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This paper presents a theoretical study of a plate-ended circular cylindrical shell radiating
sound into its enclosed cavity. On the basis of a previously established free vibration model,
a general formulation considering the ful} coupling between the subsystems (plate, shell and
cavity) is developed. By using an artificial spring system, this formulation allows, in a
systematic way, the consideration of a wide variety of boundary conditions and shell-plate
Jjoint conditions. Numerical results on the structure vibration and the generated sound field
inside the cavity are presented. These results are intended to investigate two main issues:
(1) obtaining a deep understanding of the coupling phenomena, which is a key factor to
understand the mechanism of the mechanical energy transfer between the plate and the shell
and mechanical-acoustical energy transfer from the structure to the acoustic medium; (2)
illustrating the possibilities and limitations of sound-proofing by changing shell-plate joint
conditions. The established medel is believed to be useful in industrial applications where
plate-ended shell structures are involved, especially in the case of the modelling of aircraft
structures and fluid-containing industrial vessels.

1. INTRODUCTICN

In this continuation of the study of the vibroacoustic behavior of a plate-ended
cylindrical shell, a previously derived free vibration formulation [1] is extended in
this paper to take into account the coupling of the structure with the enclosed acoustic
medium. The plate-ended cylindrical shell structure is of particular interest to study
for many industrial applications. The most representative examples for this are first,
the study of an aircraft fuselage closed by a circular bulkhead in which case the
vibration of the structure, as well as the induced cabin noise, is a major concern and,
second, industrial vessels for which the contained fiuid has a significant influence on the
structure,

The work performed in the past on the plate-ended shell has mainly focused on free
vibration analyses [1-4]. As far as the fluid—structural coupling analysis is concerned, much
less information is available. When validating an analytical model for aircraft interior noise
prediction via experiments, Pope er al. [5] considered the effects of end caps. In their
analysis, the internal pressure due to the end cap motion was estimated in an approximate
way, since the plate was supposed to be independent of the fusclage shell. Recently, Bafilios
et al. [6] presented a plate-ended composite shell model to study the structure-borne noise
trnsmission. In a similar way, no coupling between the shell and the plate was allowed.
The shell and the plate were supposed to be simply supported along their edges, and the
acoustic pressure inside the enclosure was calculated simply by superposing the contri-
bution of each substructure.
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The present study is an extension of a previous work [1] on a free vibration model in
which full coupling between the shell and the plate was considered. That paper predicted
the superiority of the proposed method over most existing approaches which treat
mechanically coupled structures when one desires to treat further fluid-structure coupling
problems. Another advantage of the model was its systematic modelling of various
structural coupling cases and boundary conditions by means of an artificial spring system.
On the basis of this free-vibration model, further development is carried out in the present
paper to include the acoustic medium inside the enclosure. For this purpose, hard-walled
cavity modes are used as a basis for the decomposition for sound pressure as well as the
Green's function of the cavity. The resulting equations, in which the full interactions
(plate-shell and structure—cavity) are taken into account, are then solved. Furthermore,
the paper contains numerical results on the vibration of the shell and the end plate and
also on the gererated sound pressure field in the cylindrical enclosure. Taking advantage
of the flexible modelling of the structural coupling, and using the concepts put forward
previously concerning the nature of the combined structure modes, coupling analyses are
performed.

With respect to existing work in the literature, the present study is believed to contribute
in the following aspects: (1) it offers a general formulation in which both plate—shell
coupling and structure—fiuid coupling are permitted; (2) the formulation encompasses a
wide spectrum of boundary conditions and coupling conditions that may be encountered
in practice; (3) the performed analysis provides physical insight into the vibroacoustic
behavior of the system and reveals possible means for sound-proofing.

