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The free vibration of a structure consisting of a finite circular cylindrical shell closed at
one end by a circular plate is analyzed in this paper. Emphasis is given to the characteriza-
tion of structural coupling and boundary conditions. These are incorporated into the model
by means of continuous distributions of springs along the shell and the plate interface. A
general formulation based on a variational principle is used. This formulation allows a
wide spectrum of boundary conditions and coupling conditions between the shell and the
plate, an issue the importance of which is clearly shown by a literature review. Very good
accuracy of the method is demonstrated by solving test problems for lower order modes
of the plate and of the shell, for which some results are available in the literature. Compari-
sons are also made using finite element analysis on a plate-ended shell, showing that the
proposed approach is a convenient, efficient and accurate one for determining the modal
behavior of such a complex structural system. Other numerical results are then presented
for a shell rigidly attached to a plate, to illustrate the coupling phenomena between the
shell and the plate. It is shown that there exist three different types of modes for this
combined structure; they are termed plate-controlled modes, shell-controlled modes and
strongly coupled modes, respectively. It is also shown that each type is closely related to
the modal character of each of uncoupled elements.

[. INTRODUCTION

The vibroacoustic study of plates and thin-walled shells have separately received a great
deal of attention. When the two structures are coupled together, by allowing energy flow
between them, the behavior of the resulting structure is more complex and, consequently,
there is less literature available on the topic. However, the study of these combined struc-
tures is of great importance in many engineering applications, such as in the design of
aeronaufical or space structures and industrial vessels. This paper investigates the free
vibration characteristics of one variant of these structures: a cylindrical shell coupled to
a circulap plate at one end, a model which is useful in the case of an aircraft fuselage closed
at its eté by a circular bulkhead.

The main issue treated in this paper is to establish a general formulation which permits
the vibrational analysis of the structure and, in the meantime, allows an extension to
vibroacoustic analysis. It can be therefore regarded as a preliminary step which will lead
to a final model in which the structure-induced sound field is also considered. A key feature
of this investigation is the treatment of elastic boundary conditions and structural coupling,
These are incorporated into the model by means of translational and rotational springs
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along the shell and plate edges and their interface. It is shown in this paper that a varia-
tional formulation offers a rather powerfuf method of simulating such combined structures,
As a special case, the circular plate and the cylindrical shell can be treated separately. The
extremalization of Hamilton’s function is achieved by using the Rayleigh-Ritz method,
with simple polynomials and normal modes of a “shear diaphragm supported” shell as
admissible functions for the plate and shell, respectively. Natural frequencies and mode
shapes can be then calculated numerically.

The modeling of the boundary conditions of the structures, as well as the structural
coupling conditions, has always been a substantial difficulty in the vibration and vibro-
acoustics analyses of structures. Limited by the methods adopted, classical and idealized
boundary conditions are usually chosen. However, in practice the boundary conditions
may not always be classical in nature. This may become one of the main sources of
discrepancy when the comparison between theory and experiment is made. A recent study
[1] has shown that this is particularly true when the structure is coupled to an acoustic
enclosure, in which case inaccurate estimations of the boundary conditions affect the
nature of the coupling between the structure and the cavity considerably. More realistic
models are needed that will be capable of representing the complexities of structural
boundary conditions encountered in engineering practice. In recent years, many efforts
have been made in this direction with relatively simple structures such as plates and
cylindrical shells. In what follows, a literature review focusing on the plate, the shell and
the plate-ended shell system is given to support the necessity of the present analysis.

As far as elastic plates are concerned, a large body of literature exists which deals with
elastically restrained edges. Numerous investigations have been reported for reclangular
plates {2-5] and circular plates [6, 7]. Very good summaries on the subject have been given
by Leissa [8] and by Kim and Dickinson {9]. These references have led to a substantial
understanding of the effects of boundary conditions on the natural vibrations of plates.
However, this paper does not attenipt to claim any contribution to the prevailing under-
standing. Instead, its novelty is in the proposed approach: a variational formulation
applied to circular plates with general boundary conditions which encompass all of the
boundary conditions previously handled by separate formulations.

