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In the present paper the structural acoustic coupling characteristics of a cylindrical shell
with an internal #oor partition are analyzed. Due to the existence of the #oor, the cavity
becomes irregular and both the structural and acoustic modes are di$cult to express
analytically. A method using &&Radiation E$ciency Analysis of Structural Modes'' is
proposed. Typical con"gurations ranging from plain shells to shells with #oor partitions are
analyzed and, whenever possible, results are compared with those found in the literature.
This method is shown to be e!ective when irregular-shaped cavities are involved.
Meanwhile, analyses using wavenumber spectrum are also employed as an alternative.
Results show that both methods have their own merit and both are very useful in the
analysis of structural acoustic coupling systems, especially in the case of irregular cavities.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Noise in enclosures induced by the vibration of the bounding structure is a very important issue
in many engineering applications, especially in the "eld of aerospace and automobile
engineering, where the externally excited vibrating walls of vehicles induce a signi"cant internal
sound "eld. This problem is very complex in nature. Due to the fact that the sound contribution
from each structural mode is di!erent, the "rst step towards any successful control is the
identi"cation of the most radiating structural modes by performing coupling analysis.
Constant e!orts have been made by many researchers in the past several decades. Early

in 1963, Lyon [1] studied the noise reduction of rectangular enclosures with one #exible
wall. Then, the e!ect of cavities on the natural frequencies of the #exible plate was
investigated by Dowell and Vass [2]. Pretlove [3, 4] showed that the e!ects of shallow
cavities on the vibration of a plate are not negligible. Dowell et al. [5] proposed a general
theory of structural acoustic coupling systems called acoustoelastic theory which has
become the theoretical foundation for performing structural acoustic coupling analysis.
Using this theory, Yarayanan [6, 7] investigated the sound transmission properties through
0022-460X/02/100903#19 $35.00/0 � 2002 Elsevier Science Ltd.
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a sandwich panel into a rectangular enclosure. More recently, Pan et al. [8] analyzed the
low-frequency acoustic response in a damped rectangular enclosure.
Another category of structures which have been widely investigated is the cylindrical

shells due to the industrial need to reduce the internal noise in airplane cabins. The simplest
model is an in"nite or "nite cylindrical shell [9}11]. Extensive research based on this model
demonstrated that in the low-frequency range, which is characteristic of propeller noise, the
circumferential modal response of the shell is the dominant mechanism of sound
transmission.With further investigation, the e!ects of rings [12], sti!ness [13], double walls
[14] and bulkhead [15, 16] were taken into account in theoretical models. Quite recently,
by considering the spatial correspondence and the frequency proximity between structural
modes and acoustic modes, Henry and Clark [17] investigated the coupling of a curved
panel to the interior acoustic "eld of a rigid-walled cylinder.
The literature review shows that due to the intrinsic complexity of the problem, much of

the past research focuses on systems having regular-shaped enclosures such as a rectangular
box or a plain cylindrical shell. Without doubt, these research works revealed the
fundamental coupling mechanism of structure}#uid systems. However, nearly all the
aforementioned works were based on the use of the so-called modal coupling coe$cient.
De"ned as the integral of the product between a structural mode and an acoustic mode over
the whole contact area, this coe$cient can be easily obtained when both the structural
mode and the acoustic mode can be expressed analytically, which is the case when cavities
are of regular shapes. In systems involving regular-shaped cavities, a structural mode is
shown to be coupled with only a few acoustic modes. Therefore, analysis using the coupling
coe$cient proved to be a very e$cient means to perform coupling analysis. For the systems
having irregular-shaped cavities, however, natural modes cannot be expressed analytically.
Moreover, the selective way in which a structural mode is coupled to acoustic modes is no
longer as selective. Therefore, a mode-to-mode coupling analysis becomes tedious and less
relevant. In this case, a more global method is desirable to facilitate the analysis.
One of the systems which attract our attention since several years is a cylindrical shell

