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Detection of internal delamination in multi-layer composites
using wavelet packets combined with modal parameter analysis
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Abstract

This paper presents a study on active detection of delamination for multi-layer composites using a combination of modal analysis

and wavelet transform. The analysis of modal parameters for multi-layer composites with internal delamination is carried out, and

energy spectrum of wavelet packet decomposition of structural dynamic response is investigated. For several samples with different

delamination dimensions and support conditions, the finite element method is used to study the relationship between delamination

dimension and damage-induced change of structural physical property. Results show that delamination leads to a variation of

energy dissipation in plate vibration, and it is mode-dependent. For relatively small delamination, the damage-induced changes

of natural frequencies and mode shapes are too slight to be detected practically. However, by means of analysis on energy spectrum

of wavelet packet decomposition even smaller delamination can be detected using the measured dynamic response signals.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Composite; Internal delamination; Wavelet packets; Modal analysis
1. Introduction

With the wide application of composites in aerospace

industry, the nondestructive testing (NDT) of composite

components is absolutely necessary for the enhancement

and control of quality and the safe running of aerospace

structures. Fiber-reinforced multi-layer composites are

widely used in structures of aerospace, vehicles, archi-

tecture and light industrial products. Under aging,
chemical corruption and mechanical impact, four main

types of damage may be induced, i.e. delamination,

matrix cracking, fiber breakage and interfacial debond-

ing. Generally, failure is due to a combination of these

damages. Early detection of initial damage can prevent a

catastrophic failure or structural deterioration beyond

repair. It is then critical to detect and distinguish these

damages for practical materials or structures [1–5].
Due to the anisotropy and the complexity of internal

structure, it is more complicated to carry out NDT for

damage detection of composites than that of metals. The

conventional NDT methods, such as C-scan, X-ray, AE,

and eddy current, require expensive equipment and

strict environmental condition. They are also impracti-
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cal for application under in-service condition. Hence,
vibration-based NDT has been developed for damage

detection, especially for active damage detection, i.e., no

external equipment is needed for generating excitation

to the structure. Dynamic response, modal parameters,

and spectrum analysis are applied in the field of material

damage detection [6–21]. The basic idea in vibration-

based damage detection is that these parameters depend

on the physical properties of the structural to be in-
spected. Therefore, changes in physical properties of a

structure due to damage can result in detectable varia-

tions in its parameters, such as natural frequencies,

displacement or strain mode shapes and modal dam-

ping. The key problem is how to extract useful features

from the vibration signals for damage detection or

identification. Among many signal analysis methods, the

FFT is one of the most widely used and well-established
methods. As dangerous damage always results from the

development or accumulation of very tiny damage, it is

very important and meaningful to find the damage at its

early stage of development. However, when the damage

is very small, the damage-induced changes of physical

properties in composites are always too insignificant to

discover the damage using the FFT-based method. In

addition, the measured vibration signals are often con-
taminated by noise. Therefore, the wavelet transform-

based method for vibration signal analysis is gradually
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adopted in many fields due to its good time-frequency

localization, but few publications can be found about its

application to vibration-based damage detection of

composites [22–24].
Despite of the extensive studies of vibration analysis

on damaged laminated composites [25–31], the problem

is still not fully understood and only few effective and

practical techniques are found for early detection and

size identification of damage such as internal delamin-

ation. This paper, therefore, focuses on the study of a

practical method for effective detection of internal del-

amination in fibrous laminated plates by combining
numerical analysis on structural modal parameters with

wavelet packet decomposition of vibration signals.
2. Finite element model

Finite element method (FEM) is used to compute the

modal parameters such as natural frequency, mode

shape and modal strain of each mode for a laminated

composite plate with or without delamination. In order

to numerically analyze the vibration response of dela-

minated composite plates, it is important to have an

effective FE model for accurately evaluating the effects
of material anisotropy and delamination. As composite

plates of moderate thickness are investigated in this

paper, three-dimensional FE model is adopted to con-

sider the effects of transverse shear stress on plate per-

formance.

