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Abstract. The dynamic simulation of robotic or mechanical systems with closed kinematic chains
using the virtual spring approach is presented in this paper. This approach uses virtual springs and
dampers to include the kinematic constraints thereby avoiding the solution of differential-algebraic
equations. A special advantage of this approach is that it leads to a completely decoupled dynamic
model which is ideal for real-time dynamic simulation using multi-processor computers. Examples
illustrating the approach are given and include the four-bar mechanism with both rigid and flexible
links as well as the six-degree-of-freedom Gough—Stewart platform. Simulation results are given
for these mechanisms. The results achieve a good agreement with the results obtained from other
conventional approaches.
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1. Introduction

The simulation of robotic manipulators and mechanisms is a very important is-
sue. It can find several applications, for instance, the design of complex systems,
virtual environments for operator training, predictive displays for time-delayed
teleoperation and the development of advanced robot-control schemes. Numerous
researchers have addressed the problem of simulating serial robotic manipulators,
see for instance, [1-3, 12, 15, 18, 21, 27] and many other references. By con-
trast, the simulation of robotic system with closed kinematic chains has received
much less attention [5-7, 9]. Dynamic simulation is usually performed in two
steps: (1) generation of the dynamic model and (2) solution of the model. The
generation of the dynamic models of rigid or flexible manipulators with closed
kinematic chains using the principle of virtual work for the computation of the
inverse dynamics is thought to be more efficient [22, 26] than using other multibody
formulations. However, when used for the solution of the forward dynamics — or
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dynamic simulation — the solution of the models generated by this approach is not
sufficient because there are dependent generalized coordinates in the equations.

Since the dynamic equations of robot manipulators are highly nonlinear and
coupled, the analytical solution of such equations is thought to be impossible.
Hence, numerical approaches have to be used. Moreover, the forward dynamic
solution or dynamic simulation of closed-loop robot manipulators is more diffi-
cult than that of serial robot manipulators since the closed-loop constraints cause
the dependent coordinates to appear in the dynamic equations and the system is
underdetermined. Usually, in order to obtain a determined system, additional equa-
tions are obtained by differentiating the constraints. However, the solution of the
set of dynamic equations is still not sufficient, because the kinematic constraints
in displacements and velocities must be met at the same time. There exist three
main methods to include the kinematic constraints of complex robotic mechanisms,
namely, (1) the differential-algebraic approach [11], (2) the closed-form kinematic
solution approach [14], and (3) the family of formulations referred to as ‘force cou-
pling’ [20]. However, most of these approaches will lead to complex formulations
which are coupled and therefore cannot be directly used for the development of par-
allel algorithms for real-time dynamic simulation using multi-processors. Indeed,
formulations based on DAE and on closed-form solutions consist in assembling
a global system of equations in which all degrees of freedom are coupled while
formulations based on Lagrange multipliers also require the solution of a global
linear system in order to solve for the forces in the constraining joints [13].

In this paper, the generation of the dynamic models of manipulators with closed
kinematic chains using virtual springs is revisited. The basic idea of this approach
has been used in vibration analysis and in the modeling of constrained mechanical
systems [8, 10, 16, 19, 20]. However, it seems that it has not been realized so far that
this approach can be used to generate a completely decoupled dynamic model of
complex robotic systems with closed kinematic chains and, furthermore, to develop
high level parallel algorithms for real-time simulation of these robotic systems.
Here, the virtual spring approach is based on the combination of a Lagrangian
formulation and virtual springs. It leads to a set of dynamic equations which can
be directly used for two purposes, namely, inverse and forward dynamic analysis.
When used for inverse dynamic analysis, it leads to the same set of equations of
motion as the one obtained using the Lagrange multiplier approach or the principle
of virtual work. When used for the simulation or forward dynamic analysis, the
dynamic equations obtained from this approach are completely decoupled and
automatically include the kinematic constraints. It is ideal for the development
of parallel simulation algorithms of robotic manipulators for real-time simulation,
which is addressed in detail in other papers [25].
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Figure 1. Geometric representation of the four-bar linkage.

