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A general formulation is presented to study the modal characteristics and the vibrational
response of a cylindrical shell with a floor partition. The model is based on a variational
formulation in which the structural coupling is simulated using artificial spring systems. In
order to show the accuracy of the approach, numerical results are carried out with special
attention paid to the characterization of the shell–floor connection. Natural frequencies and
mode shapes are determined. Results are compared with previous publications and also
with the finite element method. The effects of individual artificial springs and the in-plane
motion of the floor on the modal characteristics are discussed. Finally, the forced response
analysis is performed to illustrate the physical phenomena due to the shell–floor coupling.
The obtained results show the efficiency of the method in handling a wide spectrum of
structural coupling.
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1. INTRODUCTION

Cylindrical shell structures have been widely investigated by researchers as a basic model
to simulate aircraft structures. From the very early work to the recently published papers
on the issue, one attains a good understanding of the fundamental phenomena of the
cylindrical structures in terms of the dynamic behavior or the noise transmission
characteristics [1–6]. Compared to the cylindrical shell, the partitioned shell with a
longitudinal floor seems to be a more realistic model. Due to the mechanical coupling
between the floor and the shell, the dynamic behavior of the combined structure becomes
relatively complicated. Consequently, much less information is available in the literature.
From the sound proofing point of view, the full understanding of the coupling behavior
of the system is crucial for further cabin noise analysis. Hence, flexible dynamic models
which can be extended for vibro-acoustic analysis should be developed.

Several papers are available for studying the free vibration of a partitioned shell. The
first analytical model developed was reported by Peterson and Boyd [7], who used the
Rayleigh–Ritz technique to study the free vibration of a cylindrical shell with an internal
floor. In that paper, the effects of several parameters such as rigid or hinged joint, thickness
of the structure and the position of the floor on the frequencies and the mode shapes were
analyzed. More recently, Langley [8] studied the free vibration of a simply supported
stiffened cylindrical structure by using a dynamic stiffness technique. In his study, three
structural elements were used to model a cylindrical shell with an internal floor. Irie et al.
[9] studied the free vibration of non-circular cylindrical shells with longitudinal partitions.
Using the transfer matrix, their method could be applied to shells with any circumferential
profiles with simply supported boundaries. In addition to analytical approaches, the finite
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element method (FEM) has also been used to study this kind of problem. Unruh and
Dobosz [10] presented a structure model using the finite elment method to extract
structural modes at low frequencies. Despite the fact that the FEM usually needs large
and fast computational facilities, it offers a powerful method with which to treat complex
structures. In the category of plate–shell structure, Huang and Soedel [11] studied the
structural response of circular plates combined to a cylindrical shell at any axial position
by using the receptance method. The receptance formulation has been proved to be efficient
and simple to use under several circumstances, specially for the case of point coupling or
line coupling with symmetric geometry for which a spatial distribution assumption of the
force can, a priori, be made. However, the receptance method becomes difficult to exploit
for a shell partitioned by a longitudinal floor, since no information on the force
distribution along the joint is a priori available.

Apart from those investigations specifically related to plate–shell combined structures,
considerable efforts have been made to develop more physical approaches with wider fields
of applications. It is evident that for such combined structures, there is no other alternative
than to develop approximate solutions. The actual trend is to use a physical base as much
as possible before a numerical approach is engaged. In this line of thought, let us mention
the newly developed artificial spring approach, with regard to which the present paper
introduces further developments. Spring systems were first used in the literature to study
the support conditions of a single structure by authors such as Gorman [12], Warburton
and Edney [13] and Mizusawa [14]. Then, one found the utilization of the spring set-up
for more complicated structures such as the coaxial double shell. Yamada et al. [15] used
springs to study the free vibration of two coaxial circular cylindrical shells; the
semi-analytical approach was based on the transfer matrix. In his work, the springs are
included in the mathematical model by the equilibrium equations at the interconnected
regions. Recently, the spring set-up was used in a different way to characterize a
mechanically coupled structure [16–18]. By allowing a wide variation range of spring
stiffness, different joint conditions can be simulated with the artificial spring technique.
Yuan and Dickinson [16,17] investigated free vibrations of straight and curved beam
components and varieties of coupled plates. Cheng and Nicolas [18] studied a coupled
system comprising a cylindrical shell closed at one end by a circular plate. By including
the potential energy of the spring and using Hamilton’s principle, it was pointed out that
the established framework opened a door to further forced vibration analysis and
eventually vibro-acoustic analysis [19]. However, up to now, the technique has only been
used for simple structures. Even for the work reported in reference [18], which is the most
complicted case treated with the method, only flexural coupling is considered.