2. ANALYTICAL MODEL

2.1. DESCRIPTION OF THE MODEL

Consider a finite circular cylindrical shell closed at its left end (x = 0) by a flexible plate
and at its right end (x = L) by a rigid plate. Both shell and plate are assumed to be thin
homogeneous structures. The geometric parameters and the co-ordinate system used in the
formulation are defined in Figure 1. The whole structure is assumed to be initially
supported by shear diaphragms at each end to which translational and rotational springs,
having distributed stiffnesses K; and C, (i =1, 2, 3) are added, as iltustrated in Figures 1(c)
and ¥(d). All spring constants are defined in the appropriate units of stiffness per unit
length on the contour and are assumed to be constant along the edges. Different boundary
conditions and coupling conditions can then be simulated by setting the appropriate spring
constants. The excitation is modelled as a harmonic point load at arbitrary locations,
situated either on the shell or on the plate.

2.2. STRUCTURAL RESPONSE

The governing equations of the plate-ended shell are obtained by using the variational
principle via the finding of the extremum of Hamilton’s function over a suitable subspace
of displacement trial functions. A detailed treatment on the free vibration of the structure
is given in reference [1}. Due to the very lengthy expressions obtained, only an outline is
given here, with special attention paid to the excitation terms and structure—cavity coupling
terms.

Hamilton’s function of the structure is constructed as

f
H=J (T.— E.+T,— E,— E.+ Ep) dt, (N
o
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Figure 1. A schematic representation of the plate-ended shell and the co-ordinate system used in the
formulation: (a) cylindrical shell; (b) end plate; (c) joint conditions between the shell and the plate at x = 0; (d)
boundary modelling at x = L.

where £, and ¢, are arbitrary times, T, and T, are, respectively, the kinetic energy of the
cylindrical shell and the plate, E, and E, are their potential energies, E; represents the
potential energy stored in the springs and E, is the work done by the driving forces. The
calculations of these energy terms can be done by using classical shell and plate theory [7]
under appropriate assumptions of structural displacements.

The shell displacements u, v and w along the three axes defined in Figure 1 are then
decomposed on the basis of the eigenfunctions of a shear diaphragm supported shell as

u 1 o o 3

vr=2 % 2 Y AL (O (a,n,m,j), o)
e=0n=0m=1j=1

w

where IT7,, is the eigenvector of the shear diaphragm shell with n and m being, respectively,
the circumferential and the longitudinal order, « indicates symmetric (x = 1) or antisym-
metric (x =0) modes and j is the type of mode (bending, twisting or extension—
compression) [8]; the A4;,,() are the coefficients to be determined. Since the continuation
conditions between the plate and the shell are characterized by the artificial springs
between them, IT;,, only needs to satisfy the geometrical boundary conditions related to
the radial and tangential directions (w = v = 0), which is the case here.
As for the plate, its flexural displacement w, is expended over a polynomial basis:

1 oc =]
W, = Zﬂ Zﬂ Zo B, (DAL, (@ n,m), AL, (a n,m,)=sin(nf + om/2)(r/a)™, (3)
a=dn=0unm,=

where n, m, and « are, respectively, the circumferential order, the radia! order and the
symmetric index, a is the radius of the plate and the B:,,,F(t) are the coefficients to be
determined,
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Using expressions (2) and (3), the Hamilton’s function H can be expressed in terms of
two sets of unknowns, 47,,(t) and B, (). The extremization of A can then be done by
following the Rayleigh-Ritz procedure Upon assuming the sinusoidal motion

nrry('t) - A:m; exp(_lﬂ)t) B:mﬂ (I) = B:mp exp(jwt)! (4)

we obtain the following equations:

Mnmj(wgmj(l +j"()_ Z)A + Z Z Xnmjmj 2 Yﬂm}m B:mf,a

m=1j=1

= — (Fiidshent + (P oy Dot (5)

Z (R:m,,,m;,(l+jnp)_w2M:mﬂmp)Bnm,,+ Z an,,m

- Z| E] Ynm;m nmj = (P‘ﬁmP )plale - (P:mp )pra.'e' (6)
m J

In the above expressions, m,,; and M, are, respectively, the natural frequencies and the
generalized modal masses of the shear diaphragm supported shell, R%, i, and M2, i, ATC
the stiffness and mass terms of the plate and, finally, X7, Y m, and Z2, o, ATC the
coupling terms via different spring systems. Detailed expressions for the calculations of
these terms have been given in previous work [1]. Also in the above expressions, the
structural damping factors #, and #, have been introduced for the shell and the plate
respectively. On the right side of the equations, one notices the direct excitation
terms (Fr )y and (F7, )y and the fluid loading terms from the cavity (P},,)u.. and