2. Generation of Dynamic Models of Closed-Loop Manipulators

The formulation of dynamic models derived from the principle of virtual work
or virtual power can be found in [22, 26] and [17]. In this section, the virtual
spring approach used to derive the equations of motion of closed-loop manipu-
lators is presented. The set of dynamic equations obtained by this approach are
convenient for both purposes: inverse and forward dynamic analysis. In order to
illustrate the approach, the derivation of the dynamic equations of a rigid-link four-
bar mechanism is first presented and then this approach is applied to the generation
of the dynamic model of a spatial six-degree-of-freedom parallel manipulator with
prismatic actuators (Gough—Stewart platform).

2.1. DYNAMIC MODEL OF A RIGID-LINK FOUR-BAR MECHANISM USING THE
VIRTUAL SPRING APPROACH

The four-bar mechanism is represented in Figure 1. It consists of three movable
links. The links of length [, [, and /5 are respectively the input link, the coupler
link and the output link and their orientation is described respectively by angles 6,
o and ¢. The mass of the moving link with length /; is m; and the moment of inertia
of the moving link about the axis through the center of mass and perpendicular to
the x; — y; plane with respect to the moving frame is [;, where i = 1, 2, 3.

A fixed coordinate frame is attached to the base with its origin at the center
of the revolute joint connecting the input link to the base. The coordinates of the
center point of the revolute joint connecting the output link to the base are (xg, yo).
A local moving reference frame x;—y; (i = 1, 2, 3) is attached to each moving link
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Figure 2. Geometric representation of the equivalent four-bar mechanism.

with its origin located at the center of the revolute joints O, A and O’ respectively,
as represented in Figure 1.

As mentioned in the introduction, the use of virtual springs to deal with the
constraints has first been employed for the study of vibrating systems and con-
strained mechanical systems. Virtual springs and dampers have also been used for
the simulation of serial robots in order to lump link and joint flexibilities [28].
Here, it is proposed to use this approach for the modeling of manipulators or other
articulated mechanical systems with closed kinematic loops. The basic idea of this
approach is to cut open the closed chains and use virtual springs and dampers to
connect the ends of the two links at the open joints. For example, as represented
in Figure 2 for the four-bar mechanism, the passive revolute joint at point B is
cut open and a spring is used to connect the two links. This operation results in
an increase of the degree of freedom of the mechanism. Hence, there are no more
dependent variables or generalized coordinates involved in the derivation of the
equations of motion of the mechanism. The equations of motion can be derived
using a Lagrangian formulation or other mechanics principles by including the
elastic potential energy of the spring. When solving the equations of motion, the
stiffness of the spring is set to be very large. Theoretically, when the value of the
spring stiffness becomes infinitely large, it is equivalent to the ends of the two
links being connected by a revolute joint. Therefore the closed-loop constraint is
automatically included in the equations of motion.

Cutting the revolute joint B and connecting the coupler link and the output
link with a virtual spring of stiffness &, as represented in Figure 2, one can then
use a Lagrangian formulation to derive the dynamic equations of the equivalent
mechanism.



SIMULATION OF ROBOTIC SYSTEMS WITH CLOSED KINEMATIC CHAINS 149
The position vector of the center of mass of each link can be expressed as

ra =Qir;, ro=Qipi+Qurz, rs3=po +Qsr3, (D

where Q; (i = 1, 2, 3) is the orientation matrix of the ith link with respect to the
base coordinate frame, i.e.,

cosf —sinf cos —sin
R

sinf  cosf sind  cos«

Qs = [cos¢ —sin¢] )

sing  cos¢

and ry, r; and rj3 are respectively the position vectors from points O, A and O’ to
the center of mass of the input, coupler and output links

o[22 o-[2)

while vectors p; and po’ are given as
pi=[0 4], Po =[x ol “4)

Differentiating Equation (1) with respect to time, one then obtains the velocities of
the center of mass of each link as follows

o= —rlsineé P —llsin9'9.—r2sinoed
7| pcosO8 |7 T2 T | 1cosOO +rcosad |’

. —r3sin¢45
3 = |:r3cos¢45 ] )

The kinetic energy and gravitational potential energy for the three moving links
can now be written as

T—l o l19’2—11 262 6
1= 2m1(l‘,;11'c1)+2 1 —2( | +myry)o°, (6)

