shear modulus of the thin composite plate with
crack damage, respectively. E1, E2, l12 and G12 are the elas-
tic moduli, Poisson’s ratio and shear modulus of the intact
composite plate, respectively. C1 to C12 are the material
coefficients independent of strains and damage, but depen-
dent on the composite configuration, i.e. fiber geometry
and orientations, fiber volume fraction and ply stacking
sequence, etc. These parameters can be determined by mea-
suring the specimen made of the same composite materials
[14]. x3 is a variable representing the crack damage status,
and it is related to the number, length and width of the
crack. The expression of crack damage variable x3 can
be written as

x3 ¼ /c�ac
�bc

�f c ð14Þ
where /c is the crack density, which is defined as the crack
number in a unit area, �ac and �bc are the average length and
width of the crack, respectively, and �f c is an adjustment
coefficient.
For other types of crack in a structure made of resin
glass fibre, the modified local elastic modulus can also be
calculated using Eq. (13) with its corresponding material
coefficients. For other materials, the modified local elastic
modulus can be calculated using a general method devel-
oped in our previous work [13].

The plate has a crack with length �ac ¼ 3 mm and width
�bc ¼ 0:1 mm in the location shown in Fig. 1. Using Eqs.
(13) and (14) and the experimentally determined data of
crack damage parameters C1 to C12 [14], the modified local
elastic moduli can be calculated as:

Ed
1 ¼ 47:47 GPa; Ed

2 ¼ 4:5853 GPa;

Gd
12 ¼ 2:192 GPa and ld

12 ¼ 0:04164

Then the variations of local elastic moduli can be easily
obtained as:

DE1 ¼ �0:048 GPa; DE2 ¼ �0:0027 GPa;

DG12 ¼ �0:009 GPa and Dl12 ¼ �0:00026

Obviously, the variations of local elastic moduli in this
paper is far below 15%.

3.3. Natural frequencies and dynamic responses of structures

The natural frequencies and dynamic responses of the
composite plate with damage are calculated to verify the
precision of perturbation method.

For the intact structure, the natural frequencies are
obtained by solving Eq. (1), then the structural dynamic
response data are obtained using modal analysis.

Assume that the structural vibration amplitude is small,
so that the structure is a linear vibration system. The equa-
tion of motion of a structure with damage can be written as

½M �f€qðtÞg þ ½C�f _qðtÞg þ ½K�fqðtÞg ¼ fF ðtÞg ð15Þ
where f€qg, f _qg and {q} are the vectors of structural nodal
acceleration, velocity and displacement, respectively, {F(t)}
is the excitation force vector exerted on the structure,
which is produced by piezoelectric patch actuators embed-
ded in or bonded on structures and excited by external elec-
tric field. The detailed process of calculating the actuate
force from applied voltage on the piezoelectric actuator is
discussed in Ref. [6]. [C] is the global proportional damping
matrix.

Owing to the orthogonality of eigenvectors, Eq. (15),
which is a set of n simultaneous equations can be reduced
to a set of m independent equations of motion of a vis-
cously damped single DOF system. Usually only the lowest
m mode vectors are used in this process. In this paper the
lowest 30 mode vectors are used to uncouple the 600 inde-
pendent equations of Eq. (15). So the workload of solving
the set of m independent equations is much less than that of
solving the original n simultaneous equations.

After the dynamic analysis using FEM for the intact
structure, the FEM scheme is modified to reduce the com-
putational workload of dynamic analysis for damaged
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structure, leading to the so-called perturbation theory
enhanced FEM (PFEM), which consists of the following
four major steps:

1. Maintaining the same meshing as the intact structure,
since the damage is simulated by modification of struc-
tural material elastic coefficients.

2. Establishing the global stiffness and mass matrices. Sup-
pose that the material elastic coefficients are denoted by
e, and the element stiffness matrix is denoted by ½K�. The
change of material elastic coefficients is denoted by De.
Then, D½K� can be directly calculated by replacing ei with
Dei in the process of calculating ½K�, because ½K� is a lin-
ear function of ei. The perturbation of global stiffness
matrix [K1] can be obtained by assembling D½K�.

3. Calculating the eigensolutions of the structure. The
intact structure is considered as the unperturbed system
and the damaged structure as the perturbed system. The
eigensolutions of the damaged structure are obtained
using Eqs. (9) and (10).