with an internal #oor. This model is used to simulate the sound "eld in the cabin radiated by
an airplane fuselage. With the consideration of the #oor, the enclosure above the #oor is an
irregular shaped one and hence, analytical modal solutions are not available. Despite our
previous work on the free vibration and sound radiation prediction [18}20], still very little
is known about the coupling characteristics for such an irregular cavity. Indeed, further
coupling analysis is needed to provide us with some more meaningful guidelines for the
noise control of the fuselage.
In the present paper, the structural acoustic coupling analysis of a cylindrical shell with
#oor is performed. The existence of the #oor produces two e!ects on the sound "eld: one is
its direct sound radiation, the other is its changing cavity shape from a regular one to an
irregular one. Our previous work [20] has shown that when excitation is applied to the
shell, the sound radiation from the #oor becomes weak because of the small vibration of the
#oor. Therefore, the analysis of the sound radiation from the shell will be emphasized
herein. Since the commonly used coupling coe$cient method is not suitable here, a method
named &&radiation e$ciency analysis of structural modes'' (REASM) is proposed to analyze
the coupling characteristics of the system. In addition, the #oor's e!ect on the dispersion
relationship of the shell is also discussed.
The paper is organized as follows: the vibroacoustic model and the analysis method used

in the current research are outlined in section 1. In section 2, numerical results are presented
and discussed. Firstly, in order to show the e!ectiveness of the proposed method, the
coupling characteristics of a plain cylindrical shell are analyzed and compared with the
results reported in the literature. Secondly, a cylindrical shell with a rigid #oor is discussed.



Figure 1. Structure and co-ordinate of the system.
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Thirdly, the system of a cylindrical shell with a #exural #oor is investigated. Finally, the
#oor's e!ect on the dispersion relationship of the shell structure is studied.

2. THEORETICAL MODEL AND ANALYSIS METHOD

The structure to be considered in the present analysis consists of a thin "nite circular
cylindrical shell with a longitudinal #oor partition as shown in Figure 1. u

�
, v

�
, w

�
are the

longitudinal, tangential, and radial displacement of the shell and u
�
, v

�
, w

�
the displacement

of the #oor in the x, y
�
, z

�
direction respectively. �

�
represents the position of the #oor, � is

the circumferential co-ordinate of the shell and ¸ the length of the shell. Both the shell and
the #oor are assumed to be homogeneous and isotropic. Structural coupling between the
shell and the #oor is ensured using the arti"cial spring system [21] for every permitted
degree of freedom. The sti!ness of all springs is assumed to be uniformly distributed along
the two junctions. The boundary conditions of the shell}#oor structure are considered
simply supported at the two ends. As far as the acoustic boundary condition is concerned,
the shell wall and the #oor are assumed to be #exible while the two end plates are assumed
to be acoustically rigid.
The theoretical model used in the present paper has been described in previous works

[18}20]. The reader is referred to these works for more details. For the sake of clarity and
integration, it is brie#y presented here.

2.1. STRUCTURAL MODEL

The equation of motion of the structure is obtained by "nding the extreme of Hamilton's
function H for the structure over a suitable sub-space of displacement trial functions
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expressed as follows:
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] dt, (1)

where ¹
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�
are, respectively, the kinetic and potential energy related to the shell, ¹

�
,

�
�
are, respectively, the kinetic and potential energy to the #oor, �

�
, E

�
the works done by

the #uid and the external mechanical loading, and E
�
the strain energy stored in the arti"cial

springs introduced at the longitudinal junctions.
The displacement vector of the shell in the longitudinal, circumferential and radial

directions is decomposed as
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where (a
���
, b

���
, 1) is the modal vector of the corresponding simply supported shell with

n
�
and m being, respectively, the circumferential and longitudinal order. �"0 (or 1) means

the symmetric (or antisymmetric) mode and c�
���
is the coe$cient to be determined. � is the

circumferential co-ordinate of the shell, a and ¸ the length and the radius of the shell
respectively.
For the #oor, both bending and in-plane motions are expanded over the trial functions:

�
u
�
v
�
w
�
�" �

�
���

�
�

���

�
�

���� �
u�
���
cos�

n
�
�
b
y!� �

�
2�� cos�

m�x
¸ �

v�
���
sin�

n
�
�
b
y!� �

�
2�� sin�

m�x
¸ �

w�
���
cos�

n
�
�
b
y!� �

�
2�� sin�

m�x
¸ �� e���, (3)

where n
�
and m are, respectively, the transversal and longitudinal order. u�

���
, v�

���
, w�

���
are

the coe$cients to be determined and b is the width of the #oor.
It can be noted that trial functions used in both equations (2) and (3) satisfy the simply

supported boundary conditions of the structures at both ends. In addition, along the
shell}plate junctions, a proper assignment of the sti!ness of arti"cial springs allows one to
simulate a large variety of coupling conditions, ranging from disconnected to rigidly
connected. It applies to both the displacement and the rotation. Details can be found in
reference [18].
Using the expressions of the displacement of the shell and the #oor, the corresponding

energy and work terms in Hamilton's function can be calculated which leads to an
expression in terms of the unknowns c�

���
, u�

���
, v�

���
, w�

���
. The Lagrange equation is then

used to extremalize Hamilton's function and the governing equation of motion for the
coupling system is obtained.
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The matrix form of coupling equations can be summarized as follows:
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in which C, ;, <, = include a series of unknowns related to the shell and the #oor,
respectively (c�

���
, u�

���
, v�

���
, w�

���
); F

�
, F

�
and P

�
, P

�
are the mechanical excitation and the

acoustic loading on the shell and the #oor respectively. Detailed expressions for each term
can be found in reference [20]. The coupling matrix is symmetrical in which each non-zero
term indicates the coupling between two di!erent motions. More speci"cally, the shell's
displacement is coupled to all three #oor components, whilst no coupling occurs between
the transverse motion and the in-plane motion of the #oor.
By removing all terms on the right-hand side, equation (4) can be used to obtain the mode

shapes of the structures. Note that with the unknown frequencies involved in the coupling
matrix, equation (4) provides a standard eigenvalue problem. Once resolved, structural
unknowns are put back into equations (2) and (3), respectively, to calculate the mode
shapes. As we know, the existence of the #oor does not a!ect the longitudinal coupling
characteristics. As far as the coupling in circumferential direction is concerned, signi"cant
changes can be observed compared to the plain shell case.

2.2. ACOUSTIC MODEL

For the irregular-shaped enclosure, the integro-modal approach [19] is used to predict
the internal sound pressure. The integro-modal approach is a method for analyzing the
acoustic properties of irregular cavities, where it is not possible to apply the technique of
separation of variables. An irregular-shaped enclosure is handled as a multi-connected
cavity system, with either regular or slightly irregular sub-volumes. A virtual membrane
separates each pair of adjacent sub-cavities. An integral formulation ensures global
continuity of the pressure between adjacent sub-cavities by assigning a zero-mass and
zero-sti!ness to the membrane. The cavity is discretized into N sub-cavities of both regular
and irregular shapes. The modal characteristics of regular sub-cavities are analytically
available for performing sound pressure decomposition. For irregular sub-cavities, the
modes of the bounding sub-cavities (called envelope) which are chosen to be of regular
shape are used to perform the pressure decomposition and to obtain the Green function. In
the present case, the acoustic enclosure is divided into a semi-circular sub-cavity and an
irregular lower part bounded by a rectangular envelope. If the mode shapes are denoted by
��
�
, the sound pressure inside each sub-cavity is calculated as follows:

p�"�c��
�N

a
�N
(t)

�M
�N

��
��
(r), 1)k)N, (5)

where c is the speed of the sound and � the #uid density. nN the modal indices of the cavity
and a

�N
(t) the modal pressure amplitude to be determined, �M

��
"(1/<)��

���
�

(��n� )�dv� is the

generalized acoustic mass of mode order n� . Assuming that there is no absorbent boundary
condition and that the interior noise is due to arbitrary vibrating surfaces with structural
modal co-ordinates q

�
(t) (which is the whole set of the structural unknowns c�

���
, u�

���
, v�

���
,

w�
���
). Using the acoustic boundary conditions and equation (5) with Helmholtz integral, the
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linear modal acoustic equation is obtained
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is the area of the vibration surface related to sub-cavity k and
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is the modal coupling coe$cient between the structural mode of order m and the cavity
mode of order n� .

2.3. STRUCTURE}CAVITY COUPLING EQUATION

Combining the structural model and acoustic model, a vibroacoustic model is obtained
which can be written in a matrix form as follows:
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where K
��
is the dynamic sti!ness matrix of the structural system. K

��
is the #uid}structure

coupling matrix. B
��
is the matrix obtained using various coe$cients of the acoustoelastic

coupling. U� and P are, respectively, the unknowns related to the structural components
and acoustic vectors. A

��
contains the acoustic mass and sti!ness matrices. F

��
is the vector

related to the mechanical excitation force applied to the structure. Since the main concern of
the present work is to analyze the structural modal coupling to the acoustic cavity, F

��
is,

set as zero in the coupling analysis.