L. .,
I, = Emz(l‘czrcz) + 51206

1 by 1 e n .
= imglle —{—E(lz—i-mzrz)a + mylirycos(0 — o) 6 a, (7)
I DU | 0o
T3 = Z(f;3F3) + s h¢" = (I3 + m3ry)¢”, (8)
2 2 2
V1 = mlg(rcl -j):mlgrl sin@, (9)
Vo = myg(re - j) = moyg(lysinf + rysina), (10)

Vi = m3g(rez-j) = m3g(yo + r3sing), (11)
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where j = [0 1] is the unit vector along the y axis of the base coordinate frame
(direction of the gravity field).
The elastic potential energy stored in the virtual spring is expressed as

1
V, = 5k||A||2, (12)

where A is the displacement vector of the virtual spring, i.e.,

A= Ay | | licosO +Ilcosa —I3cos¢ — xg (13)
LAy | Lisin®+Lsina —[3sing —yp |

Therefore, the Lagrangian function can then be obtained as

3
L=) (T =V) -V (14)
i=1

By the Lagrange formulation, one finally obtains the dynamic equations for the
mechanism

Mq +c(q, q) =f, (15)

where ( is the vector of generalized coordinates, ¢(q, q) is the vector containing
the so-called centrifugal, Coriolis and gravity terms and f is the vector of elastic
forces and actuator forces, i.e.,

q=1[0 a ¢]", (16)

1+ myrf 4+ mol? moliry cos(0 — o) 0
M = | malirycos(d — ) L + myr3 0 } : (17)

L 0 0 I + msry
mmalir sin(@ — ) @ + (migry + mogly) cos 6

c = —malyry sin(@ — ) 6% + mygry cos a , (18)
| ms3grs Cos @
T+ 1sinf(kAy) — [ cosO(kA,)

f = Lysina(kAy) — Il cosa(kAy) j| , (19)
L —l3sing(kAy) +13co8p(kAy)

where 7 is the actuating torque exerted on the input link.

By setting the value of spring stiffness k to be very large, for instance, 10°,
Equation (15) can be used for the simulation or forward dynamic solution of the
mechanism. The physical meaning of k is evident, when k is infinity large it is
equivalent to a revolute joint connecting the two links. However, when k is too
large, the computational efficiency will be abated. In the following numerical ex-
ample, the choice of the value of k for a specified mechanism will be further
discussed. It can be seen that Equation (15) consists of a set of ordinary differ-
ential equations and the closed-loop constraints are automatically included in the
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equations. The solution of a set of ordinary differential equations should be easier
than the solution of differential-algebraic equations.

It can be noticed from Equations (15-19) that the terms kA, and kA, actually
represent the two components of the vector of the internal forces at joint B and
appear to be linear in these equations. Eliminating the two components of internal
force, one obtains another form of dynamic equation of this mechanism, which can
be used for the computation of the inverse dynamic of the mechanism, i.e.,

T = (I +mr? + mal?) 6 + malyry cos(0 — ) é
+ maliry sin(@ — ) @ + (migry + magly) cos 0
— 1y sinf fp, — 11 cosO fpy, (20)
where
fex = [maralilz cos ¢ cos(6 — o) 6 4 I3(Ir + myr3) cos ¢ &
+ L(I; + m3r32) cos o d) + morylql3 cos ¢ sin(a — 6) 62
+ magrals cos ¢ cos o] /[ 1ol sin(er — @)1,
foy = [lsmalirycos(@ — &) sing 6 + I3(I, + mar3) sin &
+ (I3 + m3r32) sin o ¢> + morpli L3 sin(o — 0) sin ¢ 62
+ mygrols sin ¢ cos o + m3grsly sin o cos ¢]/[1213 sin(a — ¢)].

Equation (20) is identical to the equation which is obtained if the dynamic
model of the four-bar linkage is derived using the principle of virtual work [26].
However, since the accelerations of the links do not need to be computed, the
procedure of the derivation given here is simpler and is easy to extend to any
multi-degree-of-freedom closed-loop mechanical system.

Another important observation should be made from Equation (17). Indeed, it is
noted that the mass matrix is block diagonal, which directly leads to parallelization.
It is pointed out that, although the terms kA, and kA, represent the constraint
forces — which could, for instance, be obtained through Lagrange multipliers —
a formulation based on Lagrange multipliers will not lead to such a decoupling
since the solution of a global linear system will be required in order to compute
the Lagrange multipliers. This decoupling property is the main advantage of the
virtual spring method.