4. Calculating structural dynamic responses using modal
analysis. The decoupling of Eq. (15) relys on the orthog-
onality of eigenvectors. However, since the eigenvectors
fU P

dg are not exactly the same as eigenvectors {Ud} of
the damaged structure, so whether fU P

dg is orthogonal
with respect to both the mass matrix and the stiffness
matrix of the damaged structure should first be
investigated.

Consider that there is no change in mass matrix caused
by damage, substituting Eq. (8) into fUP

dg
T½Md�fU P

dg yields:

fU P
dg

T½Md�fUP
dg ¼ ðfU 0g þ fU 1gÞT½M0�ðfU 0g þ fU 1gÞ
¼ fU 0gT½M0�fU 0g þ fU 0gT½M0�fU 1g
þ fU 1gT½M0�fU 0g þ fU 1gT½M0�fU 1g

ð16Þ

According to Eq. (10), {U1} is a linear combination of
{U0}, therefore, {U1} is also the eigenvectors of Eq. (1)
and is orthogonal with respect to [K0] and [M0]. So the four
terms at the right-hand side of Eq. (16) are all diagonal
matrices. Hence, fUP

dg
T½Md�fUP

dg is still a diagonal matrix.
Substituting Eqs. (3) and (8) into fUP

dg
T½Kd�fUP

dg yields:

fU P
dg

T½Kd�fUP
dg ¼ ðfU 0g þ fU 1gÞTð½K0� þ ½K1�Þ

� ðfU 0g þ fU 1gÞ
¼ fU 0gT½K0�fU 0g þ fU 1gT½K0�fU 0g
þ fU 0gT½K1�fU 0g þ fU 1gT½K1�fU 0g
þ fU 0gT½K0�fU 1g þ fU 1gT½K0�fU 1g
þ fU 0gT½K1�fU 1g þ fU 1gT½K1�fU 1g

ð17Þ

Because {U1} and [K1] are the first order small quantity
of {U0} and [K0], respectively; so in the right-hand side of
Eq. (17), {U0}T[K0]{U0} is the main part, and the other
seven terms are the first order to the third order small
quantities of {U0}T[K0]{U0} as indicated below:

{U1}T[K0]{U0}, {U0}T[K1]{U0} and {U0}T[K0]{U1} are
the first order small quantity,
{U1}T[K1]{U0}, {U1}T[K0]{U1} and {U0}T[K1]{U1} are
the second order small quantity, and
{U1}T[K1]{U1} is the third order small quantity.

Considering that {U1} is orthogonal with respect to [K0],
the non-diagonal terms in matrix fUP

dg
T½Kd�fU P

dg are only:

{U0}T[K1]{U0}: the first order small quantity,
{U1}T[K1]{U0} and {U0}T[K1]{U1}: the second order
small quantities,
{U1}T[K1]{U1}: the third order small quantity.

So, fUP
dg

T½Kd�fUP
dg is not a diagonal matrix but its non-

diagonal elements are high order small quantities of the
diagonal elements. If [K1] is small enough, neglecting the
non-diagonal elements in fU P

dg
T½Kd�fU P

dg is reasonable.
When the eigenvalue and eigenvector of the damaged

structure are calculated using the perturbation method,
the response data of the damaged structure can be calcu-
lated using modal analysis in post-processing of the PFEM
by neglecting the non-diagonal elements in matrix
fUP

dg
T½Kd�fUP

dg.
The non-diagonal elements of fUP

dg
T½Kd�fU P

dg can be
discussed in another form. fU P

dg can be expressed as:

fUP
dg ¼ fUdg þ fU eg ð18Þ

where {Ue} is the error of fU P
dg.

Substituting Eq. (18) into fUP
dg

T½Kd�fUP
dg yields:

fUP
dg

T½Kd�fUP
dg ¼ ðfU dg þ fU egÞT½Kd�ðfU dg þ fU egÞ
¼ fU dgT½Kd�fU dg þ fUdgT½Kd�fU eg
þ fU egT½Kd�fUdg þ fU egT½Kd�fU eg

ð19Þ

Consider that {Ud} is orthogonal with respect to [Kd],
the non-diagonal matrices in the right-hand side of Eq.
(19) are {Ud}T[Kd]{Ue}, {Ue}

T[Kd]{Ud} and {Ue}
T[Kd]

{Ue}. The non-diagonal elements in these non-diagonal
matrices, which are caused by {Ue} are neglected in post-
processing of PFEM. This is the main origin of the error
for obtaining response data using PFEM. So, the error of
the previously obtained modal vectors will result in the
error of response data. Then, if the response data are ver-
ified to be accurate enough, it is reasonable to believe that
the modal vectors are also accurate enough.

