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Abstract

Vibration Analysis of systems with beam components is performed. A previously developed
method called Internal Loading Decomposition is applied to this particular configuration. A
beam is used as the master structure to which are added one or more substructures. The method
is assessed for several variations of this configuration using finite element analysis. Numerical
examples demonstrate how the method can be advantageously applied to analyze periodical
structures. Finally, a sensitivity study is performed to illustrate the effect of compliance uncer-
tainties on the vibrational response. 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Vibration analysis of coupled structures is of great importance in structural dynam-
ics. Significant progress has been made over the last decades to simulate the
vibrational response of complex systems composed of many substructures. Apart
from standard numerical methods like Finite Element Analysis and some purely
experimental approaches, classical methods such as modal synthesis method [1],
mobility power flow [2,3] and statistical energy analysis [4] are well known methods
for investigating low, medium and high frequency ranges, respectively. Other alterna-
tives have also been proposed in the literature. Some examples are: substructure
synthesis analysis [5], receptance method [6], Lagrange multiplier methods [7,8],
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mobility power flow approach [9,10], frequency window method [11] and modal
sampling method [12].

Generally speaking, most of these methods can be classified in three categories:
analytical or semi-analytical, numerical and experimental methods. Every one of
them has its own advantages and restrictions. Analytical methods are accurate and
make it easier to investigate the effect of different parameters of simple systems.
Numerical methods, however, still require good system models and become compu-
tationally demanding when a large number of substructures are coupled together.
Experimental methods are applicable to any system but the fact that they cannot be
used as a provisional tool make them less attractive. As far as structural modeling
is concerned, the fact that most of these methods try to model all structural compo-
nents limit their applications especially when a great number of substructures are
coupled together. In addition to that, in a real-life system, there may be some effects
which can hardly be modeled with reasonable cost and of which only experimental
tests are capable of taking into account. New strategies should be developed to tackle
these problems.

In the past few years, efforts were made to develop more physical approaches
capable of analyzing structures with a certain degree of complexity. The essence of
these techniques is to use a more physical base before purely numerical treatments
are engaged. In fact, although a system may be very complex, elements like beams,
plates and shells are usually the main components in a vast amount of structural
systems. Under some circumstances, these structures can be reasonably well analyzed
by analytical or so-called semi-analytical approaches based on variational principle
using artificial spring systems [13–15]. However, these approaches fail when a great
number of substructures are involved.

Recently, a new substructuring technique called “Coupling Load Decomposition”
[16] is proposed to perform vibration analysis of line-coupled structures. In dividing
the whole structure into a master structure and several auxiliary structures, a vari-
ational formulation is used to model the master structure, enabling one to introduce
the effects of all auxiliary structures by using their compliance characteristics at
several observation points along the junction. This new formulation permits the direct
use of the compliance of the junction, which may be obtained analytically, numeri-
cally or experimentally. Simulation results on the plane structures show good agree-
ment in low and medium frequency ranges. The general procedure is shown in Fig.
1. Up to now, compliance data used in the previous simulations are supposed to
contain no error. In practice however, compliance of substructures should be
obtained, more often than not, experimentally. Errors are then inevitable. Analyses
should then be performed to investigate the effects of compliance component uncer-
tainties. This analysis should help to determine the tolerance on compliance measure-
ments in the application of the technique.

In this article, this modeling philosophy is applied to one dimensional point
coupled structures. In many vibrating systems, the contact zone between coupled
elements is small enough compared to the wavelength of the structure so that it can
be considered as a single point. The objectives are two fold: (1) to assess the suit-
ability of the technique for point-coupled cases and (2) to investigate the effect of
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Fig. 1. Flow chart of the method.

biased compliance measurement on the accuracy of the prediction. To this end, a
general formulation is proposed for a general beam as the main structure, coupled
to arbitrary substructures. The method is assessed for various configurations by com-
paring numerical results to finite element simulations. Finally, a sensitivity analysis
is performed.

2. Theoretical formulation

The basic idea behind the method is to divide the whole structure in two parts: a
master structure and auxiliary substructures, as illustrated in Fig. 1. The effects of
substructures are introduced as forces and moments acting at the contact points.
These forces and moments are related to a deformation vector at the contact point
by a frequency dependent complex matrix. This matrix is the compliance matrix
which describes the dynamic characteristics of the substructure at the contact point.
For point coupling, the compliancebi

km is defined as

bi
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whereFi
k is the component of the load vector applied at point “i” in direction “k”
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andDi
m is the component of the induced deformation vector at point “i” in direction

“m”. Using a variational approach, the effects of substructures may be introduced
by their related energy termEi

cp which can be written as
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whereN is the number of degrees of freedom at the contact point “i”. Using Eq.
(1) yields
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Whereh is the inverse of compliance matrix. This procedure can be repeated for
all contact points and the total energy related to the substructures can be written as
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whereNP is the number of contact points.
In this article, the method is assessed by investigating the dynamics of a system

composed of a beam to which a number of substructures are attached as illustrated
in Fig. 2. Two flexible supports at points c1 and c2 are used to define the supporting