For circular cylindrical shells, earlier works {10, 11] have clarified the effects of the
classical boundary conditions and their combinations (simply supported, clamped or free
edge) on the natural frequencies, as mentioned by Koga in a survey paper [12]. Also, to
answer the practical need for simplicity in engineering mechanics, several formulas are
available, such as that given by Soedel [13], for natural modes that are dominated by
transverse deflection components. In the literature reviewed, and contrary to that for
plates, no case of circular cylindrical shells with elastic edge support was found. It is
therefore felt that the present analysis, which includes the elastic edge supports, extends
the modeling to more realistic boundary conditions.

As to combined shell-plate structures, less literature is available. Recently, for example,
some work has been reported by Tavakoli and Singh [14] for a hermetic can which is
composed of a circular eylindrical shell with two circular end plates. The authors described
a state space method which is, in fact, a transfer matrix based substructuring technique.
In that study, a “pinhole” with free edges is introduced at the center of the end plates as the
starting point of the analysis, and no special attention is paid to the boundary conditions of
the structure. Moreover, an elastic shell-plate attachment is not permitted. It should be
further noted that this/method, as well as the other commonly used methods for joined
structures, such as the receptance method [7] and the transfer matrix method [15, 16], is
restricted to free vibration analysis: it soon becomes cumbersome when one wants to deal
with the radiation problems of the structure, where the structure is coupled to the acoustic
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medium. Consequently, for combined structures, the method described in this paper is
believed to include several novelties: first, it models a plate-ended shell structure about
which little is known in the literature; second, the structural joint can fake any stiffness
value, finally, it will easily allow further coupling with the acoustic medium. Consequently,
this new model will provide a physical insight into the coupling behavior of the combined
structure and provide helpful information to designers.

The organization of this paper is as follows. In section 2, the analytical model and the
formulation are stated. Then numerical results are presented and discussed in section 3.
First, the case of a single plate or a single shell is considered, showing the flexibility of the
model. Wherever possible, comparisons are made with existing values in literature and
very good agreement is shown Lo exist. Then, several results are presenied and discussed
for a shell rigidly connected to an end plate, illustrating the coupling effects between these
two subsystems.

2. ANALYTICAL FORMULATION

2.1, DESCRIPTION OF THE MODEL

The co-ordinate system and various diagrams illustrating the parameters used in the
model are shown in Figure 1. The structure consists of a finite circular cylindrical shell
with a circular plate at the left end (x=0). The shell has a length L and is assumed (o be
thin; that is, its wall thickness / is much smaller than its radius a. Therefore, the conven-
tional assumptions of Fliigge’s shell equation are adopted {17]. The shell movement is
represented by u, v and w, which are, respectively, the displacements in the longitudinal,
tangential and radial directions. The shell is assumed to be initially supported by shear
diaphragms at each end, so that the » and w components are restrained at the boundary.

(b} (c}

Figure 1. Schematic diagram of the structure and co-ordinate system: {(a) cylindrical shell; (b) circular plate;
(¢) shell-plate interface at x=0; (d) efastic support of shell at x=1..
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The plate-shell joint and the support al x=1L can be seen in Figures I(c} and 1(d)
respectively. For the plate, only the normal displacement w, is taken into account, and it
is assumed to be positive along the positive x-axis. The plate has a thickness f, and is
clastically supported by translational and rotational springs having, respectively, distri-
buted stiffnesses K; (N/m?) and ¢, (Nm/m) along its edge. Similar spring systems are
introduced between the plate and the shell (K3, Cs) and at the right end of the shell
(K>, Cy). All of the spring constants are defined in the appropriate units of stiffness per
unit length on the contour and are assumed to be constant along the edges.

2.2, VARIATIONAL, FORMULATION

The problem under study will now be formulated according to a variational approach,
In boundary value problems, one can determine a functional the extremalization of which
leads to a solution that is casier to obtain than by solving the actual boundary value
problem directly [18). The reason for this is that the extremalization of the functional can
be achieved after expanding the solution over a set of suitable trial functions. By doing
this, the method can provide a great degree of Mexibility for complex structures.

