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Abstract

This paper presents a simulation model for the active vibration control of a rectangular plate
using piezoceramic elements of arbitrary shape. Experiments using multiple PZT patches were
carried out to validate the model. An analysis was then undertaken to determine the dynamic
effect of the piezoactuators. Numerical results showed that piezoactuators enhance the modal
coupling of the structure under certain circumstances. Special attention should be paid to
higher-order modes in both simulation and the development of active control strategies. Actu-
ators of different shapes have been tested to show their influence on the dynamic behaviour
of the structure. It was noted that actuators shapes affect the structure more in off-resonance
regions than near resonance. This effect however remains weak as long as the actuators possess
the same area and do not possess significantly different width to length dimensions. 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Active vibration control using piezoceramic elements has attracted the attention
of many researchers over the past decade. Due to the reversible effects of such
materials when polarized, they can be used both as sensors and actuators in active
vibration and noise control applications. In order to achieve optimal control perform-
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ance, it is essential to have a full understanding of the actuation effects generated
using piezoceramic actuators.

Following the pioneering work of Crawley and de Luis [1], efforts have been
made during the last few years to develop suitable simulation models facilitating such
analyses. Simple structures such as flexural beams and plates have been extensively
investigated. A considerable number of papers have been published to establish vari-
ous static models neglecting the dynamic effects of the piezo-elements [2–7]. It is
generally assumed in these static models that the piezoelectric elements do not sig-
nificantly affect the inertia mass and stiffness of the host structures. However, situ-
ations may occur where mechanical coupling between the piezo-elements and the
host structures becomes strong, especially when a large number of sensors and actu-
ators are needed to perform MIMO control. In this case, as pointed out by Chaudhry
and Rogers [8], a simulation model capable of taking the full coupling into account
is necessary for the accurate prediction of the frequency response of the structure.
Recent works developing dynamic models using beam models have been reviewed
in a recent paper by Brennan et al. [9]. Results reported both in that paper and other
investigations [10] clearly show the necessity of such dynamic models. However, as
regards two-dimensional structures, much less work has been done. Two-dimensional
structures involve more significant coupling in different coordinate directions.
Dynamic coupling between the host structure and piezo-elements is also reinforced. It
is therefore highly desirable to develop appropriate dynamic models for such structures
as claimed by Zhou et al. [11], who proposed an impedance-based approach. By apply-
ing the latter to both shell and plate structures, it was shown that the dynamic perform-
ance of the host structure and the actuators could strongly influence each other.

In the present paper, a dynamic model is presented to analyse the actuation effects
of the piezo-elements on vibrations of a plate with symmetrically placed piezo-
elements. Using this model, actuators of arbitrary shapes can be modelled. Vibration
sensing using shaped piezoelectric sensors has been investigated by many researchers
in the past. However, the effects of shaped actuators have attracted much less atten-
tion up to now. Active control using shaped actuators may present special interests
in certain applications. This issue has been addressed by Sonti et al. [12]. Using
specific configurations, they performed a static analysis to obtain the equivalent
forces and moments of actuators of different elementary shapes. It was noted that
in addition to the line moment, transverse forces may also exist varying with the
contour shape of the actuators. The effects on the structure in terms of dynamic
response however still remain to be investigated. The present analysis can be used
to deepen our understanding of the issue.

The additive property is shown to hold for both actuators and sensors. A whole
PZT element can then be discretized into small rectangular pieces. A dynamic model
using a rectangular plate with symmetrically placed rectangular piezo-elements have
been independently developed in our past work [13] and by Charette et al. [14]. The
model was based on a variational approach using springs at the boundary and a
polynomial decomposition for the transverse displacements. In the present paper,
this model will be extended to the actuators of arbitrary shape based on the aforemen-
tioned principle. Experimental validations were performed using multiple PZT
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patches. Compared to results reported previously, piezoceramic sensors were also
considered. The lack of experimental data in the literature is a deplorable fact.
Experimental results presented in the present give useful information in this regard.
Coupling analysis was then carried out for a typical configuration to show the effect
of the actuators. The influence of the actuator shape (rectangular, circular, oval etc.)
was then investigated.

2. Modeling procedure

The basic system consists of a thin rectangular plate (dimensions 2b, 2h, 2e), on
which PZT patches of arbitrary shape are bonded on each side as illustrated in Fig.
1. The piezoceramic elements serve either as sensors or actuators and are assumed
to be perfectly bonded to the plate. The boundary conditions of the plate are simu-
lated by introducing a set of uniformly distributed virtual springs along each edge.
A proper combination of the spring stiffness makes it possible to simulate all classical
boundary conditions. Since part of the development is similar to the one used pre-
viously [13,14], it is therefore presented in a brief way.