Fig. 2. A uniform beam with general boundary conditions, coupled with an arbitrary substructure.
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conditions of the beam. Using a coordinate system located at the middle point of
the beam, the displacement field of the beam can be represented by a sinusoidal
decomposition as:

w5O`
n51

[a1n(t)sin(npx/L)1a2n(t)cos(npx/L)] (5)

u5O`
n51

[b1n(t)sin(npx/L)1b2n(t)cos(npx/L)] (6)

where w and u are respectively the transversal (Y axis) and longitudinal (X axis)
displacements andL, the length of the beam.

Using thin beam theory with small deformations, decoupled displacement fields
can be used for flexural and longitudinal vibrations. The kinetic energyEc of the
master structure and its potential energyEp are

Ec51/2rS E
L/2

2L/2

(u̇21ẇ2) dx (7)

Ep51/2ES E
L/2
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(∂u/∂x)2dx11/2EI E
L/2

2L/2

[∂2w/∂x2]2dx (8)

wherer, E, S and I are respectively the mass density, the Young’s modulus, the
cross sectional area and the moment of inertia of the beam. Stretching energyEs,
of the springs at positionsx=c1, c2 is

Es =[1/2kw1w2+1/2ku1u2+1/2km1[∂w/∂x]2]x=c1

+[1/2kw2w2+1/2ku2u2+1/2km2[∂w/∂x]2]x=c2

(9)

wherekw1 andkw2 are the translational stiffnesses of supporting springs at pointsc1

and c2 respectively, andkm1 andkm2, the corresponding rotational stiffnesses.
The workEf done by external forces and moments and the energyEcp related to

the substructures at the contact points can be written as

Ef5FFww1Fuu1MS∂w
∂xDGx=d

(10)

Ecp5
1
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(11)

whereFu and Fw, are longitudinal and transversal forces respectively, andM is the
flexural moment.

The Lagrangian of the system is defined as

L5Ec2(Ep2Es)1Ef1Ecp (12)
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After minimizing the Lagrangian of the system with respect to coefficients in Eqs.
(5) and (6), the forced vibration of the system may be obtained by solving the follow-
ing system of equations

[M]{ Ä} 1[K]{ A} 5{ F} (13)

where [M] and [K] are mass and stiffness matrices respectively. {F} is the force
vector and {A} is the unknown vector of coefficients used in the displacement
decomposition. Note that the dynamic effects of a substructure is considered through
its frequency dependent, compliance components which have been introduced into
the stiffness matrix. Hence the stiffness matrixK is a frequency dependent com-
plex matrix.

The theoretical formulation developed above is quite general. Each matrix should
be calculated depending on the coupling nature and substructure type. Details for
each particular configuration are given hereafter.

3. Applications

In all examples treated hereafter, a steel beam is used as the main structure with
a modulus of elasticityE=2.0E11 N/m2 and a mass densityr=7800 kg/m3 . The
beam is 60 cm long and its cross section isA=15×3 mm2. A unit transversal harmonic
force excitation is applied to the beam atx=9 cm and the transversal response of
the structure is calculated at the same point. In all cases, a damping factor of 1% is
introduced into the model by using a complex Young’s Modulus. The main structure
was modelled semi-analytically using a series expansion with sufficient terms to
ensure a convergent solution, In the results presented hereafter, the number of terms
varies according to the configuration and the frequency range.

3.1. Dynamic absorber as a substructure

As a first example, a dynamic absorber spring-mass-damper system is attached to
the simply supported beam at pointx=9 cm. The mass (md=21.16 g) and the stiffness
(kd=10 000.0 N/m) of the dynamic absorber are chosen in such a way that its com-
pliance is in the same order of magnitude as that of the beam at the contact point
to ensure an effective coupling with the beam. The damper has a damping factor of
x=1%. This, simple substructure can be analytically solved to obtain the compliance
term at the contact point, as follows:

b5
SSwn

w D2

−1D2

+4x2Swn

w D2

kdSSwn

w D2

+4x2−1D−2kd

xw

wn

i

(14)

wherewn is the natural frequency of the damper andi the imaginary number.
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The displacement of the beam is shown in Fig. 3, as a function of frequency. It
can be seen that all resonant frequencies originally higher than the fundamental fre-
quency of the spring-mass system increased and those originally lower than this
frequency decreased. This result agrees with the conclusions of Dowell [7] on general
properties of combined dynamical systems. In addition, the absorbing effect of the
dynamic absorber on the beam at its natural frequency is quite noticeable.