(P -

2.3. ACOUSTIC RESPONSE
The pressure inside the enclosure P, satisfics the classical wave equation

VP 4+ (w/cyP, =0, (7)

with ¢ being the speed of sound in the cavity. The boundary conditions to be satisfied
are

0P [0r = — pow®w, atr=a; dP,[dx = pwiw,, at x =0,
P.jox =0, atx=L. )

Note that w, is assumed to be positive along the positive x-axis. By means of the Green’s
function G of the cavity with Neumann boundary conditions, the sound pressure P, inside
the cavity can be calculated as

F.= ~I G(6P, (on) dA, )
A

where A is the total area of the structure envelope and # is the unit vector normal to the
corresponding surface (positive toward the outside). Using equation (8), the above
expression becomes

P, =J Gpoww dS, —j Gpww,dS,, {(10)
5 S
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where S, and §, are, respectively, the sheil and plate surface. Both the pressure P, and the
Green’s function ¢ are then expanded in terms of the acoustic modes of the hard-walled
cavity @,. For P_, one has

N=1 v

Pc=P¢'22 Py®y/My, MNéﬂMz(l/V)J Py Py dV, (11,12)

in which the P, are the coefficients to be determined, ¥ is the volume occupied by the cavity
and 8y, is the Kronecker delta function, The second expression reflects the orthogonality
of acoustic modes. For the Green’s function G, it can be shown [9) that

5 @ (M,)Py(M,)

GM,. M. w) =NZ=:] T (@ —a) {13)
with wy being the angular frequency of the Nth cavity mode.
Substituting expressions (11}—(13) into equation (10} yields
(@}~ @Y)Py = (S/V)w wy, §=5+85, (14)
in which
wy={—1/5) L chNdS,-f-(l/S)j; w, &, dS,. (15)
| 2

The appiications of the expressions (11)-(15) to the case of a cylindrical cavity give
equations characterizing the acoustic response. In this case, each mode is represented by
four indices: &, 7, p and q. Consequently, the mode index ¥ used above will be replaced
by the combination of «, 1, p and ¢ modal indices. The mode shape and the corresponding
angular frequency are

&, = sin (n0 + an /2)),(4,,r) cos [(gn/L)x], O = [, + (gn/LY1'2,  (16,17)

where o is the symmetric index, » is the circumferential order, J, is the nth order Bessel
function, g is the longitudinal order, and 4,, is the pth root of equation

Y (i,a)=0 (18)
Considering the displacement decomposition of the structure {expressions (2) and (3)},

together with expressions (15) and (i6), equation (14) becomes

0 3
(0h + i1, Wupyw ~ @7)P;,, = (™S /V)[ 2 2 Lo n,q,m)As,,

m=1j=1

- Z Lplale(m’ n,p, mp)B:m‘,,]' (] 9)

mP=0

In the above expression, the damping in the cavity is expressed in terms of a modal
damping factor n,. L%, n,g,m) and LP"*(x,n,p, m,) are, respectively, the spatial
shell-cavity and plate—cavity coupling coefficients defined as follows:

L*a, n, g, m)=( I/S)L [T 51 @7, S, Le(oe, n, p, m,)=(1 /S)L A, Py A4S,
! 2

(20)

where [IT7,.], is the w component of the eigenvector 17

nmj ¢
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Using the spatial coupling coefficients as defined, the excitation terms appearing on the
right side of equations (5) and (6) can then be calculated by

(Fﬁmj)sheﬂz —f F5(M MF){HHMJ] ds,, ﬂesl;