A piezo-element such as the one illustrated in Fig. 1 is first discretized into a
number of small rectangular cells. It was shown that if proper deformation (such as
the one defined by Kirchhoff–Love assumptions) is imposed on each cell, the additive
property is shown to hold [13]: the effect of the whole actuator (or sensor) will be
the superposition of the all rectangular cells if the mesh is properly defined. In fact,
the use of Kirchhoff–Love assumptions ensures the continuity between each pair of
adjacent cells so that the total effect will be the same as a single piece. In doing so,
modelling can be done for each rectangular element and the same criteria used in
the finite element analysis can be used to determine the number of mesh that should
be used.

Fig. 1. Schematic representation of a rectangular plate with integrated piezoceramic elements.
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Kirchhoff–Love assumptions are used to build the displacement field for the plate
and each PZT cell as follows:

{ u,v,w} 5H2z
∂w
∂x

,2z
∂w
∂y

,w(x,y,t)J (1)

where the vector {u, v, w} represents the displacement of a point either on the plate
or on the piezoceramic elements. Perfect bonding is considered between the plate
and the piezoelectric pieces, leading to a continuity of extensional displacements at
all interfaces.

Rayleigh–Ritz approximations are used to solve the system with the following
polynomial series expansion in terms ofx andy:
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whereaij(t) are the complex and time-dependent variables to be determined.
The analytical formulation is based on the variational approach, in which the

energy of the whole system is extremalized by means of the Lagrange equations.
Using the coefficientsaij(t) as the generalized coordinates, Lagrange equations can
be written in the general form:

d
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∂ȧpq
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whereL is the Lagrangian of the system expressed as:

L5Ek2Ep1W (4)

where Ek represents the total kinetic energy of the system,Ep the total potential
energy of the system andW the work done by the external forces.

With the assumption of thin plates and symmetric installation of the PZT elements,
the kinetic energy of each element (plate, actuators and sensors) is represented as:

Ek5
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whereV represents the volume,r the density andw the flexural displacement for
each element. The potential energy of the plate is obtained from the integral of the
stress multiplied by the strain over the complete volume:

Eplate
p 5

1
2E

v

(T11S1112T12S121T22S22)dV (6)

The stress termsTij and the strain termsSij can be easily expressed in terms of the
displacement of the plate using Eq. (1). Boundary conditions are represented by a
set of virtual rotational and translational springs equally distributed along each edge
of the plate (Ki in N/m2 for translation andCi in N/rad for rotation,i=1, 2, 3, 4).
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The whole procedure yields the following expression for the potential energy of the
plate with elastic boundaries:
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where Y, and v are respectively the complex Young’s Modulus and the Poisson
coefficient of the plate. The work done by an external point force excitation is
given by:

Wd5fd(t).w(xd,yd,t) (8)

where fd is the external point force applied to the plate and (xdyd) the application
point.

The total enthalpy density of a piezoelectric element [15] is used to find the poten-
tial energy of the piezoceramic elements by considering only the transverse electric
field E3

H50.5[T11S111T22S2212T12S12]2[e31E3(S111S22)]2[0.5e33E2
3] (9)

whereH is the enthalpy density;e33 the permitivity;Tij the stress;Sij the strain and
e31 the piezoelectric constant.

After minimization using Eq. (9), for actuators, the first term represents the rigidity
of the piezoelectric elements, the second, the energy supplied by the actuator to the
structure, and the last term disappears. Eq. (9) also applies to the sensors. Being
passive elements however, only the first term of Eq. (9) is retained representing
their rigidities.

In addition, the impedance of the circuit connected to the sensor modifies its
Young’s modulus. In the case of an open electrode configuration, the impedance
goes to infinity so that the Young’s modulus would be higher than that of the closed
electrode circuit. This is the case when a PZT is not connected to an electric circuit.
The relation between the open and closed electrode Young’s modulus of piezoelectric
sensors is as follows:

Ȳ115Y11/(12d31g31Y11) (10)

where,Ȳ11, is the open electrode Young’s modulus,Y11, the closed electrode Young’s
modulus,d31, the strain/charge coefficients andg31, the charge/stress coefficients.