The present work can be considered as a development of the artificial spring technique
for a more complicated structure. For the case of a cylindrical shell coupled to an internal
floor, the objective is to investigate the following issues:

(1) To develop a formulation on the free and forced vibrations of a floor-partitioned
shell, which can be eventually extended to include internal acoustic effects. The approach
is therefore extended to treat a complex structure in which the mechanical coupling is a
three-dimensional one.

(2) To assess the feasibility and the efficiency of the approach with a closer look at the
characterization of the coupling continuity at the junctions.

(3) To analyze different joint conditions ranging from free, through elastic to rigid
connections and, among other parameters, to illustrate the sensitivity of the structure to
the variation of the joint conditions.

It is hoped that the developed approach gives more physical insight than the purely
numerical one and offers a greater flexibility for the design process. The paper first presents
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the development of the analytical approach. Then numerical results are presented to show
the accuracy, convergence and utility of the proposed formulation. Comparisons are made
with existing results and the finite element method. Finally, the response of the structure
with a radial point driving force is analyzed.

2. ANALYTICAL APPROACH

The classical Rayleigh–Ritz method is a powerful approach to the free vibration analysis
of structures. It is well known that the trial functions should verify at least the geometrical
boundary conditions (related to the translation and rotation) to ensure good results [21].
For combined structures, the so-called geometrical boundary conditions include the
continuity of each sub-system at the junctions. This consideration makes the choice of the
trial function very difficult. The use of an artificial spring system at a junction permits one
to overcome this difficulty. As shown schematically in Figure 1, a virtual set of a distributed
spring system is introduced at the structural junction for every permitted degree of
freedom. Physically, by allowing the spring stiffness to become very high compared to the
stiffness of the components, rigid connections are approximated. Moreover, by using an
appropriate stiffness of the spring, an elastic junction can also be simulated.
Mathematically, the use of artificial springs at the junctions replaces the geometric
conditions (continuity of the motion) by corresponding dynamic conditions (strain energy
of the springs). As a result, the choice of the trial functions is simplified, since the latter
have only to verify the geometrical boundary conditions at the non-connected regions.
Thus, the classical method can then be used by considering the spring system as a dynamic
element.

2.1.   

The structure considered in the analysis consists of a thin finite circular cylindrical shell
with a longitudinal floor partition. The co-ordinate system used is shown in Figure 2(a)
(a list of symbols is given in Appendix B). The boundary conditions of the shell–floor
structure are considered simply supported at the two ends (x=0,x=Ls ); more specifically,
for the shell, the boundary conditions are considered to be supported by a shear diaphragm
[20] and the floor is simply supported. Considering an harmonic motion, the displacement
functions of the shell in longitudinal (us ), circumferential (vs ) and radial (ws ) directions are
decomposed on the basis of the natural modes of the corresponding single shell:

8us

vs

ws9=s
1

a=0

s
a

m=1

s
a

ns=0

ca
mns

(t) 8amnscos(nsu−a(p/2))cos(mpx/Ls)
bmns sin(nsu−a(p/2))sin(mpx/Ls)
1cos(nsu−a(p/2))sin(mpx/Ls) 9, (1)

where a=0 (or 1) denotes symmetric (or antisymmetric) modes, and (amns ,bmns ,1) is the
normal eigenvector of the shell with a shear diaphragm condtion. The arbitrary constant

Figure 1. A schematic representation of the modelling of the coupling
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Figure 2. (a) A partitioned shell. (b) The artificial spring set-up.

ca
mns

is the coefficient to be determined by considering the shell–floor structure. For the
floor, the displacement functions including the in-plane degree of freedom are expressed
as