5

(Fzmp plarezj‘ Fa(ﬂ - HF)ASMF dS29 M ES2’
52

2¢Q2 .2 o shell, hell,
pcS L™ (e, n, q, ML (at, 1, g, m")
(sz')s 12 I: A:
o oshell = mz—l ]ZI pzl qZO (wnpq - wz)anq "
o0 ®w W L:keﬂ(a,, n,q, m)Lpfale(a np, mp)
- z w? B:m‘,
m,=0p=1¢g=0 (wnpq )Mrrpq
2Q2.,2 w© late shell,
pcS d LP(o, n, p, m, ) L7 (e, n, g, m)
(P nm, ) ate — [ Am j
plat mZI 121 pzl qzl) (wn - mz)anq i

4] w© Lplale(a n p,m )Lplare(a n ,m )
ry Sy ? BT B, | (21)

m,=0p=1g=0 (wn —(BZ)M

In the above expressions, ¥ is the driving point force acting either on the shell or on the
plate surface, its direction being illustrated in Figure 1; (M — M,) is the Kronecker delta
describing the driving force applied at the point M.

In conclusion, equations (5), (6) and (19) constitute a whole coupled equation system,
the resolution of which gives the coefficients A}, and By, o, for the calculation of the
structural response and the coeffictents P, for the determination of the sound pressure
in the cavity.

apq

3. NUMERICAL RESULTS

Numerical results are presented herein for the average sound pressure level inside the
cavity and for the quadratic velocity of the shell and the end plate. As far as the shell
response is concerned, only radial velocity is considered. The quadratic velocity is
represented in terms of dB referenced to 5 x 1078 m/s. The shell and the plate are assumed
to have the same material properties as aluminium (Young’s modulus 7 x 10" N/m?,
density 2-7 x 10° kg/m* and Poisson ratio 0-3). The dimensions of the shell are L =1-2m
and a = 0-3 m. The thicknesses of the shell and the end plate are selected to be the same
for both and equal to 3 mm. Due to the limitless combinations that can arise regarding
the boundary conditions, only a special case is investigated herein with all the spring
constants K; and C, set to zero except K, and C;, the values of which are defined in each
case investigated. This means, physically, that the structure which will be studied is, as a
whole, simply supported with adjustable shell-plate joint conditions. For K and C,, two
non-dimensional stiffness parameters are defined with respect to the flexural rigidity of the
plate D, as K=K,a%D, and C = C,a/D,. The speed of sound in the interior and the air
density are ¢ = 340 m/s and p = 1-2 kg/m®. The input load is a unit point force acting at
a certain location of the shell surface or the end-plate surface. In all calculations
performed, the modal loss factors for the plate, the shell and the cavity are set to be 0-01.
As illustrated in a previous work [10], system damping plays an important part in
determining the system response. More specifically, damping values affect the response of
the system in a significant way at resonances. Since the present work focuses mainly on
the coupling analysis, no details about damping effects are presented hereafter.
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The frequency range considered is 0-2000 Hz. The linear system (equations (5), {6) and
(19)) should be truncated to a finite order before the execution of the calculations. The
truncation of the series is a curtail issue which requires careful consideration, Generally
speaking, the criterion for choosing the maximum order of each index appearing in the
decomposition series (2), (3) and (11) is to assure the characterization of the coupling and
the convergence of the solution. One simplified means of doing this is to increase the terms
and to check the modes of each substructure until the natural frequency for each index
pair exceeds a limiting frequency. It should be noted that the so-called limiting frequency
is usually set to be higher than the frequency of interest which is considered. As a result,
not only all within-band modes are considered, but also some out-of-band ones. For the
present configuration, the limiting frequency is set to 2300 Hz. For the cavity, based on
the aforementioned criterion, an automatic selection procedure is established. In addition
to that, for certain values of n, where the natural frequency of even the lowest cavity mode
exceeds the upper limit of the considered frequency range, the first nine lowest modes are
also taken into consideration.