In the following subsection, a brief outline of the derivation of the dynamic
model of a spatial six-degree-of-freedom manipulator (Gough—Stewart platform)
will be presented.
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(b) Schematic representation

Figure 3. Spatial six-degree-of-freedom parallel manipulator with prismatic actuators
(Gough-Stewart platform).

2.2. DYNAMIC MODEL OF A SPATIAL SIX-DEGREE-OF-FREEDOM PARALLEL
MANIPULATOR WITH PRISMATIC ACTUATORS

The spatial six-degree-of-freedom manipulator is represented in Figure 3. It con-
sists of a fixed base and a moving platform connected by six extensible legs. Each
extensible leg consists of two links and the two links are connected by a prismatic
joint. The moving platform is connected to the legs by spherical joints while the
lower end of the extensible legs is connected to the base through Hooke joints. By
varying the length of the extensible legs, the moving platform can be positioned
and oriented arbitrarily with respect to the base of the manipulator.
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The base coordinate frame, designated as the Oxyz frame is attached to the base
of the platform with its Z axis pointing vertically upward. Similarly, the moving
coordinate frame O’x’y’z’ is attached to the moving platform. The orientation of
the moving frame with respect to the fixed frame is described by the rotation matrix
Q. The center of the ith Hooke joint is noted O; while the center of the ith spherical
joint is noted P;.

If the coordinates of point P; in the moving reference frame are noted (a;, b;, ¢;)
and if the coordinates of point O; in the fixed frame are noted (x;,, Yio, Zio), then

one has

Xi a; X
pi:|:yii|, P§=|:bi:|, fori =1,...,6, PZ[yi|’ 2D
Zi Ci Z

where p; is the position vector of point P; expressed in the fixed coordinate frame —
and whose coordinates are defined as (x;, y;, z;) — p; is the position vector of point
P; expressed in the moving coordinate frame, and p is the position vector of point
O’ expressed in the fixed frame. One can then write

p=p+Qp;,, i=1,...,6, (22)

where Q is the rotation matrix corresponding to the orientation of the platform of
the manipulator with respect to the base coordinate frame. This rotation matrix can
be written, for instance, as a function of three Euler angles. With the Euler angle
convention used in the present work, this matrix is written as

SpCoCy + CpSy  —SpCoSy + CoCyr  SpSe (23)

CpCoCyy — SpSyr  —CpCoSy — SpCyr  CppSo
| ]
—S89Cy SoSy Co

where s, denotes the sine of angle x while ¢, denotes the cosine of angle x.

The geometric configuration of the ith leg can be represented by spherical
coordinate variables, namely, p;, o; and f;, as represented in Figure 4, where p;
corresponds to the displacement of the ith actuator and p; is the vector from O; to
P;. Therefore, the configuration of the manipulator can be completely determined
by the 24 coordinate variables: x, y, z, ¢, 0, ¢, o;, B; and p; withi = 1,...,6.
These variables are the generalized coordinates of the manipulator and are denoted
as

q=[x y z ¢ 0 ¥ p a1 B ... po o Pl ; (24)
¢ can be rewritten in another form as

T

q=1I[q, q ... q¢l", (25)
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Figure 4. Vector p; in spherical coordinates.

where q,, and q; respectively correspond to the coordinates of the moving platform
and the ith leg, namely

by
y
Pi
qP: (Zb > ql:{al}a i:1””’6' (26)
0 Bi
L ¢ _

In the following, the dynamic model of the manipulator will be derived in terms of
these variables.

Similarly, in order to use the virtual spring approach one first needs to open the
closed kinematic loops and use a spring to connect them. For example, for the ith
leg the spherical joint connecting the leg to the platform is broken and a virtual
spring with stiffness k; (i = 1, ..., 6) is used to replace the joint and connect the
leg and the platform, as represented in Figure 5. Therefore six virtual springs are
applied for the manipulator. Although five springs would be sufficient to open all
closed kinematic loops, six springs are used in order to preserve the symmetry of
the problem.

The first step of the derivation of the dynamic model is to compute the kinetic
energy and potential energy of all links and the elastic potential energy of the
virtual springs.