8uf

vf

wf9=s
1

a=0

s
a

m=1

s
a

nf=08u
a
mnf

(t)cos((nfp/b)y−a(p/2))cos(mpx/Ls )
va

mnf
(t)sin((nfp/b)y−a(p/2))sin(mpx/Ls)

wa
mnf

(t)cos((nfp/b)y−a(p/2))sin(mpx/Ls)9, (2)

where uf and vf represent the in-plane displacements of the floor, and wf is the transverse
one (see Figure 2(a)). In the trial functions used above, trigonometric functions are chosen
for the shell and the floor. The fact that we are using the natural modes of the uncoupled
shell gives a more physical base for the shell portion, since the eventual coupling with the
floor generates coupled modes which can be imagined to be a variant of the single shell.
Moreover, as will be demonstrated later, the trigonometric functions used here separate
not only symmetric and antisymmetric modes but also the terms with a different
longitudinal half-wavenumber m. Consequently, the calculation for the search of the
modes can be carried out for every single value of a and m. It should be pointed out that
the two sets of trial functions verify the geometrical boundary conditions at the boundary
excepting at the junction between the shell and the floor. In equation (1), only
bending modes of the shell are used to reduce the size of matrices. The torsion
and traction–compression modes can be easily added to the decomposition series [18].
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However, it was demonstrated during our analyses that these supplementary terms have
negligible influence on the results presented in the present paper, which are mainly at low
and middle frequencies.

2.2.    

In order to insure structural coupling between the shell and the floor, artificial springs
are inserted between the shell and the floor for every permitted degree of freedom. For
each junction, three translational springs (kx ,ky ,kz ) are introduced along the x,y,z
directions, and for the rotational coupling, a torsion spring is used (kr ). The spring set-up
is schematically illustrated in Figure 2(b). Note that all springs stiffnesses are defined as
uniformly distributed along the junctions. The joint conditions at the interconnected
regions are characterized by means of the strain energy Ek stored in the artificial springs.
This energy is a function of the stiffness and the relative motion (dx ,dy ,dz ,dr ) between the
shell and the floor in each direction:

Ek=
1
2 g

Ls

0 $kx 0d 2
x 0b2,f1+d 2

x 0−b
2
,2p−f11+ky 0d 2

y 0b2,f1+d 2
y 0−b

2
,2p−f11

+kz 0d 2
z 0b2,f1+d 2

z 0−b
2
,2p−f11+kr 0d 2

r 0b2,f1+d 2
r 0−b

2
,2p−f11%dx, (3)

where
dx=uf−us , dy=vf−ws sinf−vscosf,

dz=wf−wscosf+vs sinf, dr=
1wf

1y
−

1
a 01ws

1f
−vs1 (4)

After using equations (1) and (2), one has

Ek=s
a

s
m

(Ek )a
m , (5)

with
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mnsnf awa
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. (6)

In equation (6), n's and n'f are the running indexes having the same meaning as ns and nf .
All the terms involved in equation (6) are calculated as follows:

R1
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2
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The calculations for Sx
mnsn'sa , Sy

mnsn'sa , Sz
mnsn'sa and Sr

mnsn'sa are given in Appendix A. It is worth
observing from equation (5) that, for each pair of a and m, the potential energy can be
evaluated and the total energy is simply the total sum. This observation leads to two
conclusions. First, the symmetric and antisymmetric modes of the shell–floor structure are
not coupled one from another, meaning that a symmetric shell mode can only be coupled
with a symmetric mode of the floor, and the same is true for antisymmetric modes. Second,
the modes with different half-wavenumber are totally independent. This point will be fully
used during the manipulations for reducing the matrix size of the calculations.

2.3.  

The whole system is characterized by using the classical Hamilton’s principle, which
needs the calculations of the kinetic and strain energy of the combined system, as well as
the work done by the external driving forces. The resulting Hamiltonian is then substituted
into Lagrange’s equations to yield the governing equations. With qi as generalized
co-ordinate and L as the Lagrangian, one has

d
dt 01L

1q̇i1−1L
1qi

=Fi i=1,2,3,4, (8)

where Fi represents the generalized force. In our case qi denotes each of the coefficients
in the series described by equations (1) and (2) (ca

mns
,ua

mnf
,va

mnf
,wa

mnf
). By using the point

driving forces acting at an arbitrary location of the cylindrical shell and applying
Lagrange’s equations to the system, one obtains the following coupling equations for the
whole system:
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where vmns is the in vacuo angular frequency of the shell with shear diaphragm conditions
and Mmns is its generalized mass. ku

mnf n'f a , kv
mnf n'f a , kw

mnf n'f a and Kf are given in Appendix A. The
expressions for bnf n'f a and gnf n'f a are also given in Appendix A. Fa

mns
is given by

Fa
mns

=s
Nf

i=18F
i
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Fi
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w9
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[bmns+(nshs /2a)]sin(nsusi−a(p/2))sin(mpxsi/Ls)

cos(nsusi−a(p/2))sin(mpxsi/Ls) 9. (10)

