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Abstract

Vibration analyses of various line-coupled structures are conducted in this paper using the
newly developed Coupling Load Decomposition technique. Examples are given to illustrate
how this approach may be used in practice. Various factors related to the practical application

of the technique are investigated. The approach is applied to systems composed of a main
plate as the master structure and di�erent substructures. Plate-like structures and beam-stif-
fened plates are studied and the results are compared to ®nite element results. Applications to

the case of periodic structures or systems with repeated substructures are also investigated. It
is shown that the method is very e�cient in such cases leading to satisfactory results in low
and medium frequency ranges. # 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibrations of mechanically coupled structures have been extensively investigated
in the past few decades. One typical example is shown in Fig. 1, which is composed
of a thin plate as the master structure to which several substructures are coupled. In
addition to the commonly used ®nite element method, various simulation methods
have been developed in the past. A summary of existing methods can be found in
Ref. [1]. One can mention the statistical energy analysis [2], fuzzy structure theory
[3], power¯ow approach [4] as well as various methods dealing with particular
con®gurations.
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In our previous work [1], a method, named Coupling Load Decomposition (CLD)
technique was proposed to use substructure compliance functions in the study of
forced vibrations of line-coupled structures. The technique permits the use of
numerical, analytical and experimental data to characterize the substructure com-
pliance functions. It can therefore be regarded as a hybrid method. Compliance
functions which carry the dynamic information of substructures are easier to work
with compared to the modal characteristics used in modal techniques [5,6]. For real-
life complex substructures, the compliance data can be obtained experimentally. The
technique does not require to determine the modal characteristics of substructures,
in contrast to several existing methods. This presents a major advantage since modal
identi®cation is a more di�cult task than compliance measurement or, even if it is
possible, it may be di�cult to work with computationally [7].
Several examples are given in this paper to numerically assess the technique. The

con®gurations were chosen among line-coupled structures which are of practical
interest and therefore frequently treated in the literature:(1) plate assemblies with
sub-plates coupled in rotation along the junction;(2) ribbed plates involving both
transversal and rotational coupling between the plate and the beams;(3) periodic
structures or systems with repeated sub-structures.
Numerical results are restricted to low and middle frequency ranges, since a semi-

analytical formulation is used to model the main structure. However, the proposed
methodology is quite general and may be used in conjunction with any other energy

Fig. 1. An example of plate-like structures.
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based formulations. Whenever possible, simulated results are compared to ®nite
element simulations.

2. Modeling procedure

The modeling procedure is brie¯y summarized in this section. More details can be
found in Ref.[1]. Consider a system composed of a thin rectangular plate as the
master structure shown in Fig. 2, with ÿ b4x4b, ÿ h4y4h and ÿ t4z4t. The
plate is supported by translational and rotational springs and the boundaries. Small
deformations are assumed and, classical linear thin plate theory (Love±Kirchho�)
can be used.
The transverse displacement of the rectangular plate is approximated by a series:

w x; y; t� � �
Xm
i�0

Xn
j�0

aij t� � x
b

� �i y

h

� �j
�1�

Using the Rayleigh±Ritz method, the coe�cients of the polynomial decomposi-
tion aij may be obtained by minimizing Lagrangian of the system L:

L � Ec ÿ ET
p �W �2�

with Ec and ET
p being, respectively, the kinetic and total potential energies of the

system. The term W represents the contribution of ( or the work done by) surface
loads or body forces. The total potential energy can be written as

Fig. 2. A thin plate used as the main structure.
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ET
p � Ep � Eb

p � Ecp
p �3�

where Ep is the total strain energy of the main structure, Eb
p is the potential energy

stored at the boundary springs and Ecp
p is the substructure contribution to the total

energy of the coupled system. All terms appearing in the previous equation can be
easily determined except for the term Ecp

p with

Ecp
p �

1

2

�b
ÿb
Fm0 x; y0� �Dm0 x; y0� �dx �4�

where Fm0 x� � and Dm0 �� � denote the functions representing the coupling load (force
or moment) and the corresponding deformation variations (displacement or rota-
tion), respectively, along the junction. Relation between the two terms can be
established using the compliance function �m0m0 x; �� �

Dm0 x; y0� � �
�b
ÿb
�m0m0 x; �; y0� �Fm0 �; y0� �d� �5�

In the above expression, the junction is obviously assumed to be parallel to the x
axis with y0 as its y coordinate. In this same expression (5), the load distribution
Fm0 �; y0� � is an unknown function which constitutes the major obstacle when using
the compliance matrix. To tackle this problem, the load distribution along the
junction is decomposed over a polynomial base as follows:

Fm0 �; y0� � �
Xm
i

Xn
j

bij
�

b

� �i
y0
h

� �j
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with bij being unknown coe�cients to be determined.
The polynomial decomposition for transverse displacements of a rectangular thin

plate given by Eq. 1 may be written in a more general form for Dm0 x; y� � as follows:

Dm0 x; y� � �
Xm
i�0

Xn
j�0

Bij
x

b

� �i y

h

� �j
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This equation becomes the same in the case of displacement with aij � Bij.
A regression analysis over the compliance matrix is then to be conducted, giving:

Bm0m0 x; �; y0� � �
Xn1
k�0

Xn2
l�0

cm
0m0

kl xk�l �8�

An analytical development allows one to ®nd the relation between these two series
of coe�cients Bij and bij [1]. Then the energy approach (Rayleigh±Ritz method)
allows one to obtain standard second order system with the following energy terms:
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where Mpqrs and Kpqrs are the general mass and sti�ness of the system, respectively.

3. Numerical applications

Numerical examples of plate-like structures and beam-sti�ened plates are given.
The substructures are analyzed analytically or semi-analytically to derive their
compliance variations along the contact lines. If desired, analytically derived com-
pliances may be simply replaced by numerical or experimental measurements without
any required changes in the formulation. In all forthcoming examples, the compo-
nents of the coupled system are made of aluminum with modulus of elasticity
E � 0:7E� 11, mass density � � 2700 kg

m3 and Poisson's ratio � � 0:3. A damping
factor � � 0:01 is used in all cases. The main plate is 30 cm wide (2b), 45 cm long
(2h) and 3.175 mm thick (2t). These dimensions are kept constant to compare the
results obtained for di�erent con®gurations. In most cases, nine observation points
are considered with n1 � n2 � 8, where `n1' and `n2' are the degree of regression for
the two independent variables respectively. Any changes in the above mentioned
con®gurations and properties will be speci®ed along the text.

3.1. L-shaped plate

Fig. 3 shows a horizontal plate as the main structure. A vertical auxiliary plate is
connected to the main plate. The plates are simply supported along their edges and,
consequently, only a rotational moment distribution along the junction is present.
This moment distribution is related to the displacement ®eld of the coupled system
using the substructure rotational compliance. In all the examples that use L-shaped
plates, a transverse force excitation of 100 N is applied at point x � y � 7:5 cm of
the main plate and the transversal response is measured at the same point.
Fig. 4 shows the response of the L-shaped plate when the auxiliary plate has

identical dimensions to the main plate. The response is presented in terms of dis-
placement amplitude and it is compared to the one of a single plate without cou-
pling. Results show that the coupled system has a higher modal density and a
slightly lower vibrational level than the single plate (main structure). All original
natural frequencies of the main plate, before coupling, are still present in the
response of the coupled system. New modes close to these resonances are created. In
fact, in most cases, there exists one pair of resonant frequencies which are very close
to each other. The ®rst one denotes the resonance of the main and auxiliary plates
when vibrating independently. It is due to the fact that identical dimensions are used
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for the main and auxiliary plates. This phenomenon of mode splitting is well known
in periodically supported structures, which is basically the case here since the main
plate and the secondary plate are of identical dimensions. Fig. 5a shows the third
mode shape of the coupled system. The main plate seems to be simply supported
along the junction and no resistance is imposed from the side of the auxiliary plate.
The forth mode of vibration is however quite di�erent. As shown in Fig. 5b, the
in¯uence of the substructure is signi®cant and the main plate seems to be closer to a
clamped condition along the junction.

Fig. 3. L-shaped plate, simply supported at the edges.