The finite element used for dynamic behavior analysis

of a multi-layer composite plate is an eight-node rect-

angular thin plate as shown in Fig. 1. For each node,
there are three degrees of freedom, i.e., translations

along the global coordinate axes of x, y and z, respec-
tively. The element thickness is assigned to be equal to

that of the corresponding individual lamina. The local

element coordinate system ðx1; y1; z1Þ is arranged with

the first axis being coincident with the fiber direction. All
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Fig. 1. The cross-ply laminated plate and the coordinate systems.
physical parameters throughout an element are assumed

to be the same.

For an eight-node finite element with three degrees of

freedom per node, the displacement field over an ele-
ment is given by

fdg ¼ ðu; v;wÞT ¼
X8

i¼1

½Ni�fdig ð1Þ

where fdig ¼ ðui; vi;wiÞT is the displacement vector at

node i, ½Ni� ¼ Ni½I3�, ½I3� is a three-order unit matrix and

Ni the shape function [32]. Then the strain vector of each

element can be expressed in terms of displacement in the

global coordinate system as
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Thus, the strain vector in an element can be expressed in
terms of nodal displacements as

feeg ¼ ½B�fdeg ð5Þ
with

½B� ¼ ½½B1�; ½B2�; . . . ; ½B8�� and

fdeg ¼ fd1gT; . . . ; fd8gT

 �T

Therefore, the stresses of an element in the global co-

ordinate system can be expressed by the nodal dis-

placements as

freg ¼ re11; r
e
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e
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e
12; r

e
13; r

e
23

� �T ¼ ½Ke�fdeg ð6Þ
where ½Ke� is the element stiffness matrix as
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is the matrix of material constants with E1, E2, E3, G12,

G13, G23, v12, v13 and v23 being the orthotropic elastic

constants of an individual lamina, and

½A� ¼

cos2 h sin2 h 0 0 0 �2sinhcosh
sin2 h cos2 h 0 0 0 2sinhcosh
0 0 1 0 0 0

0 0 0 cosh sinh 0
0 0 0 �sinh cosh 0

sinhcosh �sinhcosh 0 0 0 cos2 h� sin2 h

2
6666664

3
7777775

is the transform matrix between the local and global

coordinate systems.
After assembly of the nodal displacements of all ele-

ments, the total strain energy of a multi-layer composite

plate can be represented as

U ¼ 1

2
fdgT½K�fdg ð8Þ

where fdg and ½K� are the global nodal displacement

vector and stiffness matrix, respectively. From the

eigenvalue problem of

ð½K� � x2½M �Þfdg ¼ 0 ð9Þ
the modal parameters such as natural frequencies xi,

mode shapes, modal strains, etc., can be obtained. In

Eq. (9) ½M � is the global mass matrix.

For an arbitrary intact laminated plate, in order to
ensure the material continuity, the displacements and

their variations of each pair of coincident nodes on the

upper and lower adjacent laminae have to be equal in

the whole process of computation. When the plate is

delaminated, the displacements of each pair of coinci-

dent nodes just on the upper and lower surfaces within

the delamination region are considered not to be con-

nected to each other.
3. Wavelet packet decomposition of vibration signals and

its energy spectrum

As a new algorithm for signal processing and

data compression, wavelet transform has been used for
multi-resolution signal representation since last decade

[33–37]. Wavelet packets are the generalization of the

compactly supported wavelets as described in [38]. If

/ðtÞ is any �sufficiently nice’ function with mean 0, by

defining its modulation, dilation, and translation as

eift/ðtÞ, s1=2/ðstÞ, and /ðt � pÞ, respectively, the collec-

tion of modulated, dilated and translated /’s forms a

family of wavelet packets with parameters f , s and p.
Energy conservation is satisfied during these transfor-

mations, so the waveforms can be normalized as unit

vectors. The component of a function x at f , s, p is the

inner product of x with the modulated waveform, whose

parameters are f , s, and p. If it is large, we may conclude

that x has considerable energy near frequency f , scale s
and position p. Therefore, wavelet packet decomposi-
tion has an effective application to analysis on vibration

response, especially nonsteady signals.