In the above equation Nf harmonic forces with three components (Fi
u ,Fi

v ,Fi
w ) along three

axes are applied at arbitrary points (xsi ,usi ). By equating the forcing vector in equation (9)
to zero, the eigenvalues and the eigenvectors can be computed and the mode shapes can
then be reconstructed from equations (1) and (2). As for the forced vibration response,
the average quadratic radial velocities of the shell, �V2

s �, and the floor, �V2
f �, are

calculated by

�V2
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mn'f , (12)

where c*a
mns and w*a

mn'f are, respectively, the complex conjugates of ca
mns

and wa
mn'f .

3. DISCUSSION OF THE COMPUTATIONAL RESULTS

In all calculations reported hereafter, the shell and the floor are assumed to have the
same thickness and the same material properties. The data used are as follows: mass
density r=7500kg/m3; Poisson’s ratio, n=0·3; Young modulus, E=2×1011N/m2; radius,
a=0·254m; thickness, hf=hs=5·08×10−3m, length, Ls=1·27m. The floor position is
specified with f=115°.

The limitation of the infinite series to a finite number of terms is a computational
restriction. The general criterion for truncating the series is to assure the accuracy in the
resulting solutions. In order to warrant this, the series is increased until no significant
variations are considered. During the calculation, a careful convergence study has been
carried out for both substructures (shell and floor separately) and the combined structure.
As far as the floor is concerned, tests were made to verify the convergence and the accuracy
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with a general boundary condition; the result shows a good agreement with the data
available in the literature. As to the combined structure, the decomposition terms are
increased until the resulting natural frequencies converge to stable values. Note that the
calculations can be done for each pair of a and m, so that the truncation has only to be
done for circumferential orders. In the present simulation ten circumferential terms for the
shell and 20 terms for the floor including the in-plane motion (n*s =10, n*w =10, n*u =n*v =5)
are taken for the modal analysis. The truncation used for the forced response is specified
in each case.

One of the most attracting features of the established model relies on its capability to
simulate a wide range of variations of the coupling conditions, going from free to rigid
attachments. It is therefore important to evaluate the lowest value to be attributed to the
spring in order to insure a rigid attachment simulation. Moreover, such an analysis allows
one to understand how the changes of the junction stiffness may affect the coupling of the
combined structure. The variation of the frequency parameter V versus a normalized
stiffness parameter k� (k� x ,k� y ,k� z ,k� r ) for the first six symmetric modes is illustrated in Figure 3.
The so-called frequency parameter is defined as V=av[r(1−n2)/E]1/2. The normalized
stiffness parameters are defined with respect to the flexural rigidity of the floor
(k� x=kxa3/Df ,k� y=kya3/Df ,k� z=kza3/Df and k� r=kra/Df ; Df=Eh3

f /12(1−n2)). In this calcu-
lation, the stiffness parameters for all the springs are changed in a systematic way. The
starting value is 10−4 and the final value is reached when no significant variation in the
frequency parameter is observed. Also, the calculated mode shapes with several stiffness
parameters are plotted in Figure 4. It can be seen from Figure 3 that when the stiffness
parameter is increased, the frequency increases at different rates depending on the vibration
mode. Generally speaking, one can notice the existence of three regions. Taking the sixth
mode as an example, the three regions are denoted by A, B and C. In region A, we notice
that the frequency is not significantly sensitive to the stiffness variation. With k� =10−4,
Figure 4(a) shows that it is essentially the shell motion that governs the mode. It means
physically that the stiffness of the springs at the junctions is not strong enough to connect
efficiently the shell with the floor, consequently, each substructure vibrates in its own way.
Region B can be considered as a transition, in which the frequency increases in a sensitive
manner with the increase of the spring stiffness parameter. With k� =103, an observation
of the mode shape in Figure 4(b) illustrates that the generated mode is a coupled one
involving motion of the shell and the floor. The last region observed is C,

Figure 3. The frequency parameter as functions of the stiffness parameter.
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Figure 4. Typical mode shapes in the three regions for the sixth symmetric mode. (a) k� =10−4, V=0·138; (b)
k� =103, V=0·176; (c) k� =106, V=0·184; (d) k� =109, V=0·184.