Convergence was carefully checked by increasing the number for each variable involved
in the expansion series. As far as the structural response is concerned, relatively good
convergence was noticed. The reason is believed to be twofold: for the shell, a “physical”
base is used, which is by nature quite similar to the real structure (as far as the shell portion
is concerned); for the plate, the boundary is uniform and homogeneous, although the
expansion series is less “physical”. Irregularities presented in the structures may be a key
factor to slow down the convergence of the Rayleigh-Ritz procedure [11]. In our case, the
shell-plate connection is uniform and symmetric, so that no such strong variation was
present. As to the cavity response, the solution converged even more rapidly than the
structural response. In this paper, all the calculations were done by using 15 terms for #,
11 for m, and 20 for m. With this truncation procedure, 1800 component modes were used
for the shell, 330 for the plate and 338 for the cavity. Thanks to the non-coupling property
between the components with different circumferential orders, the calculation were
performed with a reasonabie cost and a satisfactory accuracy.

It has been shown [1] that the mechanical properties of the shell-plate combined
structures are closely related to the characteristics of each substructure. A good knowledge
on the natural frequencies of the substructures gives a basic idea of the nature of the
generated modes for the combined structure. More precisely, it has been shown that three
types of modes exist for the combined structure. The first two types are shell-controlled
and plate-controlled modes, for which the structure motion is dominated, respectively, by
shell and plate vibrations. This situation happens when the mechanical impedances of the
uncoupled structures are quite different, corresponding to the case in which the natural
frequencies of the uncoupled substructures of the same circumferential order are not close
enough to form a structure mode. The third type of modes are coupled modes, with the
shell and the plate vibrating in the same order of magnitude. This phenomenon occurs
when there exists a mechanical impedance adaptation of the substructures. In addition to
the structure modes, the distribution of the cavity modes is another crucial factor affecting
the acoustic response. A lattice diagram describing the modal distribution of the three
subsystems constituting the system (plate, shell and cavity) is presented in Figure 2. The
calculations are performed with the subsystems assumed to be uncoupled from each other.
The shell is assumed to be supported by shear diagrams at both ends, the plate simply
supported along its edge and the cavity having acoustically hard walls. In the diagram,
the caleulated modes are arranged in columns by regrouping the modes having the same
circumferential order and are represented by using different symbols. In fact, the diagram
reflects the dispersion relation of different waves in each subsystem and is very revealing
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Figure 2. A lattice diagram of the structural modes and the acoustic modes: [, shell modes; A, plate modes;
@, cavity modes.

in the interpretation of the physical phenomena that will be observed. One important point
to mention comes from the observation of the coupling equations (5), (6) and (19): the
shell-plate coupling, as well as the structure—cavity coupling, occurs in a very selective
manner. In fact, only the terms having the same circumferential order (the modes arranged
in the same column in Figure 2) can possibly be spatially coupled.

The average quadratic velocities of the structure and the corresponding sound pressure
level inside the cavity are presented in Figures 3 and 4 respectively. In the calculations,
the plate is assumed to be rigidly attached to the shell, with K, = C; = 10°. A unit point
load is applied on the shell surface at x = 0-35 m, and all damping values are set to be 0-01.
In Figure 3, the response of the shell and the plate are, respectively, illustrated by the solid
and the dashed line. In the response of the shell, one can clearly identify the presence of
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shell-controlled modes and some coupled modes. However, no plate-controlled modes are
noticeable in this shell response spectrum. It is in the spectrum of the plate that the
plate-controlled modes, together with shell-controlled and coupled modes, appear. The
results of Figure 3 indicate that the coupling between the shell and the plate is relatively
weak in the low frequency range. In fact, the vibration level of the shell, which is the
clement directly excited by the external loads, is much higher than the one of the plate.
With the increase of the frequency, the velocity of the plate is brought up to a comparable
level. The corresponding sound pressure level inside the cavity is presented in Figure 4.
It can be seen from this figure that the noise level takes an ascending trend with frequency.
Two obvious reasons explain these observations. Firstly, the motion of the shell contrib-
utes nearly all acoustic energy in the lower frequency region. In fact, the sound pressure
is totally dominated by shell-controlled and coupled modes and, as mentioned above, the
response of the plate is much lower than the one of the shell in this frequency range.
Secondly, the shell has weak radiation capacity at lower frequencies. The fact that few
acoustic modes emerge below 1000 Hz indicates that the shell modes are poorly coupled
to the acoustic ones. Indeed, a review of Figure 2 shows that the natural frequencies of
the acoustic modes increase monotonously with their circumferential order. Consequently,
only those with small circumferential order can contribute significantly to the sound field
in the low frequency range. However, the excited shell modes in this frequency range are
not necessarily of small circumferential order. For example, the shell modes with » = 0 are
situated near the ring frequency of the shell which, in the present case, is about 2830 Hz.
As already stressed, the structure is only capable of coupling the acoustic modes having
the same circumferential order. Therefore, the shell-controlled modes that contribute
significantly to the structural response cannot excite efficiently the acoustic modes that
would have been the main contributors of sound.