Fig. 4. Response of an L-shaped plate using the CLD technique: (a) response of the main plate before

coupling; (b) response of the coupled system.
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A ®nite element simulation using the IDEAS package was conducted in Ref. [1] to
validate the CLD technique. Good agreement was observed between the CLD
technique and the ®nite element method using 24 modes over the frequency band of
interest of 0±1000 Hz.
The choice of the appropriate number of observation points plays an important

role in determining the accuracy of CLD approach. Many methods such as ®nite
element, boundary element and ®nite di�erence using spatial or time discretization
face the same problem of determining an optimum time or space interval. Generally
speaking, the dimensions of the spatial elements must be su�ciently smaller than the
wavelength of the structure. It is also the case for the number of contact points
between line-coupled structures in the proposed approach. For complex structures

Fig. 5. Mode shapes of the L-shaped plate: (a) third mode (236 Hz); (b) fourth mode (267 Hz).
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however, it is not always easy to predict the wavelength of the structures as a func-
tion of frequency. Sometimes, a rough wavelength estimate may be made by using
the wavelength of similar but simpler structures.
Once the wavelength of the substructure is estimated, an appropriate distance

between the contact points can be approximately determined. During our simula-
tions, it was noted that the discretization distance should be at least 4 or 5 times
smaller than the minimum wavelength in the frequency range of interest. This
ensured an acceptable representation of the compliance variation along the junction.
The same criteria is used in ®nite element analysis to estimate a su�cient number of
elements for modal analysis of structures.
To illustrate this criteria, let us consider again the simply supported L-shaped plate

used previously. The wavelength of the simply supported auxiliary plate is approxi-
mated by the wavelength of an in®nite plate with the same thickness and material
properties. The wavelength of an in®nite plate l is given by the following relation [8]

l � 2�����
!
p Eh3

12m̂ 1ÿ �2� �
� �1

4

�11�

where ! is the radian frequency; E, the modulus of elasticity; m̂, the mass per unit
area of the plate and �, the Poisson ratio. Fig. 6 shows the variation of l=4 as a
function of frequency. In the same ®gure, the variation of contact point distance � is
illustrated as a function of the number of contact points using the following relation

� � L

nÿ 1
�12�

where L is the length of the line of contact and n denotes the number of contact
points along the same line. Based on those two graphs, one may estimate the

Fig. 6. A simple example to determine the number of contact points required for a plate-like structure.
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required number of contact points to analyze the coupled system in a frequency
range of interest. For example, to analyze the L-shaped plate up to a frequency of
2500 HZ, one may use 12 contact points. Results using six, eight and nine contact
points are compared in Fig. 7. It can be observed that six points are su�cient only
up to 600 Hz, while eight or nine points are required to cover the whole frequency
range considered. These observations are consistent with the criteria provided
above.

3.2. T-shaped plate

Fig. 8 shows two di�erent con®gurations of T-shaped plates. In the ®rst con®g-
uration, the main plate is simply supported at all its edges and at a constraint line
along the line y � 0 which is also the junction with the auxiliary simply supported
plate. The constraint line of the main plate which forms the junction, is supposed to
be simply supported. The e�ect of this constraint line can be easily implemented in
the energy equation of the plate in the same way as the contribution of the bound-
aries, as previously explained. The compliance function of the auxiliary plate along
its junction with the main plate must be used to introduce its e�ect on the main
plate.
The second con®guration, shown in Fig. 8b, illustrates the case in which the con-

straint line is placed on the auxiliary plate. In this case, the same steps as for the L-
shaped plate must be followed. The compliance function should be obtained for a
simply supported plate with an additional simply supported line along its junction
with the main plate.
Fig. 9 shows the response of the T-shaped plate of Fig. 8a, when the auxiliary

plate has the same physical and material properties as the main plate. The result is

Fig. 7. Response of an L-shaped plate: (a) six contact points; (b) eight contact points; (c) nine contact

points.
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compared to the response of the simply supported plate before coupling. As one can
observe, the e�ect of the substructure on the main structure is signi®cant. Vibration
level is considerably decreased and the modal density is increased due to the cou-
pling with the auxiliary plate.
In Fig. 10, the response of the coupled system is compared to one obtained by

IDEAS. It seems that the CLD method seems to be adequate enough to model the

Fig. 8. T-shaped plate: (a) ®rst system; (b) second system.