2.4. RADIATION EFFICIENCY ANALYSIS OF STRUCTURAL MODE (REASM)

The classical radiation e$ciency analysis is one of the powerful analysis tools used to
demonstrate the radiation properties of a structure or a structural mode in free "eld. It is
de"ned as

	"

PM
�
PM
�

, (9)

with P

�
and P


�
being, respectively, the average acoustic power radiated per unit area of

a vibrating surface and the average acoustic power radiated per unit area of a piston that is
vibrating with the same average mean square velocity at a frequency for which the piston's
circumference greatly exceeds the acoustic wavelength. In the case of cavity problem,
however, the radiation power de"ned in such a classical way becomes the power absorbed
by the cavity. The radiation e$ciency de"ned above is no longer suitable to use in our
present problem. To tackle this problem, a parameter using the acoustic energy is de"ned as
follows:

	"10 log�
E

��
E
��
�, (10)

where E
��
is the acoustic potential energy in the cavity due to the vibration of the

surrounding structure and E
��
the total kinetic energy of the structure, which are de"ned,
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respectively, by
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with p
�
, �

�
, c

�
and < being, respectively, the sound pressure, the #uid density, the sound

speed and the volume of cavity, �
�
, h

�
, S and �<�

�
�, respectively, the material density, the

thickness, the vibrating area and the average mean square velocity of the structure.
The radiation e$ciency parameter de"ned in equation (10) can be applied either to the

whole structure or to a particular structural mode. The latter is used in the present analysis.
The natural modes of the structure are "rstly obtained using the structural model without
the #uid and the mechanical excitations. For each structural mode, the radiated acoustic
energy into the cavity at any arbitrary frequency is calculated using equation (11). The
radiation e$ciency of this particular structural mode can then be calculated using
equations (12) and (10). After comparing the radiation e$ciency of di!erent structural
modes in the frequency range of interest, the most radiating modes can be identi"ed. It
should be noted that this analysis is conducted to show the coupling of one structural mode
to the whole acoustic cavity, which is believed to give more global and relevant information
than the analysis using coupling coe$cients.

3. ANALYSIS AND DISCUSSIONS

Numerical results presented hereafter use the following con"guration: the shell and the
#oor are assumed to have the same thickness of 0)0032m, the density of material
7860 kg/m�, the Poisson ratio 0)3, Young's modulus 2)07�10��N/m�, the length of the
cylindrical shell 1)209m, the radius 0)254m, sound speed 343m/s, air density 1)2 kg/m�, and
modal loss factor for the structure and the cavity 5�10��. The shell}#oor attachment is
assumed to be rigid. The position of the #oor is de"ned by �

�
"1313 (Figure 1).

Analysis are performed only in low-frequency range. The ultimate purpose is to help the
implementation of active structural and acoustic technique to control the low-frequency
noise and the vibration of the structure from low order modes. The conclusions drawn in
this paper are, therefore, only valid in this context.
For computation purposes, the structural displacement and sound pressure decomposition

have to be truncated to a "nite series. The criteria are the same as those used in our previous
work [20]. By a careful convergence study, the number of terms in decomposition series is
determined as follows: shell: (8, 10) (longitudinal, circumferential), #oor: (8,5,5) (transversal,
in-plane motion in x, y), cavity: (5,5,5) (longitudinal, circumferential, radial).
As can be seen later, the proposed coupling analysis method relies on the correctness of

the simulation model. The one used in the present work was experimentally validated in our
previous work [20]. Basically, the cavity was formed by a steel cylinder with a #oor welded
to the inner shell skin. Two steel end caps were used to form the rigid acoustic boundaries.
Microphones were placed inside the cavity supported by a thin tube along the cylinder
centerline. The tube could rotate and be moved along the centerline to get any desired
measurement point. A point force was produced by a shaker and applied on the outside of
the shell surface. Accelerometers and force transducers were used to measure the structural
response and the excitation force. Comparisons between predicted and measured results
were performed in terms of displacement/force transfer functions and the response of the
cavity. Generally speaking, the simulationmodel seems to be accurate to predict the general
tendency of the response of the system.