220, Hamilton's principle for the structure

Hamilton’s principle of dynamics states that the displacemenl of a system adjusts itself
in shape and velocity so that Hamilton’s function # is minimized. This can be expressed
as

SH=0. (1)
Hamilton’s function H is an integral over time of the difference between the kinetic energy

and the potential energy of the system, from some initial time ¢, to a specified final time
f;. In the present case, it can be expressed as
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where p, v and £ are, respectively, the density, Poisson ratio, and Young’s modulus of
the shell material. The same symbols, with the subscript “p” added, are used to denote
the equivalent characteristics of the plate material, Finally, D,= E, l,/12(1 — v}) represents
the flexural rigidity of the plate.

2.2.2. Eigenvalue equations of the structure using the Rayleigh-Rifz method

The essence of the method consists of assuming the solution in the form of a series of
admissible functions. In this way, one approximates a system with an infinite number of
degrees of freedom by a finite number of degrees of freedom. The admissible functions are
required to be linearly independent, regular enough to be differentiable and to satisfy the
geometric boundary conditions (related to displacement and slope).

An appropriate choice of the admissible functions in the Rayleigh-Ritz method is a
crucial factor on which the accuracy of the prediction depends. This is not an easy task,
especially when the structure is complex and when different movements are involved. The
difficulty is also increased by the fact that unsuitable choices may make numerical treat-
ment very lengthy and complex. An appropriately established model may certainly facili-
tate the task. As will be iltustrated in the following analysis, the use of distributed springs
lessens the need to satisfy the geometric boundary conditions that are required by other
possible modeling algorithms. (As one example of these possible approaches, we can
consider the work of Bhat [5], where different types of boundary conditions of plates
demand different admissible functions.) Our model permits the use of the same admissible
functions, Lo cover a variety of structural coupling and boundary condition cases.

(@) Admissible functions for the cplindrical shell. As is pointed out in reference [18), it
is possible in many cases Lo base the decision as to the choice of admissible functions on
the knowledge of the eigenfunctions of a slightly different configuration, For cylindrical
shell configurations, only the eigenfunctions of a “shear diaphragm supported” shell are
available in closed form, This is a shell with its edges fixed in both radial and tangential
directions {(w =1 =0) and for which no bending moment and longitudinal membrane force
are generated at the boundaries. The terminology “shear diaphragm” has been used by
Leissa [17] to distinguish this from another set of edge conditions, where all three displace-
ments (1, v, w), as well as bending moments, are assumed to be zero. The latter case will
be referred to as “simply supported” in what follows. The eigenfunctions of the “shear
diaphragm supported” shell arc used as admissible functions and the expansion of the
displacement components is expressed by

u Doy sin (n@ + ax /2) cos (mrx/L)

f o 3

DI= N LY A (8) By cos (00 + an /2) sin (max/L) b, (8)
wp OO amOa=lge sin (n@ -+ ax/2) sin (mmx/L)
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where (D,,;, £,.;, 1) are the components of the eigenvector; n and m are the circumferen-
ttal and longitudinal order; @ denotes symmetric (a=1) or antisymmetric (& =0) modes,
and j denotes the type of mode (bending, twisting or extenston-compression). As can be
seen from expression (8), this expansion imposes the condition that v and w be zero at
both ends of the shell. Therefore, the only complicating effects that can be added to 2
model based on the eigenfunctions of a “shear diaphragm supported” shell are those
related fo the slope (rotation on x-axis) and the longitudinal movement at the boundaries.