Fig. 9. Response of a T-shaped plate (®rst con®guration): (a) response of the main plate before coupling;

(b) response of the coupled system.
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coupling. The modal analysis using IDEAS shows that there exists 19 modes of
vibration up to 1025 Hz while for the main plate, only 10 modes of vibration exist in
this frequency range. The fact that all resonances did not appear in the response
curve is due to the location of the excitation and response points.

3.3. Ribbed plates with beam sti�eners

As illustrated in Fig. 11, the presence of sti�eners introduces two kinds of cou-
pling with the plate. The ®rst one is related to the torsional e�ect of the beam which
includes a distribution of torsional moment along the junction, and the second one
is due to its ¯exural sti�ness, which includes a transverse force distribution.
Assuming small deformations, the torsional and ¯exural behavior of the beam are
decoupled and may be treated separately to obtain the compliance matrix.
Consider the plate used in the previous examples as the main structure. As a ®rst

step, no eccentricity is considered for the sti�ener. This is the con®guration that has
been widely used in the literature [9]. It means that the neutral axis of the sti�ener
beam coincide with that of the main plate. From now on, when it is stated that the
sti�ener has a cross-section of a� b, it means that the sti�ener height is b and its
width is a (the sti�ener is attached to the plate through the a span).
Fig. 12 shows the sti�ening e�ect of the beam on the main plate. The beam has 30

cm in length and is added to the main plate along the line y � 0. Compared to the
main plate response before coupling, it is observed that all original frequencies of
the main plate are shifted toward higher frequencies and at the same time, the
vibration level is more or less decreased. The results are also compared with a ®nite
element model. The sti�ener is modeled using a linear beam element. The results,
shown in Fig. 13, indicate good agreement between both methods.

Fig. 10. Response of a T-shaped plate (®rst con®guration): (a) hybrid approach; (b) ®nite element

method.
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Fig. 11. An example of the beam-sti�ened plate.

Fig. 12. Response of a beam-sti�ened plate: (a) response of a non-sti�ened plate; (b) response of the

coupled system.
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3.3.1. Eccentric sti�eners
In previous examples of beam-sti�ened plates, the sti�eners were assumed to be

attached to the plate without any eccentricity. In practice, there are many applica-
tions in which the sti�ener is attached to one side of the plate. Some authors [10±12]
have considered the middle line of the plate as the neutral axis of the sti�ener,
declaring that it is an over estimation of the sti�ening e�ect of the beam.
In the present investigation, a di�erent technique is used to ®nd the neutral axis of

the beam in ¯exural vibration. Fig. 14 shows the cross section of an eccentric beam-
sti�ened plate. The second moment of inertia of the beam about its middle axis is

Fig. 13. Response of a beam-sti�ened plate: (a) CLD technique; (b) ®nite element method.

Fig. 14. The cross-section of an eccentric beam-sti�ened plate.
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I0 � 1

12
bsh

3
s �13�

where hs and bs are, respectively, the thickness and the span of the beam. The new
centroid of the beam (distance from the middle surface of the plate) and modi®ed
second moment of inertia of the beam about this new axis are

d �
n�bshs

hs
2
� hp

2

� �
bphp � n�bshs

�14�

Is � I0 � bshs
hs
2
� hp

2
ÿ d

� �2

�15�

where n� � Es

Ep
, Es and Ep being the modulus of elasticity of the beam and plate,

respectively. The plate thickness is denoted by hp and its length, along which the
beam is coupled, is bp.
Fig. 15 shows the response of a beam-sti�ened plate when the beam of the pre-

vious example with cross section 1.5�0.9 cm, is attached to one side of the plate. In
the ®nite element analysis, the elements were the same as those for the case of the
beam without eccentricity, but a vertical o�set was considered. This vertical o�set
enables one to model the eccentricity without using the thick plate or brick elements.
The torsional constant was not a�ected by the eccentricity and no modi®cation was
made for the torsional properties. Good agreement between the ®nite element
method and the proposed approach was observed.