TABLE 1

Acoustic modes of the plain cylindrical shell under 1000 Hz

Mode Frequency Mode Frequency Mode Frequency Mode Frequency Mode Frequency
order (Hz) order (Hz) order (Hz) order (Hz) (Hz)

(0,0,0) 0 (1,0,0) 141)9 (2,0,0) 283)7 (3,0,0) 425)6 (4,0,0) 567)4
(0,0,1) 823)1 (1,0,1) 835)3 (2,0,1) 870)7 (3,0,1) 926)6 (4,0,1) 999)8
(0,1,0) 395 (1,1,0) 419)7 (2,1,0) 486)3 (3,1,0) 580)6 (4,1,0) 691)4
(0,2,0) 655)8 (1,2,0) 671 (2,2,0) 714)6 (3,2,0) 781)8 (4,2,0) 867)2
(0,3,0) 902)4 (1,3,0) 913)5 (2,3,0) 945)9 (3,3,0) 997)7

Figure 2. Radiation e$ciency of natural modes of a plain cylindrical shell. (a) Structural mode (1, 0); (b) structural
mode (1, 1); (c) structural mode (2, 0); (d) structural mode (2, 1).
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3.1. COUPLING ANALYSIS OF A PLAIN CYLINDRICAL SHELL

A plain cylindrical shell has been extensively investigated in the literature using coupling
coe$cients. As a comparison basis, it is analyzed here using the REASMmethod. The main
purpose is to show the consistency of the method and provide information that is useful for
further analyses.
Table 1 tabulates all the acoustic modes of the plain cylindrical shell under 1000 Hz. Each

mode is designated using three indices corresponding, respectively, to longitudinal,
circumferential, and radial directions. The radiation e$ciency of some typical structural
modes with the longitudinal order m"1 and 2 is illustrated in Figure 2. Each mode is
denoted by a pair of indices representing, respectively, the longitudinal and circumferential
order. In Figure 2, each peak represents one natural mode of the cavity to which the
structural mode is coupled as well as the coupling intensity.
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Figure 2(a) demonstrates the coupling characteristics of the structural mode (1,0) to the
cavity. It can be observed that this mode is only coupled to the acoustic modes (2,0,0),
(4,0,0), (0,0,1), and (2,0,1) under 1000 Hz and has the highest coupling intensity with
(2,0,0). Similarly, Figure 2(b)}2(d) shows that structural mode(1,1) only couples to
(0,1,0),(2,1,0); (2,0) to (1,0,0), (3,0,0),(1,0,1), (3,0,1) and (2,1) only to (1,1,0) and (3,1,0) below
1000 Hz.
These observations are consistent with the results reported in the literature. In fact, due to

the perfect symmetry of the system, a structural mode is coupled to an acoustic mode in
a very selective manner. This only happens when the two following conditions are satis"ed:
(1) both modes have the same circumferential order and, (2) their longitudinal orders are an
even}odd combination pair. The coupling coe$cient can be calculated using the following
equation [22]:

B
		�

	�����


"�
J
�
(

��
)

2¸

�
�
k
	
(1!(!1)	��)

k�
	
!k�

�

, n"v, (u#q)/2Ointeger,

0 otherwise,
(13)

where k
	
"u�/¸, k

�
"q�/¸, �

�
"2 if n"0 and 1 if n�0, with u and v being the longitudinal

and circumferential order of the structural mode, respectively, q, n and s being the
longitudinal, circumferential, and radial order of the acoustic mode respectively, J

�
being

a Bessel function of the "rst kind of order n, ¸ being the length of the shell.
Compared with the coupling coe$cient method which only considers the coupling

between one single structural mode and one single acoustical mode, the REASM method
reveals global and physical information about the coupling characteristics of a structural
mode to the whole sound cavity.