(b) Admissible functions for the plate. For the plale, any possible deflection or rotation
along the edge should be permitted. As a result, no geometric conditions should be imposed
a priori. A simple polynomial series seems to fit this requirement in the radial direction of
the plate. Polynomials have been successfully used for the study of free vibration of beams
[19, 20], plates [5], and more recently for the study of sound radiation from rectangular
plates [21]. For the circular plate considered here, the polynomial decomposition of the
solution is in the form

I o0 2]
Wy, = Z Z Z Bﬁ;’,,,ﬁ(f) sin (]I,,G + af,;rr/z)(r/a)"'p, (9)

ap=0 np=0 np=0

L1208 3 ]

where the subscript “p” is added to indicate plate parameters; n,, m, and a, are, respec-
tively, the circumferential order, the radial order and the symmetry index,
(¢) Eigenvalue equations. For free vibration, it is assumed that

A (1) = A sin (1), Bon, (0= B, sin (@f), (10, 11)

@p

where @ is the angular frequency, and Ay and B0, are related to the motion of the shell
and the plate.

By substituting equations (8)-(11} into expressions (2)-(7) and minimizing with respect
to the unknowns Ay, and Byr, according to the Rayleigh-Ritz procedure, one finds the
eigenvalue equations
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and where n=0,1,2, .. .; My, =0, 1,2, om,m'=1,2,3,...;5/=1,23; and ¢ =
0, 1. In the above expressions, @, and M,.; are, respectively, the natural frequencies and
the generalized masses of the “shear diaphragm supported” shell, two quantities that can
be easily calculated. my,, m’ and j' have the same meaning as mp, moand jo Ry, .., and

AN
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M oy the stiffness and mass terms of the plate, are given by
. 2 [ 2 2 2 2 2
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P {(}, for m,+m, 2 <0,
A b /(my, +p1,—2), otherwise,

i, for n+0,
NG =<0, for n=0and ¢ =1, (17)
2n, for n=0 and a =0,

An examination of equations (12) and (13) shows that the shell and the plate are coupled
to each other via the last term on the lefi side, which is a function of the elastic consiants
Ky and Cy. However, due (o the axial symmelry of the struclure, the movements with
different circumferential order » or symmetry index « are uncoupled. This enables one to
solve equations (12) and (13) for every given »# and . Naturally, this property relies on
the axial symmetry of the structure, and is no longer true if non-axisymmetrical elements
are included. The solution yields the natural frequencies, together with the coefficients for
mode shapes.

3. NUMERICAL RESULTS AND DISCUSSION

Using the analytical approach formulated above, numerical results are presented for
several specific cases (o illustrate its utility. The objective is twofold (1) to compare the
present results with previously published ones to validate the method, and (2) to give
supplementary resulls with respect to the literalure, especially when the piate is coupled
to the shell.

Beforehand, several remarks should be made. First, it is known that an elastically
restrained edge has boundary conditions which are intermediate between appropriate class-
ical boundary conditions. The latter can be oblained as special cases by simply setting the
appropriate constants K; or C; (i=1, 2, 3) equal to either zero or infinity. For infinity, one
in fact takes a large enough quantity tny the calculations. Second, for each calculation, the
number of terms used in the series (expressions (8} and (9)) is increased until a relatively
stable solution is achieved. It has been observed during numerical calculations that the
solution converges rather rapidly and the number of terms retained in the numerical
expansions is given for each case. Another specification, related to the choice of the
polynomial series (9) for a plate, is worth noting. The final plate mass matrix, the elements
of which are calculated by expression (16), is actually a Hilbert matrix. Mathematicalty,
this matrix is ill-conditioned when its size becomes large and, therefore, special care is
needed to control the certainty of the computations. This property limits the number of
polynomial terms retained in the series. As a result, the evalvations of some higher order
modes of the plate (those with a large radial wavenumber) may be difficult. This difficulty
may be overcome when one deals with the forced response of the structure, since the
stiffness matrix will join the mass matrix to form the system matrix, which may no longer
be ifl-conditioned. In the present analysis, the eigenvalue equations (12) and (13) are
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solved by using the IMSL software (Edition 1.1, 1989), in which the Cholesky factorization
is calculated and the accuracy of the solutions is controlled by a performance index. As
will be illustrated, the lower order modes of the plate can be estimated quite accurately,