Fig. 15. Response of a beam-sti�ened plate with an eccentricity: (a) CLD technique; (b) ®nite element

model.
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3.4. Periodic structures and systems with repeated substructures

The subject of periodic structures is a common problem in many applications such
as aerospace, ship building and civil engineering. This type of structure may be used
to attenuate the wave propagation in solids or to control the vibration level of a
system without signi®cantly increasing its mass.
In this section, the e�ciency of the CLD method for analyzing coupled systems

with repeated substructures is investigated. The advantage of the CLD technique
stands in the amount of computational work required which is reduced by a repe-
ated use of the model developed for one of the periodic elements. In this approach,
the generalized sti�ness matrix of a substructure may be obtained as a function of
the global coordinates of the connection line and, therefore, very little e�ort is
required to simulate the coupling of identical elements at di�erent points. When the
number of contact points and the degree of regression for di�erent substructures
remain unchanged, the dynamic sti�ness matrix related to a series of identical sub-
structures can be simply obtained.
This process may be easily repeated for each series of identical substructures. The

coupled system can be e�ciently treated without repeating previous steps, which are
relatively time-consuming procedures, such as measuring or calculating the com-
pliance matrix and performing the regression analysis. The method becomes more
appealing when the number of identical substructures increases.
This was assessed using examples of plate assemblies. The previously treated L-

shaped plate composed of two identical perpendicular plates is here extended to the
case of periodic systems. As a ®rst example, another identical plate is added to the
other end of the horizontal plate to form a U-shaped plate. All plates are supposed
to be simply supported along the edges. Fig. 16 shows the response of the U-shaped
plate compared to the one obtained by a ®nite element model. For the ®nite element
analysis, the number of nodes and elements used for each plate is identical to the

Fig. 16. Response of a U-shaped plate: (a) CLD technique; (b) ®nite element model.
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L-shaped problem treated earlier. The ®rst 25 modes of vibration are superimposed
to obtain the forced response of the coupled system. The excitation and response
points are the same as those described in the L-shaped plate problem. Generally
speaking, Fig. 16 shows good agreement between both methods and, therefore, the
CLD technique is capable of representing the general behavior of the plate. It should
be mentioned that many factors interfere when one wants to compare the results
obtained by these two di�erent methods. The number of elements and the number of
eigenfunctions used for mode superposition are important factors in the case of the
®nite element model. In the case of the CLD technique, the number of contact
points, the degree of regression analysis, the number of terms at which the poly-
nomial series of the displacement ®eld and interactive loads are truncated are
important parameters which a�ect the results.
Fig. 17 shows the response of the coupled system when one, two and three iden-

tical plates are added to the main structure to form the L-shaped, U-shaped and W-
shaped plate, respectively. The third plate is added along the line Y � Y3

0 � 0 which
is simply supported as the other edges are. Due to this new supporting line, the
vibration level of the coupled system is signi®cantly decreased. The modal density of
the coupled system also increases with the number of substructures. For a simply
supported plate without any substructure, there exists 10 vibration modes up to
1000 Hz, while this number reaches 18, 22 and 38 when one, two or three vertical
plates were added, respectively.
A processing time analysis was performed to study the rate of increase in proces-

sing time in the case of a plate like structure. The processing time reference is the U-
shaped plate previously treated. Results are shown in Fig. 18 in which computation
time increase in percentage is plotted versus the number of sub-structures. In this
analysis, the forced responses of all systems are obtained up to 1000 HZ. The poly-
nomial function representing the plate deformation is truncated at m � n � 10 for

Fig. 17. Comparison between plate-like structures: (a) L-shaped plate; (b) U-shaped plate; (c) W-shaped

plate.
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all coupled systems. Fig. 18 shows that the addition of substructures does not sig-
ni®cantly increase processing time. There is an increase of 40% in processing time
when two other plates are added to the original con®guration. Adding six plates to
the original con®guration leads to only 140% increase in processing time.

4. Conclusions

Vibrations of typical coupled structures along a continuous line were investigated
using the CLD technique. Numerical examples of the plate-like structures and
beam-sti�ened plates were given. These examples were chosen such that cases of
weak and strong in¯uences were studied. Results obtained were compared to ®nite
element models and good agreement was observed. It can be seen the CLD technique
is capable of dealing with a large variety of mechanical structures coupled through a
continuous line. Using the criteria established in the present paper, reasonably good
results can be obtained by properly choosing observation points for compliance
calculation or measurement. It was also shown that the method is e�cient to analyze
periodic structures and systems with repeated substructures. Further investigations
are still needed to extend the applications of CLD technique to more complex cases.
Curved periodically ribbed panel is a typical example.
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