3.2. Single beam as a substructure

The method was also validated using a substructure involving more complex
modal behavior. Fig. 4 shows a system composed of two perpendicular beams,
clamped at one end and coupled together at the other end. The horizontal beam has
the same characteristics as the one described previously and it is considered as the
main structure. The vertical beam, defined as the auxiliary structure, has similar cross
sectional area and material properties, and it has a lengthLs=2/3L. The effects of the
vertical beam may be introduced by its three compliance components. Its longitudinal
motion affects the flexural vibration of the master beam while its flexural vibration
affects the longitudinal and flexural behavior. In this case, the relationship between

Fig. 3. Response of a simply supported beam coupled with a dynamic absorber ——— beam without
spring-mass system – – – natural frequency of spring-mass system – · – response of coupled system.
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Fig. 4. Coupling between two perpendicular beams.

the generalized forces (two forces and one moment in this case) and the generalized
displacements (two translations and one rotation) can be expressed by a com-
pliance matrix:

5
wp

up

qp653
bp

11 bp
12 bp

13

bp
21 bp

22 bp
23

bp
31 bp

32 bp
33
45

f p
w

f p
u

mp65[bp]5
f p

w

f p
u

mp6 (15)

In the above expression, the termsbp
ij of the compliance matrix are defined by Eq.

(1) and f p
w, f p

u and mp are, respectively, the transversal and longitudinal forces and
moment about the axis normal to the plane formed by the beams. The flexural and
longitudinal displacements at the contact point are notedwp andup while the rotation
normal to the plane is notedqp.

Assuming decoupling between longitudinal and bending vibrations, the com-
pliance termsbp

12, bp
21, bp

23 and bp
32 are equal to zero. In addition, the compliance

matrix is symmetric due to the reciprocity principle of linear components [17].
Hence, only three components of the compliance matrix must be determined.
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For the supporting beam, no analytical solution is available. Therefore, different
compliance components are calculated semi-analytically using the same method pre-
viously explained for the horizontal beam. Using, respectively, the appropriate exci-
tation, the two components related to the flexural motion of the beam are calculated
using the series decomposition (5); whilst the one related to the longitudinal motion
is calculated using Eq. (6).

Fig. 5 shows the response of this coupled system. The results are compared to
the finite element method using linear beam elements (33 elements per unit length
of the beam). One can observe that both methods give very similar results. Validation
of the present method with a vertical beam is rather representative since the vertical
beam exhibits relatively complex dynamic behavior with six natural modes included
in the frequency band of interest.

3.3. Systems with repeated substructures

Periodical structures or systems with repeated substructures form an important
family of vibrating systems. Such a system was investigated to illustrate the
efficiency of the present method for handling this kind of situation. The previous

Fig. 5. Vibrational response of an L-shape beam. ——— the present approach – – – Finite Element
method.
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example of two perpendicular beams was extended by adding a number of supporting
beams as shown in Fig. 6. All supporting beams have the same dimensions and
mechanical properties of the beams previously described, are clamped at one end
and are connected to a horizontal cantilevered beam at the other end.

Fig. 7 compares the vibrational responses of three different systems. The first is
a single horizontal cantilevered beam without any connected substructure; the second
and the third responses represent the cantilever beam response supported respectively
by one and four vertical beams. In all cases, the supporting beams are equally distrib-
uted along the horizontal beam starting from the right end. It can be seen from Fig.
7 that the presence of the supporting beams increases the stiffness of the system so
that all natural frequencies of the horizontal beam are shifted towards higher fre-
quencies. This frequency increase becomes more obvious when the number of sup-
porting beams is increased. In addition, the presence of supporting beams introduces
additional peaks. These peaks should correspond to the motion controlled by the
supporting beams near their own resonances [15]. It can also be observed that the
four supporting beams significantly attenuate the vibrational level at low frequencies
due to the stiffening effect. However, this effect becomes less obvious at higher
frequencies when the wave length is comparable or smaller than the span between
the two supporting beams. The case of four supporting beams has also been compared
to Finite Element simulations, and similar results were obtained.

It is generally admitted that the modal density in a coupled system increases with
the number of substructures. For any method that uses modal superposition, the
computing time and memory requirements is significantly increased. For example,
in the case of two perpendicular beams, there exists 21 modes of vibration (including
the vibrational modes normal to the plane of the frame) up to 1000 Hz. The number

Fig. 6. An example of a coupled system with repeated substructures.
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Fig. 7. Beam with periodical substructures: ——— Beam without any substructures. – – – two perpen-
dicular beam. – · – beam to which are attached 4 vertical beams.

of modes reaches 28 and 44 for the case of two and four vertical beams respectively.
This increase in modal density, in most methods, is more time consuming, because
of additional data preparation procedures, and it imposes further calculations. Using
the present method. there is no need to recalculate the compliance components when
the number of identical substructures increases. Hence the necessary time and mem-
ory does not increase significantly.