The total potential energy of the whole system is given by:
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Ep5Eplate+boundary
p 1E
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wherevp represents the volume occupied by piezo-elements. The last term of Eq.
(11) applies to both sensors and actuators. As far as the sensors are concerned, one
obtains the same expression as the first term of Eq. (7), related to their stiffness via
the potential energy of the sensors. Care should be taken in replacing all the terms
related to material properties by these of the sensors. In the case of the actuators,
one obtains:
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whereDj stands for the voltage applied to the actuators andep is the thickness.
Using the Lagrange Eq. (3) with Eq. (2) leads to the following differential equa-

tions of the system:

[M ]Ä(t)1[K ]A(t)5{ F(t)} 1{ Q(t)} (13)

where [M ] and [K ] are, respectively, the mass matrix and the stiffness matrix.F(t)
is the external force vector andQ(t) the excitation provided by the actuators.

Using Eq. (13), both the free and the forced vibrations of the structure can be
treated. In the case of forced vibrations, Eq. (13) is resolved using harmonic exci-
tations. In addition, a damping factor is introduced in the Young’s modulus of the
plate to represent the damping of the system. The accuracy of the results depends
mainly on the truncation of the series used in Eq. (2). This issue have been discussed
in detail in a previous publication [16]. For the free vibration analysis, the natural
frequencies and the corresponding mode shapes can be found by resolving the eigen-
problem of Eq. (13).

The electric charge of the sensor is obtained from the electric field derived from
the enthalpy densityH. For closed circuit sensors, one can express the dielectric
displacementD3 (charge per unit area) by:

D35e33E331d31T11d32T21d36T6 (14)

wheree33 is the permitivity constant anddij the piezoelectric constants.
The electrical chargeq(t) can be found by integrating the electric displacement

over the surface of the electrode:

q(t)5ED3 dxdy (15)
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Using the capacitanceC, the output voltage of each sensor is given by:
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wherees is the thickness of the PZT sensors.

3. Experimental validations

Experimental tests were performed to validate the proposed models using rec-
tangular PZT elements. Fig. 2 shows the experimental set-up and associated equip-
ment. To create free boundary conditions, the plate was suspended from a stiff steel
frame by two rubber bands of very weak stiffness attached to the middle of two
opposite sides of the plate. Actuator patches were used to excite the structure.

Polytec PIC 141 piezoceramic patches were used for the tests. Six pairs of piezo-
elements were bonded to the plate surface at locations illustrated in Fig. 3. Character-
istics of the plate and the piezo-elements are summarized in Table 1. Before bonding
the piezoelectric elements, the plate was anodized to isolate the plate from the piezoe-
lectric pieces. For each piezoceramic element, a groove was machined into the plate
for positioning and welding the conductors. Efforts were made to develop a good
welding procedure. Small grooves in the plate helped avoid the plate and the piezoe-
lectric element from shearing loose and the matching of the simulation results and

Fig. 2. Experimental set-up.
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Fig. 3. Locations of PZTs.

Table 1
Dimensions and physical properties of the system

Plate PZT elements

Width (2b) [m] 0.260 0.03
Length (2h) [m] 0.500 0.05
Thickness (2e)[m] 0.226 E-2 0.4 E-3
Density (r)[kg/m3] 2700 7800
Permitivity – 0.1157 E-7
Young’s modulus (E) [Pa] 7E+10 0.79365E11
Piezoelectric constant (e31) – 9.127 [N/m.V]
Loss factor 0.01 –
Poisson ratio(n) 0.30 0.30

the experimental data. In addition, the welding temperature must be kept lower than
the Curie temperature to avoid depolarization. Copper wires of 0.1 mm in diameter
were used as conductors. With the latter and a suitable welding technique, the size
of the welding spots could be kept within 1.5 mm long, 1 mm wide and 0.2 mm
thick. Groove dimensions have been chosen to be 3.175 mm long, 1.588 mm wide
and 0.254 mm thick. These dimensions allow us to minimize as much as possible
the discrepancies between the model and the experimental set-up. Loctite
Superbonder 496 was used to glue the piezo-elements to the plate, with an adhesive
layer about 0.04 mm thick.

A white noise (0–800 Hz) generated by the 2035 B&K analyser was amplified
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Fig. 4. Comparison between simulation and experiment in terms of velocity/actuator transfer function:
Actuators A(B). Simulation: ———; Experiment: - - -.

by a power amplifier and then applied to a selected pair of PZTs. A single piezo-
element or a laser vibrometer was used to measure the plate response. Comparisons
between simulation and experimental transfer functions are compared using three
different configurations. In simulations, all spring stiffness parameters of the bound-
ary are set to be zero. In all cases, the PZT pair A(B) is used as actuator.