3.4. Precision of natural frequencies and responses

obtained using PFEM

In Table 1, f 0
i are the natural frequencies of the intact

structure, f 1
i and f 2

i are the natural frequencies of the



Table 1
Natural frequencies of the intact and damaged plate

f 0
i (Hz) f 1

i (Hz) f 2
i (Hz) f 2

i �f 1
i

f 0
i

���
��� (%)

f 2
i �f 1

i

f 1
i �f 0

i

���
��� (%)

1 14.52 14.51418 14.51394 0.001653 4.123711
2 49.123 49.10763 49.10791 0.000570 1.821731
3 83.744 83.71622 83.71669 0.000561 1.691865
4 132.63 132.594 132.5951 0.000829 3.079911
5 162.09 162.0535 162.0549 0.000864 3.701673
6 259.01 258.986 258.9868 0.000309 3.333333
7 277.76 277.6123 277.6188 0.002340 4.400812
8 298.41 298.296 298.3006 0.001542 4.035088
9 350.16 350.0729 350.0749 0.000571 2.296211
10 474.04 473.6888 473.7044 0.003291 4.441913
11 498.78 498.6968 498.6986 0.000361 2.163462
12 502.87 502.8234 502.8257 0.000457 4.935622
13 512.82 512.6668 512.6735 0.001307 4.373368
14 559.29 559.2048 559.2076 0.000501 3.286385
15 597.44 597.2214 597.2316 0.001707 4.666057
16 714.26 713.5953 713.6185 0.003248 3.490296
17 751.53 751.2887 751.293 0.000572 1.782014
18 814.7 814.4225 814.4338 0.001387 4.072072
19 852.44 852.217 852.2241 0.000833 3.183857
20 860.73 860.2308 860.2565 0.002986 5.148237
Average 0.001295 3.5
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Fig. 2. Dynamic response data of the structure. Response data of (a)
intact structure (ri), (b) damage stucture (rc), (c) damage structure
calculated by perturbation method (rp).
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Fig. 3. Change of wavelet energy spectrum for damage case A. Change of
wavelet energy spectrum between the response (a) ri and rc, (b) ri and rp.
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damaged structure calculated using FEM and PFEM,
respectively. Table 1 shows that the average error of
PFEM, is only 0.001295% for the first 20 order natural fre-
quencies. Although the change in structural natural fre-
quencies due to damage is also very small, the maximum
error of PFEM is less than 5.15% of the change due to
damage, and the average error is only 3.5%. In fact this
precision is much higher than the resolution of natural fre-
quencies in most of the experiments. Hence, the perturba-
tion method can be used to calculate the change in
natural frequencies due to small structural damage with
enough precision for damage detection.

As shown in Fig. 2, the difference between the response
data of the intact structure (ri) and the damaged structure
is very small, no mater which method is used for obtaining
the response data of damaged structure (rp and rc) (pertur-
bation method or classic method). So a sensitive index
needs to be found to better reveal the small changes in
the response data caused by damage. It has been proved
that the energy spectrum of the decomposed wavelet signal
from structural vibration response can indicate the struc-
tural damage status with high sensitivity. It was shown
that even when the ratio of damage size to total structural
size is as small as 0.01–0.1%, the change in response can
still be detected using the energy spectrum variation
obtained by wavelet analysis [17]. Therefore, in this paper,
the variation of the energy spectrum of decomposed wave-
let signal is used to check the precision of the perturbation
method.