The kinetic energy and potential energy of each link can be respectively ex-
pressed as

1 T 1
T, = Emp(cpcp)—kz(wplpwp)
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e,

Figure 5. The virtual spring connecting the ith leg to the platform.

= ap(qp) i’ + bp(qp) 5}2 + Cp(qp) 22
+dy(q,) §° + €p(q,) 07 + g,p(ap) ¥

+ hp(@p)P 6 +ny(@p)d ¥+ 1,(q,)0 ¥, 27)
T, = %miz(éiTléiz) + %(w,-TlIﬂwﬂ)
= ay(q;) 6} + bu(qi) & + ci(qi) B+ dir(qi) i &
+ e (qi) i & + gua)ey B, i=1,....6, (28)
T, = %miu(éi],;éiu) + %(wl?;liuwiu)
= (45} + biu (@)} + i (@) B + diu () it
+ e Q) fi6 + g (@), i=1,....6, (29)

Vp = mpg(cp k) = mpg up(qp), (30)
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Vii = mug(ey -K) =myguy(q), i=1,...,6, 3D
Vi = miug(ciu . k) =mi,8 uiu(qi)’ i = 1, ceey 6, (32)

where T, T;; and T;, are respectively the Kinetic energy of the platform, the first
link and the second link of the ith leg while V,, V;; and V;, are their potential
energy. Expressions of the type x(q,) and y(q;) denote that the coefficients x and
y are respectively functions of the generalized coordinates q, and ;. Vectors ¢,
and w, are respectively the position vector of the center of mass and the vector of
angular velocity of the link x. Finally, Kk is a unit vector along the direction of z
axis (direction of the gravity field).
The elastic potential energy stored in the ith virtual spring can be written as

1 ;
Vie = SkillAill® = u,(ap, 4, i =1,....6, (33)
where A; is the vector of the displacement corresponding to ith virtual spring
Aix
Ai:pip_pil:|:Aiyi|, i=1,...,6 (34)
Aiz
and
pip = p+Qp;, i=1,...,6, (35)
pi =To+p;, i=1...,6, (36)

where r; and p; are defined in Figure 5.
The Lagrangian function for the six-degree-of-freedom manipulator can there-
fore be obtained as

6 6
L=T,+ Y (Tu+Tw) = [Vy+ D (Vi + Viu+ Vis)l. (37)
i=1 i=1
Finally, by the application of the Lagrange formulation, one can obtain the dynamic
equations of the manipulator as

Mg + g(q, q) =f(q, 1), (38)

where M is a 24 x 24 inertia matrix, g(q, q) contains the nonlinear terms, f(q, )
contains the spring and actuator forces and q is the vector of generalized coordi-
nates defined in Equation (24), i.e.,

"M, -
M,

(39)
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Numerical problems may occur when using springs to include the kinematic
constraints. Since the stiffness of the ith virtual spring k; has to be very large, the
damping problem will become more evident with the increase of k;, and hence the
velocity constraint may not be met very well. In order to eliminate the underdamp-
ing effect, internal damping forces are added to Equation (38). This term is related
to the generalized velocities and displacements and can be expressed as

— 6 . T 4Ai -
Zi:l biAi (daT)
6 AT A
. Zi:l biAi (89?
d(q,q) = : ; (40)
6 AT A,‘
L Zi:l biAi (03? .
where b; (i = 1, ..., 6) is the damping coefficient of the ith virtual spring and A,-

denotes the time derivative of the assumed displacement vector of ith virtual spring
A;.
Therefore, Equation (38) should be rewritten as

Mq + g(q, q) +d(q, q) =f(q, 7). (41)

The solution of the forward dynamics consists in solving the following linear
system for q

Mq = f(q,t) — b, 42)
where
b =g(q,q) +d(q. q). (43)

Moreover, it can be noticed from Equation (39) that the inertia matrix is a block
diagonal matrix, which implies that the solution of the forward dynamics can
be implemented separately by different processors. For instance, eight processors
can be used in this case and will result in much faster solution, which is a pre-
requisite for real-time simulation. Therefore, the dynamic models derived using the
virtual spring approach are ideal for real-time dynamic simulation using parallel
computers.