Fig. 8 illustrates the processing time required for dynamic analysis when the num-
ber of vertical beams in Fig. 6 is increased. The analysis was made using a HP735
unix station and the processing time of a horizontal cantilevered beam without any
substructure was used as a time reference. The analysis was performed up to 1000
Hz. When four substructures are included, there is less than 30% increase in pro-
cessing time with respect to a simple cantilevered beam; with 10 substructures, the
increase is only 80%. These results show the excellent efficiency of the method to
solve systems with periodic substructures.
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Fig. 8. Percentage of time increasing vs the number of substructures.

4. Sensitivity analysis

In all previous examples, simple substructures were used and their compliance
matrices were analytically calculated. In real applications, however, complex sub-
structures have no analytical solution so that either numerical or experimental
approaches should be used to derive their compliance characteristics. In such cases,
errors in the compliance estimations are unavoidable. In this section, a sensitivity
analysis is performed in order to investigate the effects of different error types on
the present method. Three types of errors may exist. The first one is an amplitude
error. It may result from an inaccurate estimation of the compliance. The second
one is a phase difference error which may be more closely related to the damping
estimation of the system. The third one is a frequency shift in the measured data.
This is the kind of error often encountered in experimental tests, since devices (such
as accelerometers or exciters) added to the structure tend to interfere with the system
so that resonant frequencies may shift [18]. In the following examples, these errors
will be artificially introduced to study their effects on the vibrational response of the
whole structure. The L-shaped beam configuration is again used.

Fig. 9 shows the effect of amplitude error on the response of the L-shaped beam.
Amplitude errors are artificially introduced to compliance components by multiplying
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Fig. 9. Effect of compliance amplitude error on overall response of two coupled perpendicular
beams. ——— Response without any error – · – Amplitude coefficient of 4.0.

their amplitude values by a factor four in linear scale, corresponding to a deviation
of about 6 dB in logarithmic scale. It can be seen that the increase in compliance
amplitude systematically changes the response of the structure at all frequencies. In
fact, when increasing the compliance amplitude, the substructure becomes more flex-
ible and hence shifts all resonant frequencies towards lower frequencies.

The effects of phase errors on the same coupled system are shown in Fig. 10.
Results for a phase difference of 20 degrees in the compliance are compared with
those of the coupled system, without any phase error. Results show that a phase
difference error has noticeable effects on the system response only in the vicinity
of the structure resonances. This is understandable since the phase angle of the com-
pliance is more likely to be related to the damping characteristics of the substructures.
This observation is quite beneficial for the application of the method, since it permits
a less harsh tolerance for the phase measurement of compliances. In fact, it is well
known that the phase angle is quite difficult to be accurately measured experimen-
tally.

Fig. 11 shows the influence of a frequency shift in compliance components over
the structural response of the L-shaped beam. A shift of 25 Hz towards low fre-
quencies is introduced in the compliance curve. Two results with and without fre-
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Fig. 10. Effect of compliance phase angle error on overall response of two coupled perpendicular
beams. ——— Response without any error – – – 20 degrees of error in phase difference of compliance
components.

quency shift are first compared in Fig. 11. It can be observed that the response
curve is also systematically shifted toward low frequencies. In addition to that, the
perturbation is not uniform and rather frequency dependent. In order to better under-
stand this, the response of the horizontal beam with clamped-clamped boundary con-
ditions is plotted in the same figure. As can one observe, the response is more sensi-
tive to the frequency shift in frequency ranges where the substructure significantly
changes the behavior of the main structure. For other frequencies, the effect of the
frequency shift errors seems to be reasonably limited for the present configuration.

Similar sensitivity analysis has equally been performed for other types of substruc-
tures. The observations seem to be consistent with the above analyzes.

5. Conclusion

Vibrations of point-coupled structures are investigated in the present paper. The
method is particularly suitable to analyze the effects of structural modifications:
adding one or more elements to the system does not require to recalculate or measure
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Fig. 11. Effect of frequency shift in compliance data ——— Response without any error – – – with a
frequency shift of 25 Hz – · – Response of a clamped-clamped beam.

previous elements of the system. It has also been shown that the method is quite
powerful to treat periodical structures without sensitively increasing computing time
and storage space. Since the compliance of substructures can be obtained in different
ways, the proposed formulation can be classified as a hybrid method. A sensitivity
analysis was also conducted to define the tolerances for the compliance measurement.
It was shown that among three types of errors that may be encountered in practice,
amplitude errors are the most important errors to be controlled, since they will affect
the system response at all frequencies. Errors related to the frequency shift have
more considerable effects in frequency ranges where the dynamic behavior of sub-
structures are strongly involved. Finally, the structural response is not quite sensitive
to phase difference errors except at the resonant frequencies of the system.
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