First of all, the velocity/actuator transfer functions were compared. The laser
vibrometer measured the velocity of the plate at point (50, 170 mm). The transfer
function presented in dB (referenced to 1) is shown in Fig. 4. Sensor output was
then investigated. Fig. 5 compares the sensor/actuator transfer function between actu-

Fig. 5. Comparison between simulation and experiment in terms of sensor/actuator transfer function:
Actuators A(B); sensor E(F). Simulation: ———; Experiment:- - -.
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ators A and B and sensorsE(F). Same comparisons were made in Fig. 6 using
another sensor pairI (J). It can be seen that resonant peaks are well predicted by the
simulation model, showing that both the boundary conditions of the plate and the
mass and stiffness effects of the PZT are reasonably well simulated. At higher fre-
quencies, numerical and experimental results demonstrate the same tendency. Gener-
ally speaking, it can be seen that good agreement is obtained in all cases. The model
is particularly accurate in the low and middle frequency ranges as well as in reson-
ance regions. More obvious discrepancies can be observed in off-resonance regions
and this state of affairs is slightly amplified with the increase in frequency. This
difference may be attributed to the exclusion of the bounding layer in the simulation
model, which certainly becomes more important and necessary to take into account
of at high frequencies. However the model seems to be accurate enough to predict
the general dynamic tendency of the system for most active control simulation pur-
poses. It should be mentioned that, compared to most of the comparisons presented
in the literature, the present configuration covers a large number of modes, rep-
resenting such a relatively more complex system. We conclude that the developed
model is very representative of a physical system composed of a panel with multiple
integrated piezo-elements.

4. Actuation effects

Numerical analyses were performed using the proposed model. In particular, spe-
cial attention was first paid to analyzing the dynamic coupling effects. A typical
analysis is presented to show the actuation effect of the PZT elements. The previous
plate was again used for this analysis, except for the fact that the plate was clamped
along all its edges and only PZTs A(B) and C(D) were bonded to the surface of the

Fig. 6. Comparison between simulation and experiment in terms of sensor/actuator transfer function:
Actuators A(B); sensorI (J). Simulation:———; Experiment: - - -.
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plate. The stiffness parameters of the boundary springs are set to be higher enough
than the flexural stiffness of the plate (108 times higher). Two excitations were con-
sidered. First, a force excitation located at (240.5,255 mm) was used to drive the
plate with the acceleration response calculated at (248, 54.5 mm). Second, PZTs
A(B) was used as excitation. The acceleration/actuator transfer function curve is
compared with the acceleration/force one in Fig. 7. It should be noted that a compari-
son of the absolute values of both curves is meaningless, since the piezo-actuator
generates excitations distributed over the whole area whilst the force is a punctual
excitation. However, a comparison of the overall tendency of the data reveals a
particular behavior that is of practical importance. It can be seen that both excitations
result in almost identical tendencies in terms of modal response except at the lowest
frequencies. Before the first resonance frequency, the behavior of the plate with
activated actuators is rather more complex than the force-excited one. In fact, the
actuator-driven curve drops off significantly at 104 Hz before the first natural fre-
quency of the plate (126 Hz). We noticed that this phenomenon usually happens
when the plate has at least two opposed clamped boundaries. A similar phenomenon
has also been observed experimentally using a clamped-free beam. Further analyses
were carried out to understand this observation. To this end, the deformations of the
plate were plotted at 104 Hz for both the force-driven and actuator-driven plate. The
two corresponding surfaces are presented in Fig. 8(a,b) respectively. In order to
visualize better the deformation, a cross section passing through the center of the
actuators and parallel to the Y-axis is used. It can be seen from Fig. 8(a) that when
the plate is excited by the force, the deformation takes the form of the first mode
of the plate, since the analyzed frequency is lower than and close to the first natural
frequency of the plate. When excited by the actuator however, the plate deformation
is much more complex as illustrated in Fig. 8(b). This observation suggests that even
before the first natural frequency of the 12 plate, not only the first mode is important,

Fig. 7. Comparison between a force excitation and an actuator excitation in terms of transfer function.
Force excitation: ———; PZT actuator: - - -.
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Fig. 8. Deformation of the plate at 104 Hz. (a): force excitation; (b): actuator excitation.

but also higher-order modes that significantly contribute to the response of the sys-
tem, despite the fact that their natural frequencies are much higher than the excitation
frequency. It is clear that using an actuator as excitation amplifies the modal coupling
of the system. Two immediate consequences follow this observation. From the simul-
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ation stand point, simulation of the system with actuators is more demanding than
the one with force excitation, since more modes (using a modal approach) or terms
(using the Rayleigh–Ritz approach) are necessary to achieve good accuracy. Another
consequence is directly related to development of a control strategy based on the
modal approach: care must be taken to control higher-order modes since they can
significantly contribute to the response of the system even in a frequency zone far
away from their natural frequencies.