When applied to the computation of the inverse dynamics of the manipulator,
Equations (38) can be reduced to a system with six equations by eliminating the
internal action forces: k; Ay, ki A;, and k;A;; (i = 1,...,6). Solving the linear
system for t;, one finally obtains the formulations of inverse dynamics for the
manipulator.

3. Simulation of Mechanical Systems with Closed Kinematic Chains

The solution of the forward dynamics of closed-loop mechanical systems with
closed kinematic chains is much more difficult than that of open chain mechanical
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systems. Because of the kinematic constraint problem, the solution of a set of
ordinary differential dynamic equations is not sufficient, the constraints have to
be included. As mentioned above, there exist several main approaches to deal with
the kinematic constraint problems, namely, differential-algebraic (DAE) approach
[20], closed-form kinematic solution approach and the virtual spring approach
[20, 24, 25] (also called force coupling approach [20]). The differential-algebraic
approach and closed-form kinematic solution approach might be more efficient
than the virtual spring approach for the simulation of simple and small systems.
However, they cannot lead to a completely decoupled formulation. By contrast, as
presented above, the dynamic equations derived using the virtual spring approach
can be completely decoupled, namely, the mass matrices are block diagonal, which
allows one to develop real-time simulation algorithms using multi-processors at a
high level.

In this section, the simulation of three types of mechanisms with closed kine-
matic loops is implemented using the formulations derived from the virtual spring
approach. The simulation of the four-bar mechanisms with both rigid and flexible
links is firstly presented and the results are compared with the results obtained
from other approaches. Then, the simulation of the Gough—Stewart platform using
parallel algorithms is performed. It can be noticed that the modeling and simulation
of complex robotic systems with closed kinematic chains using the virtual spring
approach leads to a parallel algorithm and will be easily to be implemented in
multi-processor computer systems.

3.1. SIMULATION OF A RIGID-LINK FOUR-BAR MECHANISM

In this subsection, the simulation of a rigid-link four-bar mechanism is performed
using the three approaches mentioned above and the results obtained are then
compared.

It is assumed that the link parameters of the mechanism are given as

L=1 5L=4 1§=25,
m=1, r=0L/2 (=1,23),
x0o=3, y=0, g=9.5%,
where the lengths are given in meters and the masses in kilograms.

The moment of inertia can be computed using I; = (ml-liz) /12( =1,2,3)and
an actuating torque T = 6 is exerted on the input link, with initial conditions

6=mn/2, a=0353281, ¢ =1.26486,
6=0, =0 ¢=0,

where the angles are in radians.
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Figure 6. The position error with respect to the different value of k.

3.1.1. Simulation Using the Virtual Spring Approach

Letting k = 10% in Equation (15) and using a MAPLE’s ODE solver: the fourth-
fifth order Runge—Kutta method with default values for the relative and absolute
error tolerances, one obtains the forward dynamic solution of the rigid-link four-
bar mechanism during the first two seconds, as represented in Figure 7. It is pointed
out here that the choice of the numerical value of the stiffness k will have a signifi-
cant effect on the accuracy and the computational speed. Theoretically, the largest
possible value of k should lead to the best results. However, a too large value of k
will result in not only the reduction of the computational speed but also probable
ill-conditioning of the dynamic equations. A way to choose the value of £ is to plot
the curve of the position error of the mechanism in terms of different values of k
at a specified time. For instance, at + = 0.1 second, one can compute the position
errot, e, using different values of k as

e=/A2+ A2, (44)

where A, and A, are defined in Equation (15). The error curve is shown in Fig-
ure 6. It can be seen that the error significantly decreases with the increasing of
the spring stiffness. When log(k) = 6, namely, k = 10°, the value of e is around
107, which means that the position constraint can be met very well.

Actually, the example presented here also shows that when k = 10° the re-
sults are in good agreement with those obtained using other approaches and the
computational speed is ideal in comparison with other approaches.
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(a) Angular displacements 6, o and ¢ (rad) (b) Angular velocities 6, and ¢ (rad/s)

Figure 7. The angular displacement and velocity of the three links of the rigid-link four-bar
mechanism.

3.1.2. Comparison of the Results

Using the DAE approach and the closed-form kinematic solution approach for
the rigid-link four-bar mechanism leads to almost identical results. Moreover, the
difference between the results obtained with the virtual spring approach and those
obtained from the other two approaches is very small, as evidenced by the error
plots shown in Figure 8.