Let the crack mentioned above be damage case A. The
change in wavelet energy spectrum caused by another crack
(damage case B) is also calculated. For damage case B
there is a crack at the same location and with the same
width as damage case A, but the crack length �ac ¼ 5 mm.
Fig. 3(a) shows the change of wavelet energy spectrum
between the response data ri and rc. The change of wavelet
energy spectrum between the response data ri and rp is
shown in Fig. 3(b). W FEM

A and W PFEM
A are used to denote

the damage indexes obtained using FEM and PFEM for
damage case A, respectively. The average values of W FEM

A

and W PFEM
A are 16.63 and 15.36, respectively; and the aver-

age value of W FEM
A � W PFEM

A , which is the error of perturba-
tion method shown in damage index is only 1.34, which is
only 8.06% of W FEM

A . So the difference between W FEM
A and

W PFEM
A is very small. This means that the error of using the

eigenvalue perturbation method is far less than the change
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Fig. 4. Change of wavelet energy spectrum for damage case B.
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caused by damage and would not be a problem to detect
whether the structure is damaged.

The damage index for damage case B obtained using
FEM is shown in Fig. 4 and denoted as W FEM

B . Although
damage case B is similar to damage case A, Fig. 4 is obvi-
ously different from Fig. 3(a) or (b). The average value of
W FEM

B � W FEM
A , which is the difference of damage index

for different damage cases is 13.54. This shows that the
error of using the perturbation method would not cause
problem for indication of different damage cases.

4. Identification of structural damage status using

artificial neural networks

The precision of response data obtained using PFEM is
finally verified by ANN identification of structural damage
status, and the change of wavelet energy spectrum of struc-
ture dynamic responses is taken as the damage index. The
vibration responses of 81 different cases are numerically
simulated using FEM and PFEM, respectively. These 81
cases include the intact plate, plates with crack damage at
four different locations and of 20 different crack lengths
(1–8% of the plate width) at each crack location. Two BP
neural networks (ANN1 and ANN2) both with 32 inputs
and 2 outputs are designed. The inputs are the 32 elements
of the damage index, and the outputs are the location area
number and the length of crack (expressed in percentage of
the plate width). The ANN1 are trained using samples
numerically simulated using FEM, and ANN2 are trained
using samples numerically simulated using PFEM. The
results of crack identification for 6 sets of verification sam-
ples numerically simulated by FEM and PFEM are listed
in Table 2. The data in Table 2 show that although the
crack status identified by ANN1 is a little bit more precise
than ANN2, the crack identification using ANN1 and
Table 2
Results of identifying crack damage using the trained ANN (crack location a

Case 1 Cas

Crack location area number (real) 1.000 2.0
Crack location area number detected by ANN1 1.073 2.0
Crack location area number detected by ANN2 1.103 1.9
Crack length value (real) (%) 2.000 7.0
Crack length value detected by ANN1 (%) 1.916 6.8
Crack length value detected by ANN2 (%) 1.908 6.8
ANN2 are both close to the actual crack status. So the per-
turbation method can be used to calculate the change of
response with enough precision for detecting small struc-
tural damage. In this paper, the computational time for
obtaining eigensolutions to simulating the train sample
data using PFEM is only 1% of the computational time
required by the traditional FEM.

5. Conclusions

In this paper, the eigenvalue perturbation theory is intro-
duced to obtain the dynamic characteristics of damaged
structures for damage detection. The precision of PFEM
for calculating natural frequencies and response data is
verified. Results show that in the calculation of natural fre-
quencies, the average error caused by the use of perturba-
tion method is only 3.5% of the change caused by
damage; and the average error in energy spectrum of the
decomposed wavelet signal is only 8% of the parameter
change due to damage. An ANN is trained using the PFEM
simulated data and is proved to be able to successfully iden-
tify the crack simulated using FEM for the same case. In
addition, the computational time required by PFEM is
reduced to only 1% of the time needed by FEM. Therefore,
the use of eigenvalue perturbation theory can significantly
reduce the tremendous time-consuming computation work
needed by existing damage detection methods. The tech-
nique provides enough precision for damage detection with
the deployment of the first order perturbation.

It should be mentioned that the perturbation method is
only applied to cantilever composite plate with single crack
in the present work. Based on the micro-mechanics theory
of damage and the matrix perturbation theory for repeated
or close eigenvalue problems, further research can be car-
ried out to extend the application of this method to differ-
ent types of structures, boundary conditions, materials,
damage types and number of damage.
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nd length)

e 2 Case 3 Case 4 Case 5 Case 6

00 2.000 4.000 3.000 3.000
89 2.004 4.028 3.062 2.713
37 2.150 4.157 2.939 2.891
00 8.000 3.000 6.000 8.000
93 8.201 3.020 5.998 8.233
28 7.887 2.765 5.885 7.997
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