Roughly speaking, a wavelet packet is a square in-

tegrable modulated waveform with mean 0. It is well
localized in both position and frequency, and can be

assigned three parameters, i.e., frequency, scale, and

position. If w is a wavelet packet, the frequency

and position may be taken as the centers of mass of jwj2
and jF ðwÞj2 with F ðwÞ being the Fourier transform of w.
The scale might be taken as a characteristic width of

jwj2. It is equivalent to the uncertainty in the position

and, by Heisenberg’s principle, it is also the reciprocal of
the uncertainty of frequency.

3.1. Orthonormal bases and wavelet packets

Generally, an exact quadrature mirror filter hðkÞ is

defined asX
k

hðk � 2iÞhðk � 2jÞ ¼ di;j;
X
k

hðkÞ ¼
ffiffiffi
2

p
ð10Þ

In multi-resolution analysis, the orthonormal scaling

function /ðtÞ and wavelet function wðtÞ satisfy the dy-

adic scaling equation:

/ðtÞ ¼
ffiffiffi
2

p X
k

hðkÞ/ð2t � kÞ ð11Þ

wðtÞ ¼
ffiffiffi
2

p X
k

gðkÞ/ð2t � kÞ ð12Þ

where gðkÞ ¼ hðk þ 1Þð�1Þk. Let w0 ¼ /ðtÞ and

w1 ¼ wðtÞ, the above dyadic scaling equations can be

expressed as the following recursive equations

w2nðtÞ ¼
ffiffiffi
2

p X
k

hðkÞwnð2t � kÞ ð13Þ

w2nþ1ðtÞ ¼
ffiffiffi
2

p X
k

gðkÞwnð2t � kÞ ð14Þ

Then, the functions fwnðtÞg form an orthonormal basis

and are called the orthonormal wavelet packets of

function /ðtÞ.

3.2. Decomposition of functions in orthonormal wavelet

packet bases

If the operations for decomposition of multi-analysis

are defined as

H ½sk�ðiÞ ¼ 2
X
k

skhðk � 2iÞ ð15Þ

G½sk�ðiÞ ¼ 2
X
k

skgðk � 2iÞ ð16Þ

Eqs. (13) and (14) can be rewritten as

w2nðt � lÞ ¼ H ½wnð2t � kÞ�ðlÞ ð17Þ
w2nþ1ðt � lÞ ¼ G½wnð2t � kÞ�ðlÞ ð18Þ



380 Z. Wei et al. / Composite Structures 64 (2004) 377–387
Thus, we have

wnðt � lÞ ¼
ffiffiffi
2

p X
k

hðl� 2kÞw2n
t
2



� k
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ð19Þ

If a signal f ðtÞ satisfies

f ðtÞ ¼
X
k

sjkwnð2�j�1t � kÞ ð20Þ

its j-layer binary decomposition in the basis of ortho-

normal wavelet packets can be deduced as

f ðtÞ ¼
ffiffiffi
2

p X
i

H ½sjk�ðiÞw2nð2�j�1t � iÞ

þ
ffiffiffi
2

p X
i

G½sjk�ðiÞw2nþ1ð2�j�1t � iÞ ð21Þ

Therefore, by wavelet packet decomposition, any sig-

nal can be decomposed into two parts, i.e., the project

on fw2nð2�j�1t � 1Þg operated by H and that on

fw2nþ1ð2�j�1t � 1Þg operated by G. Clearly, wavelet

packet decomposition of a signal has better localization

effect than that of wavelet and is, therefore, used to

adaptively choose the corresponding frequency band-

width according to the characteristics of the detection
signal and to enhance the resolution both in frequency

and time domains for damage identification of com-

posites.