in which the frequency seems to be stable with the increase of the stiffness. This is
understandable, since the stiffness at the junction is already high enough with respect to
the stiffness of the system so that a rigid attachment is reached. With two stiffness values
in region C (k� =106 and k� =109). It is demonstrated in Figure 4(c) and 4(d) that there are
no significant changes in mode shapes. In both cases, the continuity between the shell and
the floor seems to be assured. When comparing the different curves in Figure 3, one notices
a shift of the region C towards higher values of the stiffness parameters when the mode
order increases. This can be explained by the fact that the higher order modes have higher
stiffnesses so that more stiff springs are needed to realize a rigid attachment. In the
calculations, an appropriate value which is high enough for all considered modes can
therefore be used to characterize a rigid attachment. The same investigation is done for
the antisymmetric modes, giving essentially the same behavior of the frequency parameter
as function of the stiffness parameter.

For rigid attachment modelling, numerical calculations are carried out to examine the
continuity between the shell and the floor with the appropriate stiffness value determined
previously. For this purpose, the relative translational motion in the yz cross-section
between the shell and the floor (dy ,dz ), which has been already defined in equation (4), is
normalized with respect to the maximum displacement of each mode. In the same way,
the relative rotation (dr ) between the shell and the floor is normalized with respect to the
rotation angle at the junction. All of these values are zero if a rigid attachment is faithfully
simulated. The result is shown for the first ten symmetric modes and the first ten
antisymmetric modes, in Table 1. It can be seen that all the values reported in the table
are really small, indicating that the relative motion becomes negligible with respect to the
real motion of the structure. In such a way, one can obtain confidence in the computational
accuracy of the present approach to characterize structural coupling.

In order to validate the developed model in a more general way, comparisons between
the present analysis and other available results in the literature are made. Moreover, a
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T 1

The normalized relative motion between the shell and the floor at the junction: S, symmetric
modes; A, antisymmetric modes

Mode d� y d� z d� r

1S 1·01×10−8 3·03×10−8 6·64×10−10

2S 9·44×10−8 5·42×10−9 3·29×10−10

3S 2·67×10−8 2·12×10−9 7·06×10−10

4S 5·19×10−8 5·27×10−10 2·04×10−10

5S 3·48×10−8 3·88×10−7 7·22×10−10

6S 6·29×10−7 4·95×10−8 3·37×10−10

7S 8·17×10−7 4·49×10−7 1·40×10−9

8S 7·81×10−7 2·47×10−7 1·58×10−9

9S 1·98×10−6 1·27×10−8 2·65×10−10

10S 1·54×10−7 5·62×10−8 4·37×10−10

1A 5·21×10−8 6·28×10−8 5·97×10−11

2A 8·72×10−8 6·70×10−8 2·91×10−10

3A 1·31×10−7 1·65×10−7 8·71×10−10

4A 4·19×10−7 1·28×10−8 6·40×10−10

5A 5·26×10−7 7·41×10−8 1·00×10−9

6A 2·10×10−7 1·53×10−8 7·08×10−10

7A 3·79×10−7 2·39×10−8 7·14×10−10

8A 3·27×10−7 3·37×10−7 2·35×10−10

9A 2·27×10−7 9·35×10−7 1·32×10−9

10A 7·22×10−8 1·10×10−7 6·45×10−10

Finite Element Analysis (FEA) using I-DEAS [22] is also performed to provide a base of
comparison. The results are summarised in Table 2, in which the frequency parameters
for the first eight modes with one half longitudinal wave (m=1) are included. In each case,
the results of the present analysis are compared to the data taken from reference [7,8] and
the FEA simulation. The finite element results are taken as reference to calculate the
percentage error (a dash in Table 2 indicates non-available data). As to the finite element
simulation, quadrilateral shell elements are used for the shell and the floor. A 46×30 (in
the circumferential and longitudinal directions) mesh is used for the shell and a 12×30
(in the transverse and the longitudinal edge directions) mesh for the floor. It can be seen
in Table 2 that there is good agreement between our approach, Langley’s work and the
finite element method for all modes considered. In fact, the three methods give results that
agree well within 2·6%. However, one can notice a clear deviation of the results obtained

T 2

A comparison of the frequency parameters

Peterson Langley Present work
I-DEAS, ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

Mode V V Error (%) V Error (%) V Error (%)