In Figures 5 and 6, the same structural configuration is used, but the point load is located
on the surface of the end plate at r = 0-2 m. Several similar observations made previously
apply to the present case. Being directly excited, the plate manifests a dominating role in
the structural response. The plate velocity is clearly dominated by plate-controlled and
coupled modes. With respect to the plate motion, the shell vibrates at a level that is about
30 dB lower at low frequencies and 5-10 dB lower at higher frequencies (up to 2000 Hz).
However, in terms of sound pressure level in the cavity (Figure 6), many more cavity modes
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are excited. This is also understandable due to the fact that plate modes evolve almost in
the same way as the acoustic modes with the increase of the circumferential order (Figure
2). Therefore, better coupling between the plate and the cavity is obtained. For the same
reason, and also because of the relatively weak rigidity of the plate at low frequencies, the
sound pressure level inside the cavity is much higher when it is the plate that is directly
excited. In fact, a comparison between Figures 4 and 6 indicates a difference of about 20 dB
below 800 Hz. This observation shows the importance of the identification of the excitation
sources for such a structure and that it is preferable to guide excitations to the shell rather
than to the end plate.

Numerical results that will be presented hereafter aim to illustrate the effects of the joint
conditions between the shell and the plate on the generated cavity noise. As has been
pointed out, by setting different values for the two spring stiffness constants X, and C,
which can vary from zero to infinity, both limit cases (free or rigid joint) and intermediate
cases can be simulated. Despite this possibility offered by the model, only a few limit cases
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are treated with the stiffness constants set to either zero or a large value. Although zero
stiffness is only an idealized assumption that may be hardly encountered in practical
circumstances, it is believed that the study of these limit cases is representative and gives
upper and lower bound of the observed phenomena for other intermediate joint cases.

The first series of results deal with the effects of the translational spring K;, which
couples the plate with the shell in the longitudinal axis of the latter. In order to isolate
the effects of K;, the value of the rotational spring C, is assumed to be zero, permitting
no possible coupling via rotation. The same point load as has been used before is applied
to the surface of the plate. In Figure 7(a) sound pressure levels inside the cavity are
compared with two different joint conditions: K, = 10% (rigid case) and K, = 0. It can be
seen that, except at very low frequencies, the structure without translational coupling
(K = 0) radiates much less sound in a very large frequency range. An average of the sound
level in one-third octave bands permits a better visualization of the global trend (Figure
7(b)}. In fact, a difference of 10-15dB in sound level is clearly observed for middle and
high frequency bands. This observation is consistent with the one made in a previous work
[12], where the sound radiation to a cylindrical hard-walled cavity by a single plate with
various boundary conditions was investigated. Similar phenomena were observed in that
work regarding the translational support of the plate. Moreover, a detailed analysis
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showed that releasing the translational support of the plate reduces significantly the
radiation efficiency of the plate modes and consequently, the generated noise. In Figures
7(a) and (b) it is shown that the cylindrical wall as a flexural envelope does not change
this trend fundamentally. In addition to that, the diminution of K, reduces the plate-shell
coupling via translation, so that the contribution of the shell radiation, although small in
the present case, is also reduced.