3.1, COMPARISON WITH AVAILABLE RESULTS FOR THE NATURAL FREQUENCIES OF A
CIRCULAR PLATE WITH ELASTIC SUPPORTS

The first case treated is that of g circular plate, elastically supported by translational
and rolational springs uniformly distributed around ils edge. Complete results for the
same problem have been reported by Azimi [7}, who used the receptance method. Although
all cases treated in his paper have been tested using our approach during the study, only
one representative case with elastical support is reported here in Table 1. For the compari-
son with Azimi’s solution (values in parentheses), numerical results for the first three
natural frequencies are given for the circumferential order n=0, 1,2, The integer 7 is used
to indicate the number of nodal circles on the plate (not including the edge). For these
calculations, 13 terms were used in the polynomial series. It can be seen that the discrepan-
cies between the two sojutions are very small. Very good agreement is also noticed with
all of the other results given in reference [7]. Among all those cases considered, but not
reported here, the worst case found is the mode n=0 and ;=2 for the clamped case, with
a discrepancy of 0-15%. In com patison with the receptance method mentioned above, one
can see that the present variational analysis provides a general formulation which gives
comparable accuracy.

TapLe |

Values of @,,a’( Lol / DIV for circular plates with elastical SUpPOrts: results in parentheses
are taken from reference [71

Number
Boundary of nodal
conditions circles, § TRy TECH| n=3
Kia'/D,=10 0 4128 (4-127) 6064 (6-064) 10-182 (10-181)
1 14:498 (14-498) 26-840 (26-840) 42-217(42:213)
Cra/, =10 2 46-085 (46-085) 68-294 (68-294) 93-444 (93-432)

3.2, COMPARISON WITIT AVAILABLE RESULTS FOR THE NATURAL FREQUENCIES OF A
SHELL WITH SEVERAL CLASSICAL BOUNDARY CONDITIONS

The second problem considered js that of a finite circular cylindrical shell with several
boundary conditions. The shel| is made of steel with a radius of 3-:0in (0-0762 m), a length
of 12in (0-3048 m) and a thickness of 0-01 in (2:54 x 10 m). The material constants are
£=296x10%psi (204 x 10" N/m?), v=0:29, p=0-733 x 10> Ib-s*/in* (7838-6 kg/m?).
The same configuration has been used by Vronay and Smith [11] to find the exact natural
frequencies of the shell, A typical comparison for a clamped shetl (C-C) is given in Table
2. In the numerical calculations, 40 terms in the longitudinal direction were considered.
Calculated frequencies for the first four radial modes, having one to five circumferential
waves, are compared with the results of reference [11] (values in parentheses). The agree-
ment between the (wo sets of results is very good. Indeed, for most cases, the results agree
within 1%. The same observation bas been made for other tested cases (four cases have
been tested). This comparison, together with the one made for the plate configuration,
serves to provide confidence in the validity of the solution.
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TasLge 2

Values of natural frequency (Hz) for a cylindrical shell with clamped boundary conditions
(C-C). Results in parentheses are taken from reference {11]

Number of axial

nodal circles, P n=1 ne=2 n=3 n=4 n=35
0 3429 (3423) 1922 (1917) 1163 (1154) 769 (763) 581 (581)
I 6504 (6412) 4062 (3902) 2659 (2536)  1832(1752) 1335 {1287
2 8490 (8493) 5845 (5832) 4065 (4051) 2938 (2918) 2210 (2190)
3 9455 (9418) 7307 (7299) 5480 (5442) 4155 (4100) 3222 (3165)

3.3, NATURAL FREQUENCIES OF A SHELL WITH ELASTIC RESTRAINING EEEECTS

The third problem treated is a circular cylindrical shell, “shear diaphragm supported”
at the right end (x=L), and with elastic restraining at the left end (x=0). The shell is
elastically restrained against rotation along the left edge by Cy and the translational spring
K is introduced to create axial restraint, As far as we know, this case has not been
previously reported in the literature. Let us define a dimensionless factor €2, which will be
referred to as the frequency parameter. It is the ratio between the natural frequency and
the ring frequency, the latter being defined as

f=1/Qra) JE/p(1=v?). (18)