1S 0·0326 0·0367 11·17 0·0321 1·55 0·0334 2·39
2S 0·0716 0·0693 3·30 0·0713 0·42 0·0715 0·14
3S 0·0965 0·0939 2·77 0·0949 1·68 0·0958 0·73
4S 0·1180 0·1170 0·85 0·1160 1·72 0·1150 2·60
1A 0·0610 0·0625 2·40 — — 0·0606 0·66
2A 0·0785 0·0828 5·20 — — 0·0805 2·48
3A 0·1040 0·1030 0·97 — — 0·1050 0·95
4A — 0·1330 — — — 0·1330 —
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Figure 5. The mode shapes of the partitioned shell.

by Peterson [7], particularly for the fundamental mode. This is due to an error committed
in the compatibility equations in his work, which has been equally pointed out and
criticized by Langley [8]. The corresponding mode shapes for the same modes are plotted
in Figure 5. They are essentially the same as those obtained by Peterson and the finite
element method. A more detailed examination of Figure 5 results in a general idea of the
kinds of modes that one can encounter for a combined structure, an analysis of which is
certainly helpful to the understanding of the coupling phenomena. By examining the mode
shapes of the partitioned shell, one can see that the lowest frequency corresponds to a mode
which is basically governed by a floor motion. In this case the shell introduces a certain
stiffness to the floor, so that the parameter frequency is between a clamped plate and a
simply supported one along longitudinal edges. The shell domination appears in the third
mode, in which one notices a slight deformation of the floor and a strong motion of the
shell. The resulting mode should be qualified as a shell-controlled one. The second mode,
however, is a strongly coupled one, in which the two components vibrate at a comparable
level. Similar observations have been made in a previous work [18] for a plate-ended shell,
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and the physical explanations reported in that paper apply also to the present analysis.
Basically, different types of modes for a combined structure depend mainly on the degree
of impedance matching between each uncoupled substructure.

This section discusses the effect of distributed springs in a specified direction on the
frequencies and mode shapes of the partitioned shell. As shown previously, each mode
involves a different kind of coupling. Naturally, the dependence of the modes on the
distributed spring should also be different. For illustrating purpose, two modes of different
nature are chosen. The procedure is to fix three stiffness parameters at a high value,
simulating a rigid attachment in the corresponding directions and allowing a range of
variation for the fourth one. This procedure is applied to the fundamental mode and the
third mode. During the analysis, it was found that longitudinal springs k� x had a negligible
effect on these two modes; consequently, no curves are presented here for k� x . As can be
seen from Figure 6 for the fundamental mode, the effect of the vertical structural coupling
k� z is more obvious than the rotational k� r and the horizontal k� y . The parameter frequency
seems insensitive to the variation of the horizontal stiffness. To illustrate the effect of each
spring on the mode shapes of the combined system for each direction, in Figure 7 are
shown the mode shapes formed by using three points taken from Figure 6 corresponding
to 10−4, 101 and 109, simulating three connections. The evolution of the deformation
illustrates the same dependence of the modes shapes on the coupling stiffness as the
frequency parameters. More specifically, one notices a neglected influence of the horizontal
coupling (Figure 7(a)), a more noticeable effect of the rotational one (Figure 7(c)) and a
strong dominance of the vertical (Figure 7(b)) one. The same procedure is followed to
analyze the third mode, which is a coupled one. In Figures 8 and 9 it is shown that it is
the horizontal stiffness that is the most important one among the three others. The results
seem to indicate that the direction in which there is the strongest impedance mismatch calls
for a dominant effect of the stiffness in that direction.

The following results discuss the effect of the in-plane motion of the floor on the
frequencies of the combined system. In the developed formulation, both flexural and
in-plane motion of the floor has been considered. However, it is logical to suppose that
the in-plane stiffness of the floor should be much greater than that of the flexion, which
may provide further simplifications for the calculations. In order to investigate this case,
both symmetric and antisymmetric modes are analyzed. In Figure 10(a) the frequency

Figure 6. The frequency variation of the fundamental mode as function of the stiffness parameter. ———, k� z ;
— — —, k� r; — · — · —, k� y .
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Figure 7. The effect of the spring parameters on the fundamental mode shape. From left to right: (a) k� y=10−4,
k� y=101, k� y=109; (b) k� z=10−4, k� z=101, k� z=109; (c) k� r=10−4, k� r=101, k� r=109.