The second series of results concern the effects of the rotational spring C,, coupling the
plate with the shell via the rotation along the edge. The internal noise level is presented
in Figures 8(a) and (b), in narrow bands and one-third octave bands, respectively. Two
values for C, are chosen for the calculations: €, = 10® (rigid joint) and C,=0. From
Figures 8(a) and (b), a less noticeable reduction than the one previously made for K; is
obtained by relaxing the rotational coupling. Although small perturbations are noticed at
low frequencies, the noise inside the cavity is not very sensitive to the coupling changes
in this range. All the principal peaks appearing in the spectrum in this frequency range
are governed by cavity resonances. For frequencies higher than 1000 Hz, the noise level
is reduced to a lower level by reducing the rotational coupling. However, with a
hard-walled cylindrical cavity {12], no such trend was observed when reducing the
rotational fixation of the end plate, and it was shown that the radiation properties of the
plate cannot be improved systematically by changing the rotational supports (which is the
case for translational ones!). It is therefore concluded that the noise reduction obtained
in the present case is due to the fact that, by relaxing the rotational coupling, the vibration
level of the shell is reduced and, consequently, its sound radiation. This statement is
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supported by Figure 9, in which the velocity spectrum of a shell excited only by rotational
coupling (C, =10 is compared with the one excited only by translational coupling
(K, = 10%). Keeping in mind that the point load is applied to the end plate surface, one
notices a clear difference between the two curves, indicating that the shell is coupled to
the plate mainly through rotation.

Similar investigations have been performed when excitation loads are applied on the
shell surface. However, it has been observed that the changes of the coupling conditions
in this case cannot give any general trends, as is the case with excitations on the plate.

4. CONCLUSIONS

A general vibroacoustic formulation is developed in this paper for a plate-ended
cylindrical shell with consideration of the enclosed acoustic cavity. The model takes into
account the full coupling between plate and shell as well as the coupling of the whole
mechanical envelope with the acoustic medium. The modeling of boundary conditions
and shell-plate joint conditions are made possible by using an artificial spring system
working on translation and rotation that allows an easy simulation of a large variety of
coupling cases. With point excitation loads on the plate or on the shell, numerical results
for the structural response and the cavity noise are presented and analyzed to reveal the
general vibroacoustic behavior of the system. The main findings are summarized as
follows.

(1) The coupling between the shell and the plate is generally weak at low frequencies.
The vibration response of the substructure that is directly excited is dominated by the
modes controlled by itself and by coupled modes. Modes of all nature (plate-controlled,
shell-controlled and coupled modes) appear generally in the response spectrum of the
substructure that is not directly excited. The shell-plate coupling becomes more noticeable
with increase of frequency.

(2) Cavity noise comes mainly from the directly excited substructure at low frequencies.
The sound pressure level inside the cavity is much higher when excitations are applied to
the end plate. The reason is that the plate modes couple generally well with the cavity
modes, whereas the shell modes, participating actively in the structure response, cannot
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be efficiently coupled to the acoustic ones in this frequency range. Consequently, from a
sound-proofing point of view, direct excitations on the plate should be avoided.

(3) For the case in which the excitation is applied to the shell, changing joint conditions
cannot warrant any systematic improvement on the radiated sound field inside the cavity.
For the case in which the end plate is directly excited, reducing the stiffness of the joint
between the shell and the plate proves to be a good means of reducing cavity noise. Two
different mechanisms are involved: the diminution of the translational coupling (along the
longitudinal axis of the shell) significantly reduces the radiation efficiency of the plate
modes, and the diminution of the rotational coupling (coupling created by rotation along
the joint) reduces the mechanical energy transferred to the shell. In both cases, cavity noise
is reduced. However, the relaxing of the translational coupling seems to give a better result:
a greater noise reduction in a broader frequency band.

It should be mentioned that these observations are directly related to the hypotheses
made in the modelling process concerning the perfect geometry of the structure. The
symmetric properties of the structure, with respect to the shell longitudinal axis, give rise
to the selective manner in which the coupling process happens. In reality, the presence of
any asymmetric elements may change the coupling nature between the substructures and,
consequently, amplify to a certain extent the radiation capacity of the cylindrical shell. This
point should be further analyzed.
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