3.2. CYLINDRICAL SHELL WITH A RIGID FLOOR

The #oor in a cylindrical shell not only changes the regular-shaped cavity into an
irregular one but also introduces coupling among modes with di!erent circumferential
orders of the shell. Both e!ects make the problem more complex. As pointed out before
[20], the vibration of the #oor is small compared to that of the shell when the excitation is
directly on the shell. The #oor is "rst assumed to be rigid to simplify the problem. The direct
sound radiation from the #oor is, therefore, neglected in the "rst step of the analysis.
Firstly, the coupling characteristics of natural modes with m"1 below 600 Hz are

analyzed. The radiation e$ciency of these structural modes is shown in Figure 3 while the
corresponding mode shapes are given in Figure 4. It can be seen from Figure 3 that each
structural mode couples more or less to the same acoustic modes with di!erent coupling
intensity. Among the "ve modes considered, Mode 3 has the highest radiation e$ciency
over the overall frequency range considered, whilst Modes 4 and 5 exhibit moderate
coupling strength, Modes 1 and 2 being the weakest radiators.
Further analysis is needed to understand the phenomena observed. It is well known that,

in a coupled system, the fundamental factors ensuring strong coupling are the closeness of
both the frequency and the waveform. In the REASM method, the frequency factor is
automatically satis"ed. Therefore, the waveform match between a structural mode and an
acoustic mode should be the dominant factor in determining the radiation ability of the
structural mode. According to the dispersion curve of sound wave in air, the low order
acoustic modes have small wavenumbers. It can be anticipated that structural modes
having more vibration energy component in low-wavenumber range should have higher



Figure 3. Radiation e$ciency of natural modes (m"1) of a cylindrical shell with rigid #oor. **, Mode 1;
))))))))))), Mode 2;==, Mode 3; } ) } ) }, Mode 4; } } } } }, Mode 5.

Figure 4. Mode shapes of natural modes (m"1) of a cylindrical shell with rigid #oor.

912 D. S. LI E¹ A¸.
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radiation e$ciency. Due to the #oor, however, the circumferential form of the structural
modes is no longer regular so that the classical de"nition of the wavenumber is di$cult to
apply. Consequently, a wavenumber spectrum analysis on structural modes is performed
hereafter.
In the vibroacoustic model, the radial displacement w

�
is decomposed on the basis of the

natural modes of the corresponding plain shell as shown in equation (2). Due to the
geometry of the structure, analysis can be performed for each given � andm [18]. For �"0,
for a given value of m, the circumferential modal shape can be expressed:

w
�
"

�
�
���

C�
��
cos (n�) sin (m�x/¸). (14)

The following wavenumber transformation is then performed
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��
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���
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��
cos(n�), k

�
is the circumferential wavenumber.

Using equation (15) with equation (14) yields
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�
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���
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��

2 sin (k
�
a�) cos (n�)

k
�
a (1!(n/k

�
a)�)

. (16)

The above equation can be used to plot the wavenumber spectrum of structural modes. The
"ve modes considered previously are treated using the wavenumber transformation and the
spectra in Figure 5.
Figure 5. Circumferential wavenumber spectrum of natural modes (m"1) of a cylindrical shell with rigid #oor.
**, Mode 1; ))))))))))), Mode 2;==, Mode 3; } )} ) }, Mode 4; } } }} }, Mode 5.



Figure 6. Radiation e$ciency of structural modes (m"2) of a cylindrical shell with rigid #oor. } } } } , Mode 1;
))))))))), Mode 2;==, Mode 3.

Figure 7. Mode shapes of structural modes (m"2) of a cylindrical shell with rigid #oor.
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Since only the low order wavenumber is considered, we set the upper limit of the
circumferential wavenumber to be 10. It can be observed in Table 1 that the acoustic mode
(0,2,0) with a natural frequency of 655)8 Hz gives a circumferential wavenumber of 7)8
(n/a"2/0)254). Therefore, it can be approximately estimated that the circumferential
wavenumbers of the acoustic modes under 600 Hz should be below 8 for the con"guration
considered here. Figure 5 shows that in the same wavenumber range, Mode 3 has the
highest level followed by Mode 4 so that they are more e!ectively coupled to the cavity,
leading to a higher radiation e$ciency. The same analysis applies to other modes having
weaker radiation e$ciency. Generally speaking, the wavenumber spectrum analysis gives us
conclusions similar to those drawn using the REASM method.
Using the same procedure, structural modes with m"2 are also investigated with the

results given in Figures 6}8. Both radiation e$ciency curves (Figure 6) and wavenumber
spectra (Figure 8) show that Mode 3 is a more signi"cant sound radiator than Modes 2 and