In Table 3 are given the values of 0 for the first three modes of the shell (L/a=3 and
a/h=30) when n=0, | and 2, respectively. One can sec a variety of intermediate cases
among several extreme ones: “shear diaphragm supported” (Kz= C; =0}, clamped without
axial strain (K3 =0, C,= o0), simply supported (K3= o0, Cy=0) and clamped (K;= ;=
o). It can be seen from this table that the effect of axial constraint due to K is generally
more significant than that of clamping due to C;, an important conclusion already outlined
by Forsberg [10] for the minimum natural frequency. In addition, one can see that this
conclusion is true to a greater or lesser degree for almost all modes listed in Table 3.
Generally speaking, the lower the natural frequency is, the more it is affected by the axial
constraining effect. It is worlh noting that all values shown in this table are lower than
the ring frequency of the sheli [18]. This is a frequency range in which membrane effects
are Jarge.

3.4, PLATE-ENDED SHELL: NATURAL FREQUENCIES, MODE SHAPES AND
COUPLING ANALYSES

Investigations carried out above demonstrate that the behavior of shells and plates are
well characterized by the established model and the chosen admissible functions. This
section concentrates on the plate-ended cylindrical shell. The natural frequencies and
corresponding mode shapes are presented first. Then emphasis is placed on the analysis
of the coupling between the shell and the plate, the intention being not only to give a
comprehensive understanding of the phenomena related to the structure in question, but
also to offer concepts and guidelines that may be applicable to the analysis of other
combined structures. Although the formulation was established to study systems with
elastic junctions or elastic supports, the resulls presented here are restricted to the one
specific case of a rigid shell-plate junction because of the limitless combinations which can
arise. Another reason for choosing this limiting case is thal other cases with elastic junctions
can be easily evaluated from the knowledge of this limiting coupled case (infinite stiffness
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of the springs at the joint) and that of the uncoupled cases (zero stiffness of the springs
at the joint),

The shell and plate considered are assumed to have the same thickness and material
properties. The geometrical parameters used are a/h=30 and I./a=3, The shell is “shear
diaphragm supported” at the right end (x= L) and rigidly connected to the plate at x=0
{(K3=C3=00). We also assume that Ki=oo and Cy=0. Therefore, the two subsystems
(plate and shell) are coupled to each other only through the sloping along the edge.
Numerical studies were carried out, during which 11 and 40 terms were taken for the plate
and shell, respectively.

In Figure 2 are given the first six mode shapes, together with the values of the frequency
parameter £2 for the symmetric modes (o= 1) having a circumferential order n=2. These
figures show the normal displacement of the plate (w,) and the radia] displacement of the
shell () in the cross-section for =0and 0 = r. As expected, the plate and shell vibrations
are usually coupled. However, one can notice some cases where the coupling is rather

0, = 022585 {12 030781

{15 = 074518 {lg = 079678

Figure 2, First six mode shapes and frequency parameters £2 of a shel rigidly connected to a plate. The right
end of the shell js “shear diaphragm supported” (n=2; e =1, a/h=130, L/a=13).
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weak. For example, the first mode is dominated by shell vibrations, whereas the second
one is essentially a plate mode.

For the same plate-ended shell, our results are compared to those obtained via the finite
element method (FEM). The finite element software used is a commercially available one
(ANSYS 4.4A). A 19 % 20 finite element mesh (circumferential and longitudinal directions
respectively) is used for the shell and a 20 x 20 mesh {circumferential and radial directions
respectively) for the plate. All calculations are carried out using an IRI1S-4D computer.
As we are limiled by the computational facilities required for finite element analysis, only
the first three modes for n=2 are oblained. Frequency parameters, together with the
calculation time taken by each approach, are tabulated in Table 4. It can be seen that the
agreement between both sets of results is excellent. As far as mode shapes are concerned,
it has been observed that the two approaches give exactly the same description, and even
very detailed deformations around the shell-plate junction are precisely predicted by pre-
sent analysis. In terms of computation time, however, our approach is much less time-
consuming than the finite element analysis. In conclusion, it appears thal the present
approach is a very convenient, efficient and accurate one for determining the modal
behavior of a rather complex structure system.