3.3. Energy spectrum of wavelet packets and extraction of

damage index

As the differences of signals between intact and

damaged structures are generally insignificant in the
early stage of damage, extraction of damage index di-

rectly from the measured form of signal (even decom-

posed by wavelet packets) is still difficult. Therefore, the

energy spectrum analysis is used to enhance the sensi-

tivity of features to damage.

The second order norm of an original signal f ðtÞ is

fk k22 ¼
Z
R
jf ðxÞj2 dx ð22Þ

Then, it is the equivalent energy of the original signal in

time domain. For allowable wavelet w, we haveZZ
R
jW/f ða; bÞ=aj2 dbda ¼ fk k22 ð23Þ

Thus, there is an equivalent relationship between the
energy of wavelet transform and that of the original

signal. Therefore, it is reliable to express energy varia-

tion in the original signal by energy spectrum of the

response signal decomposed by wavelet packets. Hence,

in the energy spectrum of wavelet packets, the sum of

square of the decomposed signal is selected as the energy

feature within every subspace (frequency span). In sub-
space V2ji, i.e., the ith frequency span of the jth layer, the

result of wavelet packet decomposition is expressed by

fSiðkÞ; k ¼ 1; 2; . . . ;Mg, and its energy is expressed by

U2ji ¼
XM
k¼1

SiðkÞj j2 ð24Þ

where M is the length of samples in the subspace. If

fU 0
2jig and fUd

2jig represent the energy spectrums of the

signals measured from intact and damaged samples,

respectively, the dimensionless index

gi ¼
Ud

2ji � U 0
2ji

�� ��
U 0

2ji

ð25Þ

can demonstrate the damage-induced energy variation

of the signal in subspace V2ji.
As the frequency band is equal for each subspace

obtained by wavelet packet decomposition of the signal,

a series of columns can be plotted for gi in every fre-

quency span. Let the sum of all the columns be equal to

1 in a particular layer of decomposition, each of the
columns can, therefore, represent the percentage of the

sum of energy variation in the subspace about the total

variation of energy in the considered layer. In this case,

the height of each column is

fi ¼
giP2j

k¼1 gk
ð26Þ
4. Numerical analysis on energy dissipation

The introduction of damage into a material or

structure generally results in increase of damping, which

is related to energy dissipation during vibration [39–42].

The dominant energy dissipation in laminated fibrous

composites comes from not only the viscoelastic nature

of matrix and/or fiber materials but also the interphase

damping [43]. Thus local energy dissipation in the

damaged region will increase [44]. Analysis on both the
local and total changes of energy dissipation due to

delamination can demonstrate the relationship between

energy dissipation and delamination size.

4.1. Samples

Samples for numerical analysis are the same as those

used in experiment in this paper. There are altogether

five rectangular plates made of multi-layer carbon fiber-
reinforced epoxy composites. Every sample plate has an

area of 240 · 180 mm2 and consists of 16 layers in ori-

entation of [0�/0�/90�/90�/0�/0�/90�/90�]s. They are fab-

ricated using TC12K33/S-1 prepreg tapes with a

thickness of 0.13 mm. One of the plates is intact and

named O and the others named A, B, C and D, re-

spectively, are damaged with delamination of different
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areas. The delamination is simulated by inserting a

polyester film with thickness of 0.015 mm into the plate.

Each polyester film is inserted between the forth and

fifth layers counted from the top of the plate when the
samples are fabricated. Every delaminated plate has

only one rectangular delamination located at the posi-

tion with the center as shown in Fig. 2. The delamina-

tion areas of plates A, B, C and D are 18 · 12, 36 · 24,
54 · 36 and 72 · 48 mm2, respectively. The material

constants of the samples for FEM computation are
Table 1

Numerical results of natural frequencies for the free plates (Hz)