Figure 8. Circumferential wavenumber spectrum of natural modes (m"2) of a cylindrical shell with rigid #oor.
}} } } , Mode 1; ))))))))), Mode 2;==, Mode 3.
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1. In fact, Mode 3 has much higher level in almost all wavenumber ranges compared to
Modes 2 and 1. It should be mentioned that only two curves clearly appear in
Figure 8, while the third one corresponding to Mode 2 is so close to the horizontal axis
that it can hardly be noticed. Compared to the m"1 case, the overall radiation e$ciency
of all structural modes with m"2 is much smaller than that of structural modes
with m"1.

3.3. CYLINDRICAL SHELL WITH A FLEXURAL FLOOR

As an extension of the previous analysis, the #oor is considered as #exible undergoing
#exural vibrations. Figure 9 shows the "rst six modes with m"1. It can be seen that they
can be divided into three categories: shell-controlled modes for which the shell motion is
more signi"cant than that of the #oor, #oor-controlled modes with a strong #oor motion
and coupling modes with the shell and the #oor vibrating in the same order of magnitude.
A more accurate means of quantifying the type of the mode is to compare the average mean
square velocity of the shell and the #oor. Within the six given modes, Mode 1 is
a #oor-controlled mode, with the average mean square velocity of the #oor being nearly
20 dBmore than that of the shell. The "ve others all involve signi"cant shell motion and will
hence be emphasized in the analysis performed hereafter.
The radiation e$ciencies of these modes are given in Figure 10. Similar to the case with

rigid #oor, all structural modes couple more or less to the same acoustic modes. It can be
seen that Modes 3 and 4 have the highest radiation e$ciency and all other are less e$cient
in sound radiation.
Again, using wavenumber transformation, the wavenumber spectrum of these structural

modes are given in Figure 11. The fact that Mode 3 has the highest level in low-order
wavenumber range is consistent with the observation made using Figure 10. However, it



Figure 9. Structural mode shapes of a cylindrical shell with #exural #oor (m"1).

Figure 10. Radiation e$ciency of shell-controlled modes (m"1) of cylindrical shell with #exural #oor. } }} } },
Mode 2; ==, Mode 3; } ) } ) }, Mode 4;==, Mode 5; ))))))))))), Mode 6.
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Figure 11. Circumferential wavenumber spectrum of shell-controlled modes (m"1) of a cylindrical shell with
#exural #oor. } } } }}, Mode 2;==, Mode 3; } ) } )}, Mode 4; ))))))))))), Mode 5; **, Mode 6.
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should also be noticed that the wavenumber spectrum would predict a much weaker
radiation from Mode 4, whilst the analysis using the REASM method shows a similar level
as Mode 3. This example shows the limit of the wavenumber approach, which is worth
mentioning. In fact, in the present case, three factors could a!ect the radiation e$ciency of
the shell-controlled modes: the "rst is its vibration components in low-order wavenumber
range, the second is the structural coupling intensity between the shell and the #oor, the
third is the radiation capability of the #oor itself. Only if the three factors are considered
together is it possible to obtain a satisfactory explanation for the di!erent radiation
e$ciency of shell-controlled modes. The fact that the wavenumber analysis does not
consider radiation from the #oor and that it estimates the coupling in a very approximate
way leads to less reliable results in some cases. However, due to its simplicity (only
structural mode shapes are needed) it provides an interesting alternative to the whole
coupling analysis, which is much more demanding in terms of analysis.
Although not shown here, analysis were also performed using structural mode with

higher longitudinal orders. Again, it was noticed that the radiation e$ciency of structural
modes decreases when the longitudinal wavenumber increases.

3.4. EFFECT OF THE FLOOR ON THE DISPERSION RELATIONSHIP OF THE SHELL

Dispersion curves can be of great interest in understanding the interaction between waves
in coupled media. Therefore, to further understand the #oor e!ect on the structural acoustic
coupling system, the dispersion relationship is investigated here.
For a plain cylindrical shell, the wavenumber is calculated by

k
��

"��
m�
¸ �

�
#k�

�
, (17)



Figure 12. Circumferential wavenumber spectrum of Mode 1 (m"1) of a cylindrical shell with rigid #oor.