TaABLE 4

Comparison of frequency parameters between the present study and the finite
element method for the case of a plate-ended shell (L/a=3, a/h=230), g=mode
rank: £ = (present study — FEM ) /present study

Mode order n, g Present study FEM Deviation, £{%)
2 1 0-22585 0-22005 25
2 2 -30781 0-30280 1-6
2 3 0-47417 (47450 ~-0.07
CPU time (5) 20.6 5671

In order to understand the phenomena of coupling, let us consider how the coupling
behavior changes with the variation of the geomelric parameters of the structure. To this
end, the same plate-ended shell system was used to show the variation of the frequency
parameter £2 vs. the length to radius ratio L/a of the shell. For a given radius, the shell
length was gradually increased up to I./a=4. This is illustrated in Figure 3, where the first
four modes of the structure are shown when n=2. To quantify the extent of the coupling,
define A as 10 10g (Wiar/ Wy ) for each structure mode, with w,,., and w,,,.. being, respec-
tively, the maximum displacements of the shell and the plate. According to this factor,
one knows that the coupling between shell and plate is strong if A is near zero, which
corresponds with the case in which the shell displacement is of the same order of magnitude
as that of the plate. For the same configuration the variation of 1 is shown in Figure 4,
where the four curves correspond to those drawn in Figure 3. A very representative
example is the first mode (solid curve C, in both diagrams). It can be seen from these two
figures that when the shell is short, £ is almost constant and the deflection of the end
plate is dominant (2 <0). One can say that in this range the vibrations are plate-controlled.
Strong coupling occurs when £/« reaches a value of 2-5, where A is near zero. Beyond this
range, the plate is stiffer than the shell and the vibrations become shell-controlled. In this
case, £2 decreases as the shell length increases. These observations also apply to the other
modes presented in Figures 3 and 4, for which plate-controlled, shell-controlled and
strongly coupled vibrations appear successively as L /a changes.
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Figure 3. Variation of the frequency parameter £2 vs. the length to radius ratio (L /a) for the first four modes
of 4 plate-ended shell, The boundary conditions are the same as in Figure 2.
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Figute 4. Variation of the maximum displacement ratio between a shelf and plate vs. the length to radius ratio
(L/a). The boundary conditions are the same as in Figure 2.

It is of great interest if one could know, even approximately, the modal behavior of a
coupled system from knowledge of the behavior of each component, which is usually easier
to obtain, The aim is twofold. When two structures are coupled, what will their natural
frequencies be and which component will dominate the corresponding movement? To this
end, it is revealing to inspect Figure 5, in which the curve C,, already shown in Figure 3,
which is the first mode of the coupled structure, is drawn together with the first natural
frequencies of the shell and the plate when they are uncoupled and with two extreme edge
conditions at x=0: a clamped case (two dotled lines CPy and CS, for the plate and shell
respectively) and a supported case (two dashed lines SP, and SS, for the plate and the
shell respectively). In all cases, a “shear diaphragm supported” condition is used at the
right end of the shell. It can be seen thal when the shell is short (corresponding to a small
value of L/a}, the value of  for either the simply supported plate or clamped plate is
much lower than that of the shells. Hence the shell is much stiffer than the plate. When
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Figure 5. Variation of the frequency parameter (2 vy, the length to radius ratio L/a for the first mode of three
different structures: plate, shell and plate-ended shelk. Boundary conditions of the structures at x=0 are as
lollows: C = plate-ended shelf with the same boundary conditions as in Figure 2; SP, =simply supported plate;
P =clamped plate; SS, = “shear diaphragm supported’” shell; CS, = clamped shell,