3.2. SIMULATION OF A FOUR-BAR MECHANISM WITH A FLEXIBLE LINK
3.2.1. Simulation Using the Virtual Spring Approach

(I) Derivation of the dynamic model
In this section, the simulation of a four-bar mechanism with a flexible coupler
link using the virtual spring approach is performed and then the results obtained
are compared with those obtained from the approach using the converted ordinary
differential equations (ODE).

The virtual spring approach is particularly advantageous in the presence of flex-
ible links. In fact, when using the classical Rayleigh—Ritz method, the admissible
functions should satisfy the continuity between each of the adjacent links, which
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Figure 8. The error curves of the displacement and velocity of the three links of the rigid-link
four-bar mechanism.

Figure 9. Geometric representation of the four-bar mechanism with a flexible coupler link.
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is a very difficult task. The use of virtual springs removes this restriction, and
therefore any functions close to these flexural motion of the links (for example
polynomial) can be used and ensure good convergence of the results.

The flexible mechanism studied here is represented in Figure 9. The coupler link
is considered to be flexible. For simplicity, the virtual link coordinate system [3] or
the pinned-pinned boundary condition [4] is chosen (Figure 9) and the Rayleigh—
Ritz method is used to discretize the flexible deformation v;:

. [Tx . (2mx
Uy = (71 SIN <l_2) + {22 S ( 2) s (45)

1 12

where ¢, and ¢,, are two generalized flexible coordinates.
The position vector of an arbitrary point on the flexible link can be written as

P2 = Qil; + Qareo, (46)

where Q;, (i = 1, 2) has been previously defined, and

11:[2], rez=|:iz:|. (47)

Assuming that the flexible link is a thin long bar, its kinetic energy can be expressed
as

1 (o T
T, = 5/ P2A2(PLPe2) dxa, (48)
0

where p, is the density of the link and A is its area of section.
The elastic and gravitational potential energy of the link can be written as

1 d2v2
Uy = — | E2L | —= | dx», 49
2 2/ 22(dx§> X2 (49)
0
I
Vo, = fpzAzg(Pez'j) dxs, (50)

0

where E; 1, is the bending stiffness of the flexible link.

The kinetic energy and potential energy of the other two moving links as well
as the elastic potential energy of the virtual spring are as previously defined for the
rigid-link mechanism.

Finally, one can obtain the Lagrangian function

3
L= (T =V) - U~V (51)
i=1
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Using the Lagrange formulation, the dynamic equations of the mechanism can
then be derived. A system consisting of five ordinary differential equations in five
generalized coordinates 6, o, ¢, g1 and gy, is obtained. The expressions are not
given here because of space limitation.

(I) Solution of the dynamic model

It is assumed that all parameters are the same as the ones used in the case of the
rigid-link four-bar mechanism studied above except for the flexible coupler link.
For the coupler link, the parameters are given as

pr = 125 (kg/m?®), A, =0.02 (m?),
E, =2123.56 (N/m?), I, = 1.333417 (m*).

Using MAPLE’s gear solver with default values for the relative and absolute error
tolerances, the forward dynamic solution is obtained. The solution for the displace-
ments and velocities of the three rigid generalized coordinates during the first two
seconds are represented in Figure 10 and the relative deflection of the mid-point of
the flexible coupler link is shown in Figure 11. It can be noticed that the coupler
link undergoes vibration at a dominant frequency which is close to the fundamental
frequency of the pinned-pinned beam.

3.2.2. Comparison of the Results

The difference between the results obtained with the virtual spring approach and
the converted ODE approach are shown in Figure 12. The relative error (in percent)
for the deflection of the middle point of the coupler link obtained with the two
approaches is represented in Figure 13. It can be seen that the maximum error is
about 2%.