Figure 13. Dispersion curves of the shell (m"1).== (*), plain cylindrical shell; } ) } ) } (�), shell with rigid
#oor; }} } } } (#), shell with #exural #oor.

918 D. S. LI E¹ A¸.
where k
��
is the wavenumber, the "rst term is the longitudinal wavenumber component

with m being the longitudinal modal order and ¸ being the length of the shell, and the
second term k

�
"n/a is the circumferential wavenumber component with n being the

circumferential modal order and a being the shell radius.
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For a shell with an internal #oor partition, the longitudinal wavenumber component is
the same as that of a plain cylindrical shell. However, the circumferential wavenumber
component is more di$cult to determine because of the existence of the #oor. To tackle this
problem, a wavenumber transformation can be performed using equation (16). The
circumferential wavenumber at which the maximum vibration component occurs is used to
approximately represent the circumferential wavenumber of the structure. For example,
Figure 12 shows the wavenumber spectrum of Mode 1 of a cylindrical shell with rigid #oor
and we can identify the approximate circumferential wavenumber component as 13)2.
Similarly, the approximate circumferential wavenumbers of other modes of a cylindrical

shell with rigid #oor and #exural #oor are identi"ed using the wavenumber transform
method. This is then used in equation (17) to obtain the wavenumber of every structural
mode. To facilitate the comparison, the dispersion curves of the shell in the three cases are
plotted in a common graph as shown in Figure 13. It should be pointed out that in the case
of a #exural #oor, only the shell-controlled modes and the coupling modes are considered in
this "gure.
It can be seen from Figure 13 that the general trend is basically the same for all three

cases. This observation provides justi"cations for the work using a plain cylindrical shell as
a simpli"ed model in noise control inside airplane fuselage structures. In the case of a rigid
#oor, the dispersion curve has more noticeable discrepancy from that of a plain cylindrical
shell than in the case of a #exural #oor. It means that with the increasing of the #oor
sti!ness, the #oor e!ect on the dispersion relationship of the shell structure becomes more
signi"cant. Furthermore, it could lead to an apparent change of the structural acoustic
coupling characteristics which has been shown before.

4. CONCLUSIONS

The structural acoustic coupling between a cylindrical shell with a #oor partition with the
con"ned acoustic enclosure was investigated in this paper. The objective of this research
was to achieve a better understanding of the physical system and provide guidelines for the
noise and vibration control. A method using the &&Radiation E$ciency Analysis of
Structural Modes'' (REASM) was proposed. This method was shown to be e!ective when
irregular-shaped cavities are involved. Typical con"gurations ranging from plain shells to
shells with #oor partitions were analyzed and, whenever possible, results were compared
with those found in the literature. Meanwhile, analyses using wavenumber spectrum were
also employed. Finally, the #oor e!ect on the dispersion relationship of the shell was
discussed. The main conclusions can be drawn as follows:

(1) For a cylindrical shell with a #oor, the coupling in the longitudinal direction is the same
as a plain cylindrical shell. In the circumferential direction, however, a structural mode
can be coupled with many acoustic modes with di!erent circumferential wavenumbers
at the same time. In the low-frequency range, structural modes with large low
wavenumber components have most likely stronger noise radiation ability.

(2) In both cases of rigid #oor and #exural #oor, the radiation e$ciency of structural modes
decreases when the longitudinal wavenumber increases.

(3) Although the existence of the #oor a!ects the dispersion relationship of the shell
structure, the general trend is basically the same as a plain cylindrical shell as far as the
shell portion is concerned.

(4) Two alternatives are provided when the calculation of the classical coupling coe$cient
becomes di$cult. Due to its simplicity, the wavenumber analysis can be used as a rough
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estimation of the coupling analysis. The method using the radiation e$ciency analysis of
structural modes (REASM) is a better tool for the structural acoustic coupling analysis.
Compared to the wavenumber analysis, it takes the whole acoustic properties of the cavity
into account. Compared to the coupling coe$cient method, it gives information on how
a structural mode can be coupled to the whole cavity. In the case of an irregular cavity in
which the coupling coe$cient between structural and acoustic modes is di$cult to obtain
and the coupling becomes more complex, it shows great merits.
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