Mode Plate O Plate A P

1 90.518 90.518

2 279.17 279.16 2

3 333.59 333.58 3

4 354.22 354.21 3

5 397.62 397.61 3

6 583.71 583.71 5

Table 2

Numerical results of natural frequencies for the simply supported plates (Hz

Mode Plate O Plate A P

1 151.95 151.95 1

2 182.69 182.69 1

3 450.91 450.9 4

4 603.98 603.98 6

5 635.31 635.31 6

6 844.4 844.37 8
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Fig. 2. Sample dimension and the locations of actuators.
E1 ¼ 125 GPa, E2 ¼ E3 ¼ 8:5 GPa, G12 ¼ G13 ¼ 4:5
GPa, G23 ¼ 3:27 GPa, v12 ¼ v13 ¼ v23 ¼ 0:3 and

q ¼ 2400 kgm�3.

In order to widely investigate the delamination-in-
duced variations of dynamic behaviors of the samples

extensively, two types of boundary conditions are

adopted, i.e., plate with four edges free and plate with

two edges simply supported and other two edges free as

shown in Fig. 2.
4.2. Delamination-induced variation of natural frequency

According to Eq. (9), natural frequencies are com-

puted for the first six modes of the plates with different

boundary conditions. Tables 1 and 2 list the natural

frequencies for the plates with delamination of different

areas. It can be seen that with the increase of delamin-

ation area, the natural frequency decreases. The del-

amination-induced change of natural frequency is
however very slight and it is particularly impossible to

measure in practice. As accessorial information for ex-

tensive investigation of delamination-induced energy

dissipation, the relationship between natural frequency

and delamination size is investigated hereafter.

Figs. 3 and 4 show the percentage changes of natural

frequencies with delamination areas, where the height of

the column represents the absolute value of the per-
centage change of natural frequency, i.e., j ¼ jxdamaged �
xintactj=xintact. It is obvious that these absolute values

increase with the delamination area. It is also seen that

the decrease of natural frequency is not the same for

different modes. In the free boundary condition, as

shown in Fig. 3, the delamination-induced decreases

of natural frequencies are relatively large for modes 2, 4

and 5, and we can hardly see any change of natural
late B Plate C Plate D

90.518 90.517 90.515

79.08 278.66 277.95

33.52 333.13 332.48

54.08 353.41 352.06

97.51 396.96 395.91

83.68 583.41 582.72

)

late B Plate C Plate D

51.92 151.75 151.44

82.67 182.53 182.28

50.75 449.97 448.45

03.92 603.18 600.43

35.25 634.55 632.31

44.06 842.57 839.64
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frequency in mode 1. The largest change occurs in mode

4 for all the free plates. The relatively large changes of

natural frequencies occur in modes 4, 5 and 6 in the case

of simply supported condition. However, the variation

manner of the values is not the same for each plate.

When the delamination area is 18 · 12 mm2, the del-

amination-induced changes of natural frequencies are
nearly zero for all the considered cases, which indicates

that the delamination-induced frequency change is in-

significant for small delamination. Therefore, it is in-

dispensable to analyze the delamination-induced
changes of other parameters for effective detection of

delamination in composite plates.
4.3. Delamination-induced variation of mode shape

The above analysis demonstrates that the delamina-

tion-induced changes of plate parameters are mode-
dependent. This may imply that the delamination region

exerts specific effects on the relevant modes. In order to

further investigate the relationship between delamina-

tion and mode-dependent variations of energy dissipa-

tion in the plate, the unit-normalized local

displacements of points within the delamination region

of the plates are computed. For the two types of

boundary conditions, the relative displacements are
analyzed for points along the line (y ¼ 138 mm,

z ¼ 1:575 mm) just on the upper and lower surfaces

within the delamination region of plate B (the plate with

delamination area of 36 · 24 mm2). Fig. 5 shows, in the

case of free boundary condition, the differences of dis-

placement along z-direction between the upper and

lower points (dw ¼ wupper � wlower), which are assumed

to be coincident with each other before plate motion. It
can be seen that obvious penetrations occur in modes 2

and 4 because of the negative values of dw. As there is

no restriction to penetration within the delamination

region in the FE model, penetration occurs in some

modes. However, this is physically impossible, then, it is

known that obvious impact exists within the delamina-

tion region in modes 2 and 4 during vibration of the

plate. Therefore, energy dissipation variation will be
larger in modes 2 and 4 for plate B during vibration. For

the same boundary condition, Fig. 6 shows the relative
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displacements in x–y plane for the above mentioned

points, where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuupper � ulowerÞ2 þ ðvupper � vlowerÞ2

q
.