3.2.3. Simulation of Gough—Stewart Platform Using the Virtual Spring Approach

In this section, the simulation of a Gough—Stewart platform mechanism with a set
of given parameters is performed. It is assumed that the actuator torques for the six
legs are identical and are represented by the following expressions:

T, =9sin(wt), i=1,...,6

and the initial conditions for the generalized coordinates and velocities are given
as

x=-15 y=01, z=15 ¢=0606=01, v =0,
o1 = 148341, py = 1.53551, p3 = 1.66955, p4 = 1.58501,

ps = 1.54805, pg = 1.58566, o = —0.77853, op, = —1.31585,
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(rad/s)

2

(b) Angular velocities 6, and ¢ (rad/s)

Figure 10. The angular displacement and velocity of the three links of the four-bar mechanism

with the flexible coupler link.

a3 = 1.31585, a4 = 0.77853,
B1 = 1.07521, B, =1.07521,
Bs = 1.07521, B¢ = 1.07521,
=0, y=0, =0, ¢=0,

pi=d;=p=0 i=1,...,6.

as = —2.87293, g = 2.87293,
B3 = 1.07521, B4 = 1.07521,
6=0 =0,

The parameters used in this example are given as

Xo1 = —2.120, y,; = 1.374, x,, = —2.380, y,, = 1.224,

Xo3 = —2.380, y,3=—1.224, x,4=—2.120, y,4 = —1.374,
Xo5 = 0.0, y,5 =—0.15, x,6=0.0, 1y, =0.15,

26i=00 (@(G=1,...,6), a =0.170, b; =0.595,
cg=-04, a;=-06, b,=0.15 ¢, =-04,
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Figure 11. The relative deflection of the mid-point of the coupler link.

a3 =—0.6, b3=-0.15 c¢3=-04, a4 =0.170,
by = —0.595, ¢4 =-04, as=0.430, bs=—0.445,
¢cs=—04, as=0.430, bs=0.445 «c¢=—04,

pimax=4-5a pimin=0-5 (i=1a---a6)a

m[,:1.5, miu:mil:0.1, r,-u:rﬂ:0.5 (121,

r, =01, =diag(, ¢, t/10) (=1,...,6),
I, = diag(u, u, u),

t =0.00625, u =0.08,

165
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Figure 12. The error curves of the displacement and velocity of the three links of the four-bar
mechanism with the flexible coupler link.

where the lengths are given in meters, the masses in kilograms and the inertias in
kilograms meter square.

Using MAPLE’s gear integration solver with default values for the relative and
absolute error tolerances and choosing virtual spring stiffness k; = 5 x 10* and the
damping coefficient b; = 50 one can obtain the displacements and velocities of the
all moving links of the mechanism.

The simulation results for the Cartesian displacements and velocities of the
moving platform during first two seconds are represented in Figure 14. The kine-
matic constraints of displacements and velocities have been met very well, the
errors are around 10~* and 102 respectively. Because of space limitation, the error
plots for the six constraints and the plots for all the other generalized coordinates
and velocities are not presented here.

The simulation of the six-degree-of-freedom manipulator has also been per-
formed using Matlab/Simulink and identical results have been obtained. The model
consists of seven submodels corresponding to the six legs and the moving platform,
therefore, seven processors can be used to run the simulation. For the comparison
of implementation time using single and multi-processors, the simulation of the
model has respectively been performed in one processor and three processors. A 2
second simulation of the model takes about 6 seconds of computing time using one
processor and 0.4 seconds using three processors, namely, the simulation using
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Figure 13. The relative error of the deflection of the mid-point from the results obtained by
the two approaches (in percent).

three processors is almost 15 times faster than using only one processor. This is
because the time spent for function calling and the idle time of the communication
among submodels for the three processors is greatly reduced.

4. Conclusion

The purpose of this paper was to point out the parallel characteristics of the virtual
spring approach for the simulation of robotic mechanisms or mechanical systems
with closed kinematic chains and to illustrate the advantages of this approach in a
context of multi-processor simulation. To demonstrate its feasibility, a simple ex-
ample — the four-bar mechanism — has first been presented. Then, the modeling and
simulation of a well-known parallel mechanism, the Gough—Stewart platform has
been performed. It has been noticed that the virtual spring approach can generate
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Figure 14. The translational displacement and velocity along the x, y and z direction.

completely decoupled dynamic models of robotic systems with closed kinematic
chains and therefore allows the development of parallel algorithms for real-time
simulation using multi-processors. The simulation results obtained with the virtual
spring approach have achieved a good agreement with the results obtained from
other approaches. Besides, the real-time dynamic simulation of a Gough—Stewart
platform has been realized using multi-processors.
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