The developed model was subsequently used to investigate the effects of the
shapes of the actuators. Static effects of actuators of different shapes have been
addressed by Sonti et al. [12]. The model presented previously can be used to investi-
gate the dynamic effects of actuators in terms of dynamic response. To this end, the
piezo-elements was first discretized into a number of small rectangular elements.
The additive property can be shown to apply, permitting one to handle the actuator
form as a combination of a series of smaller sized elements. The displacement field
used in the model ensures the continuity between each adjacent element. In this way,
the previously developed model can be used directly, leading to a general formulation
applicable to plate structures with piezo-elements of any shape. Sufficient meshing
of the actuator ensures a good approximation of the real shape. Using the configur-
ation defined previously, Fig. 9 illustrates the convergence curve using different
discretizations and the corresponding response curve when an oval actuator is used.
The convergence parameter used in this figure is the integral of the quadratic velocity
curve over a given frequency range (0–1200 Hz). It can be seen that convergence
is achieved using a 400×400 mesh.

In order to illustrate the effect of the actuator shape on the response of the system,
the previous configuration was used again. Using the same sensor as before, the
transfer functions were calculated using four different actuators possessing the same
surface area. The four actuators were a rectangle (the one used before), a circle and

Fig. 9. Convergence curve using different discretizations with oval actuators.
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two ellipses respectively with ratio of minor to major axes of 1:4 and 1:16. Several
interesting points are worth mentioning. Comparing the data from the first three
configurations illustrated in Fig. 10, it can be seen that by keeping the surface area
constant, the actuator shape does not visibly affect the response curves at resonances.
More obvious discrepancies only appear in the off-resonance regions. Note that all
the first three configurations possess roughly comparable dimensional ratios (3:5 for
the rectangle, 1:1 for the circle and 1:4 for the ellipse). The fourth curve illustrates
the case of a highly flattened actuator (i.e. ratio 1:16). It can be seen that the influence
of the actuator shape in this case becomes more apparent with the increase in fre-
quency. This is understandable since this disproportionally shaped actuator covers a
greater distance of the plate surface, which is very different than the first three cases.
As a result, it strongly disturbs the modal response of the system with significant
effects in the off-resonance regions. It can therefore be concluded that actuators of
different shapes do not strongly disturb the response of the structure unless they are
disproportionally shaped in their dimensions. The effects in this case are then much
more apparent in the off-resonance regions.

5. Conclusions

Effects of PZT actuation have been investigated in the present paper. The principal
findings can be summarized as follows:

1. Experimental validations are undertaken using a configuration involving relatively
complex modal behaviour, resulting in satisfactory agreement. The simulation
model seems to provide good accuracy when multiple patches of PZT are used.

Fig. 10. Influence of the actuator shape on the response of the system. Rectangular: ———; Circle:- - -;
Ellipse 1:4:· · ·; Ellipse 1:16:– · –.
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2. Numerical results show that piezoactuators enhance the modal coupling of the
structure under certain circumstances. Special attention should be paid to higher-
order modes in both simulation and the development of active control strategies.
The contribution of some modes may be strong even when their natural fre-
quencies are far away from the excitation frequency.

3. Actuators of different shapes affect the structure more in off-resonance regions
than near resonance. This effect however remains weak as long as the actuators
possess the same area and do not possess significantly different width to length
dimensions.
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des ce´ramiques pie´zoélectriques. Master Thesis, Laval University, Que´bec, Canada 1997.

[14] Charette F, Berry A, Guigou C. Dynamic effects of piezoelectric actuators on the vibrational response
of a plate. J Int Mat Syst Struct 1997;8:513–24.

[15] Jaffe B, Cook W, Jaffe H. Piezoelectric ceramics. London: Academic Press, 1971.
[16] Cheng L, Lapointe R. Vibration attenuation of panel structures by optimally shaped viscoelastic

coating with added weight considerations. Thin-walled Struct 1995;21:307–26.