It is seen that the relative displacements are also larger

in modes 2 and 4, which implies that, the interactive

motion between the upper and lower surfaces within the

delamination region is more serious in these two modes

than in others for plate B during vibration. Hence, the

effect of delamination on the plate is more significant for

modes 2 and 4 than in others for plate B in the case of
free boundary condition. This result is consistent with

that for natural frequency as shown in Fig. 3.

As for the simply supported boundary condition, the

differences of displacements between the points just on

the upper and lower surfaces within the delaminated

region of plate B are also computed and shown in Figs.

7 and 8. Fig. 7 reveals that the physically impossible

penetration apparently occurs between the upper and
lower surfaces within the delamination region in the

forth mode, which implies that impact occurring in the

damaged region is more significant for this mode than

for other modes. It is seen from Fig. 8 that the relative

in-plane displacements between the coincident points

are more serious in modes 4 and 5 than those in other

modes for the case of simply supported boundary con-

dition. This means that the interactive motion within the
delamination region is severer in modes 4 and 5 than in

other modes during the vibration of plate B with simply

supported condition. These results are also in accor-

dance with those for natural frequencies as shown in

Fig. 4.

Therefore, when delamination occurs somewhere in a

composite plate, there may be interactive motion or

impact within the delamination region during vibration
of the plate. These phenomena cause the variations of

energy dissipation in the plate, and they are modal de-
160 165 170 180 185 195
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Fig. 6. Relative displacements in x–y plane for points on the upper and

lower surfaces within delaminated region of plate B under free

boundary condition.

Fig. 8. Relative displacements in x–y plane for points on the upper and

lower surfaces within delaminated region of plate B under simply

supported boundary condition.
pendent. Thus, the delamination can be detected ac-

cording to the variation of energy dissipation in the

plate during vibration.
5. Vibration signal analysis for delamination determina-

tion

5.1. Experimental set-up and procedure

Vibration measurements for the above mentioned

plates are conducted with the experimental set-up illus-

trated by Fig. 9. Measurement is performed for the two

boundary conditions, respectively, i.e., free and simply
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Fig. 9. The experimental set-up for response measurement of the

composite plates.
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supported conditions. The plate is laid on the sponge

foam to simulate the condition of free support.

On the top and bottom surfaces of each plate two

piezoelectric patches with thickness of 0.3 mm and area

of 15 · 25 mm2 are oppositely bonded as actuators, as
shown in Fig. 2. An accelerometer (B&K 4374) is

mounted on the top surface. Excitation signals are

generated using a waveform generator (TTi TGA1241).

A power amplifier (TReK 603) and a charge amplifier

(B&K 2635) are used to enhance signals from the gen-

erator and transducer, respectively. Both the excitation

and response signals are recorded and analyzed by an

FFT spectrum analyzer (B&K 3550). The average of
eight repeated measurements for each case is taken as

the result to reduce the influence of noise.
5.2. Wavelet packet decomposition of response signals

Baseline frequency response function (FRF) for every

plate is taken firstly using the sinusoidal sweep excita-

tion in a frequency range of 1–1000 Hz. Rectangular

windows are used in conjunction with the excitation and
Table 3

Experimental results of natural frequencies of the free plates (Hz)

Mode Plate O Plate A P

1 90 88

2 289 287

3 318 318

4 354 357

5 386 384

6 570 570

Table 4

Experimental results of natural frequencies of the simply supported plates (H

Mode Plate O Plate A P

1 158 156

2 223 217

3 438 436

4 599 596

5 665 658

6 733 734
the response. The first six resonant frequencies for all

the plates are identified by FRFs as shown in Tables 3

and 4. They show that it is difficult to determine the

delaminations according to the measured variations of
natural frequencies especially when the damage dimen-

sion is relatively small, because in addition to damage,

other factors such as fabricating process of samples,

support and experimental error can also lead to changes

of natural frequencies.