parameters for the first ten symmetric modes with and without the in-plane motion of the
floor are compared (in Figure 10(a), TB means ‘‘only transversal bending’’ and IPM means
‘‘including in-plane motion’’). It can be seen that neglecting the in-plane motion of the
floor introduces no visible change in the frequency for all the considered modes. Hence,
the in-plane parameters of the floor can be neglected in the calculations of symmetric
modes as a good approximation. The same investigations are carried out for the
antisymmetric modes, and results are presented in Figure 10(b). It is clear that the in-plane
motion of the floor has, in this case, significant effects on the natural frequency. In fact,
the inclusion of the in-plane motion brings down considerably the natural frequency of
the combined structure. This is understandable, since neglecting the in-plane motion of the
floor implies fixing the floor in the horizontal direction, so that the floor acts as a rigid
support in the horizontal direction of the shell. As a result, the natural frequency of the
structure is increased. It should be stressed that, physically, the so-called in-plane motion
of the floor along the horizontal direction has two meanings: first, it implies a rigid body
motion for all points lying in the same horizontal line; second, it includes the membrane
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deformation (extension–compression). For the antisymmetric modes, the rigid body
motion may be important. This analysis is confirmed in Figure 10(c) in which only the
rigid body in-plane motion (RIPM) of the floor is kept while eliminating the membrane
effect. It can be seen that considering only the rigid part of the in-plane motion of the floor
gives satisfactory results with respect to the full coupling analysis. From these results we
arrive at the following conclusions: for the lower order modes, the in-plane effect can be
neglected for the symmetric modes. However, the in-plane effect is important for
antisymmetric modes; this even for the low order modes. In this case, the main effect comes
from the rigid body motion of the floor, behaving itself as a local mass. The membrane
motion, in its turn, is a negligible factor. From the point of view of numerical calculations,
this observation suggests that the truncation of the series for the in-plane displacement
should include at least the rigid body motion of the floor in the horizontal direction. By
doing this, a limited number of terms in the uf and vf decomposition series should be
sufficient to obtain good results for a low frequency range.

The following calculations study the structural response under a point excitation. The
procedure consists of comparing, first, the vibration levels of the shell with and without
the floor; second, the floor behavior is compared to the shell when the system is structurally
coupled. These simulations show the effects of the floor on the structural response. The
dynamic load is an unit harmonic radial force applied at the external surface of the shell
at the point (xsi=Ls /5, usi=20°). The average quadratic velocity is calculated by only
considering the radial component for the shell and the transverse component for the floor
in certain cases. The material properties and the geometry are the same as the ones used
previously, while the maximum terms used in equations (1) and (2) are truncated to
m*=10, n*s =n*w =20, n*u =n*v =5, for a good convergence. The structural damping factor
of each subsystem has been set to be 0·01. The average quadratic velocity is expressed in
dB, referenced to a quadratic velocity 5×10−9m2/s2. The vibration levels of the shell with
and without the floor partition are compared in Figure 11. It can be seen that, compared
to the single shell, the inclusion of the floor into the model does not basically change the
general trend of the overall vibration level of the shell. However, a detailed examination
of the two curves shows that the floor has a visible effect on the shell response. More
specifically, due to the coupling introduced by the floor, resonance peaks are shifted.
Moreover, additional resonance dominated by the floor motion can be clearly

Figure 8. The frequency variation of the third mode as function of the stiffness parameter. ———, k� y ;
– – – –, k� z ; — · — · —, k� r .
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Figure 9. The effect of the spring parameters on the third mode shape. From the left to right: (a) k� y=10−4,
k� y=101, k� y=109; (b) k� z=10−4, k� z=101, k� z=109; (c) k� r=10−4, k� r=101, k� r=109.

identified. The local response can be considerably disturbed by the floor. The vibrational
response of the combined structure, in which the vibration level of the shell is compared
to that of the floor, is illustrated in Figure 12. It can be seen that at the low and the middle
frequencies (Q1000Hz), the vibration levels for both substructures are of the same order
of magnitude, indicating that the structural coupling between substructures is strong.
However, at high frequencies, the shell which is directly excited is more active than the
floor. Combining the two figures, the following observations can be made. First, from the
point of view of dynamic analysis, if one is only interested in the shell vibration of a
shell–floor combination, such as the one modelled in this paper, the single-shell model
seems to be sufficient roughly to estimate the overall vibration level unless better precision
is needed. This justifies the common practice of using a single shell as a primary model
to predict dynamic properties of an airplane fuselage reported in numerous papers.
However, from the point of view of noise prediction in the cabin, the fact that the floor
can vibrate as strongly as the shell at low and middle frequency ranges indicates that the
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Figure 10. The effect of the in-plane motion of the floor on structural modes. (a) Symmetric modes; (b) and
(c) antisymmetric modes. Q, TB only transversal bending; q, TB and IPM transversal bending and in-plane
motion; <, TB and RIPM transversal bending and rigid in-plane motion.

floor could be an important component to be modelled at the same time as the fuselage,
since the floor may also be a strong sound radiator.