they are combined, one can expect that the first mode of the structure will have a panel-
like behavior, indicating that the plate is responsible for the mode. Its natural frequency
is Jower than that of the ctamped panel but higher than that of the simply supported one
because of restraining effects due (o the shell. When L/a has a value of about 25, frequency
coincidence occurs between these two uncoupled structures. The combined structute exhib-
its strong coupling between the plate and the shell, With an increase in shell length, the
natural frequencies of the shell-alone become Jower than that of the plate. Therefore, the
natural frequency of the combined structure is close to that of the shell alone with clamped
edge conditions. The behavior of the structure is expected to be shell-like, with negligible
motion of the plate. In Figure 6 is shown a similar comparison for the first four structure
modes, already illustrated in Figure 3. In comparison with the corresponding uncoupled
structures, the same conclusion can be drawn, except that several panel-like, coincidence
or shell-like ranges are observed for higher order modes. Physically, a coincidence range
corresponds to a mechanical impedance adaptation of the uncoupled structures, whereas
a paneh-like or shell-like range corresponds o a frequency range where the mechanical
impedances of the uncoupled components are quite different.

It should be pointed out that this analysis is possible only for the lower frequency modes
where the modal density is lower. Also it is more qualitative than quantitative and the
accuracy of the estimates of the natural frequencies of the combined structure depends on
the character of the mode. Naturally, an accurate quantitative estimate can be given only
by numerical evaluation of the coupled system solutions.

4. CONCLUDING REMARKS

Analytical and numerical results have been presented in this paper to study the free
vibration problems of circular plates, cylindrical shells and their combination, Special
attention has been paid to simulations of a variety of boundary conditions and elastic
junctions of the structure. This is done through a spring system along all edges of the
structure, and the problem is formulated using a variational approach.
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Figure 6. Variation of the frequency parameter £ vs. the length to radius ratio L/a for the modes of three
different siructures: plate, shell and plate-ended shell, Boundary conditions of the structures at v=0 are as
follows: C;, C;, Cy, Cy=first four natural modes of a plate-ended shell with the same boundary conditions as
in Figure 2; 8P|, SP;= first two natural modes of a simply supported plate; CP,, CP,=f{irst two natural modes
of a clamped plate; §8,, §S;, §S;=first three natural modes of a “shear diaphragm supported” shell; CS,, CS.,
CSa=first three natural modes of a clamped shell.

This analysis presents an attempt to make an improvement on work existing in the
literature in the following areas: (1) various boundary conditions of the structure are
simulated in a general formulation (the structure may be a plate alone, a shell alone or
their combination—the boundary conditions may be either classical cases or elastic support
cases}; (2) different joint conditions between the plate and the shell are permitted-—this
joint may be rigid or elastic; (3) a coupling analysis provides physical insight into the
coupling behavior of the combined structure and gives helpful hints to designers; (4) the
formulation can be easily extended to the vibroacoustic problem.,

The versatility of the method has been shown through several typical examples. First of
all, applications of the method to a few selected cases for plates and shells yielded results
that agree well with results obtained from other methods. The case of a cylindrical shell
rigidly connected 1o an end panel was chosen to reveal coupling phenomena between the
two substructures. Both coupled and weakly coupled vibrations occur in the structure.
More specifically, they can be divided into three groups: plate-controlled modes, shell-
controlled modes and strongly coupled modes. A coupling analysis showed the relation-
ships between the coupled structure and the uncoupled substructures in terms of natural
frequencies. It gives some guidelines for analyzing the character of the lower order modes
of such coupled structures, on the basis of knowledge of the modes of its components,
which usually are easier to obtain. This might offer useful information for the design of
such combined structures.

Our study has concentrated on some axisymmetric cases. In a more general context, the
method applies appropriately to cases in which non-axisymmetric elements are present.
These elements may be non-uniformly distributed boundary and joint conditions, local
masses or stiffeners. In these cases, contrary to the present study, coupling occurs between
the modes of different circumferential order so that numerical treatment of the problem
involves matrices of larger size. As to forced vibration problems, the application of the
method is straightforward. Only supplementary terms corresponding to the work done by
external forces have to be included in Hamilton’s function. It seems that the next step in
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this investigation should be the study of the dynamic response and the sound radiation
into the cavity which is surrounded by the structure. Based on the knowledge of the modal
behavior obtained by the present analysis, this further study is expected to give a belter
understanding of the vibroacoustic behavior of such combined structures.
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