For experimental determination of the delamination

according to the variation of energy dissipation in the

plate during vibration, acceleration response to random
excitation is measured for every plate. The sampling

frequency is 2048 Hz, and signals of the first second are

recorded. As described in Section 3, the wavelet packet

decomposition of the fifth layer is applied to these sig-

nals, and then, the percentage of the sum of energy

variation in every subspace over the total energy varia-

tion in the fifth layer, i.e., fi as expressed in Eq. (26), is

obtained as shown in Fig. 10. It can be seen that when
the plates are delaminated, there exists variation of en-

ergy. As the natural frequencies of the first six modes are

between 80 and 600 Hz as shown in Table 3, the fre-

quency range for analysis is limited from 64 to 640 Hz.

Thus, within this range the values of fi’s in subspaces 9,

12 and 13 are larger than those in other subspaces. It can

also be seen that the largest variation of energy occurs in

the 12th subspace (named W12), in which the frequency
range is between 352 and 384 Hz. Fig. 11 shows the

decomposition coefficients in W12. It also shows that with

the increase of delamination size, response signals with

the above frequencies contribute more and more to the

variation of energy dissipation induced by delamination.

This result can also be seen in W9 as shown in Fig. 10.

Therefore, the results shown in Figs. 10 and 11 are ac-
late B Plate C Plate D

86 87 89

287 277 286

316 319 313

353 353 345

379 381 392

567 560 575

z)

late B Plate C Plate D

152 153 154

210 212 215

433 435 427

591 590 550

637 641 642

736 732 728
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cordant with the conclusion yielded in Section 4. How-

ever, unlike the natural frequency and mode shape, the

energy variation of signals decomposed by wavelet

packets is measurable and obvious enough to identify

the delamination even for the smallest size considered in

this study, i.e. plate A with a delamination area of

18 · 12 mm2.

As for the simply supported plates, using the response
signals to random excitation the wavelet packet de-

composition is obtained and the damage index expressed

by delamination-induced energy variation is shown in

Fig. 12. It is clear that the relatively large energy vari-
ations occur in subspaces 7, 8, 18, 19 and 20 when the

analysis frequencies are limited from 128 to 768 Hz. For

plate A the variations are very obvious in subspaces 18,

19 and 20. As the frequencies are within 544–640 Hz in

these subspaces the results shown by Fig. 12 have a good

agreement with that concluded from the numerical

analysis as shown in Figs. 3–8. Thus, combined with the

numerical analysis as stated in the last section, the del-
amination-induced energy variation obtained by wavelet

packet decomposition can be an effective and practical

strategy to identify small delamination.
6. Conclusions

Multi-layer composite plates with internal delamina-

tions are analyzed both numerically and experimentally.

Using the finite element method, the delamination-
induced variation of physical property is studied by

analysis of modal parameters, such as natural frequen-

cies and mode shapes. The measured response signal of

acceleration to random excitation is processed using

wavelet packet decomposition to extract the delamina-

tion-induced change of energy dissipation for the vi-

brating plate. When delamination exists in a composite

plate, the natural frequencies and mode shapes are
changed, and this change is too slight to be practically

determined for small damage. The change of physical

property is proved mode-dependent and as the result of

energy dissipation variation due to the impact and in-

teractive motion in the delamination region. Even for a

delamination smaller than 18 · 12 mm2 in a 16-layer

composite plate with a size of 240 · 180 mm2, the
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delamination-induced change of physical property can

be practically detected by measurement of response

signal to random excitation when the energy spectrum

of wavelet packet decomposition is used as the index of
damage-induced variation.
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