6. CONCLUSIONS

The concept of artificial spring systems is applied to the analysis of a complex structure
comprising a cylindrical shell and an internal longitudinal floor partition. The formulation
is based on the variational principle. With the use of an artificial spring system, the
characterization of the coupling conditions between the shell and the floor becomes
systematic, providing various possibilities for analyzing the different connections. Efforts
have been made to assess the feasibility and the efficiency of the method, as well as to reveal
some physical phenomena of the system. The main conclusions of the investigations are
summarized as follows.

(1) The comparison with other available approaches shows that, with the proper
assignation of the spring stiffness, the formulation allows an accurate simulation of the
rigid attachment. In addition to a wide range of variation of modelling of the coupling,
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Figure 11. The average quadratic velocity of the shell. ———, Single shell; – – – –, shell with a floor partition.

the rigid attachments can be simulated reasonably well with high values of spring
stiffnesses.

(2) Different stiffness values used at the floor–shell connection generally affect the
natural frequency and the mode shapes of the combined structure. Although each mode
involves different coupling mechanisms, it is observed that when the spring stiffness
increases, the resulting mode undergoes generally three regions: for a very weak stiffness,
the system behaves mainly as two separate structures; for the intermediate region, coupling
between the substructures becomes more obvious, with a rapid increase of the natural
frequencies with the stiffness; and the third region corresponds to a rigid attachment,
characterized by a relatively stable value of the natural frequency, in which a further
increase of the spring stiffness does not noticeably change the natural frequency.

Figure 12. The average quadratic velocity of the combined structure, ———, Shell; – – – –, floor.
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(3) As far as the effect of the spring stiffness in different directions is concerned, the mode
is most sensitive to changes of the spring stiffnesses in the direction in which the impedance
mismatch is most strong between the shell and the floor.

(4) The in-plane motion of the floor seems to be negligible for lower order modes, except
for antisymmetric ones. In the later case, the rigid body motion along the horizontal
direction should be considered in the calculation.

(5) In the low and middle frequency range (where the structure exhibited strong modal
behavior), the floor is strongly coupled to the shell with a comparable vibration level. With
increase of frequency, the coupling becomes weaker.

Finally, one of the appealing featrues of the method lies in its capability to handle
vibro-acoustic analysis when an acoustic medium is included in the model. The topic is
particularly important for soundproofing in an airplane cabin. The next step of our
research will focus on this issue.
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APPENDIX A: TERMS IN EQUATIONS (7)
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APPENDIX B: NOMENCLAUTRE

a shell radius
b floor width
d� y ,d� z ,d� r normalized relative motion in the horizontal, the vertical and the

rotational attachment respectively
Df =Eh3

f /[12(1−n2)]
E Young modulus
Fi

u longitudinal component of the ith driving force
Fi

v tangential component of the ith driving force
Fi

w radial component of the ith driving force
hs shell wall thickness
hf floor thickness
k� (k� x ,k� y ,k� z ,k� r ) normalized spring stiffness parameter
kr rotational spring stiffness
kx longitudinal spring stiffness
ky horizontal spring stiffness
kz vertical spring stiffness
Kf =Ehf /(1−n2), membrane stiffness
Ls shell length
m longitudinal half-wavenumber
m* highest value in the longitudinal series
ns circumferential mode number
n*s the highest circumferential term in the series
nf terms in the floor series
n*u , n*v , n*w the highest value of nf taken for uf ,vf and wf , respectively
uf , vf , wf floor displacements, as illustrated in Figure 2(a)
us , vs , ws axial, tangential and radial displacement of the shell
u,u cylindrical co-ordinates
r structural material density
n Poisson ratio
v angular frequency
V av[r(1−v2)/E]1/2 frequency parameter
f floor angle
a symmetric or antisymmetric mode index
ens 1, if ns=0; 2, if nsq0

Subscripts

f floor
s shell


