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Abstract

An integro-modal approach was previously developed in order to compute the normal
modes of an acoustic enclosure of any shape. Though good approximation was achieved for

estimating the natural frequencies, we show in this paper that improvement is still needed to
ensure good pressure gradient continuity, which is crucial for the convergence of the numerical
expression of the pressure distribution into the whole cavity. The technique of overlapped

cavities is introduced in the general eigenvalue equations derived from the integro-modal
theory. Numerical tests are performed to assess both the original and the modified approach,
with special focus on the pressure approximation. The agreement between theoretical or other
existing results and numerical solutions using the new approach is improved, in comparison to

the results observed with the original approach. # 2002 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Most interior noise problems involve acoustic cavities of irregular shapes. The
prediction of the modal characteristics of such enclosures is fundamental to a better
understanding of the system behavior before any control action is taken. Apart from
the classical boundary element method [1] and the finite element method [2], which are
believed to be very general and versatile, others alternatives have also been proposed.
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Relevant references on the related subjects may be found in Ref. [3]. More recent
development has been reviewed by Levine in his recent paper [4]. Typical work
includes the point-matching method [5], method using waveguide-type base func-
tions [6,7] and the Integro-modal approach (IMA) [3]. The IMA was suggested to
compute the acoustic modal properties of irregular cavities, where the separation of
variable technique cannot be applied. The present paper presents a further assess-
ment and improvement of the IMA.
Acousto-Elastic Method (AEM) [8] and Green Function Method (GFM) [9]

inspired the Integro-modal approach. It consists in handling the irregular shaped
enclosure as a multi-connected cavity system, with either regular or irregular sub-
volumes. Minimal subdivision was striven. The modal characteristics of regular sub-
cavities were obtained analytically, while irregular ones were treated using normal
modes of their respective regular bounding cavities with rigid walls. In both cases,
rigid-wall modes were used as base functions for a modal expansion of the sound
field in the sub-cavity. The integral formulation ensured global continuity of the
pressure between adjacent sub-cavities. The method then yielded a truncated eigen-
value system. Fewer sub-cavities were needed to obtain comparable results as other
existing methods, in term of natural frequencies. The technique was used to compute
the natural modes of a two-dimensional aircraft fuselage.
The previous work mainly focused on the prediction of natural frequencies. No

study in terms of the corresponding modal pressures was performed. However, in
many respects, modal pressure (or mode shape) is one of the most essential para-
meters to be known. First, the mode shape of acoustic cavities is usually used in
vibro-acoustic analyses of vibrating structures coupled to an acoustic enclosure [10]
In these cases, the acoustic pressure inside cavities can be decomposed into a series
using mode shapes as base functions. Second, problems related to the acoustic
intensity inside cavities require an accurate prediction of the velocity of the particles,
which is directly related to the sound pressure distribution [11]. Third, accurate
information on the mode shape gives rise to many direct applications. For instance,
Succi [9] noticed that the position of a minimum resonant pressure in an automobile
cabin can be changed, so as to improve the driver’s and the passengers’ comfort. All
these applications are based on an accurate prediction of the modal sound distribution.
The objective of the present paper are twofold: 1) to provide a further assessment

of the approach by having a closer look at the modal pressure distribution inside
cavities and developing criteria for a better use of the method; and 2) to propose
alternatives to improve the original approach.
In different studies, J. Pan [12–14] pointed out that using a rigid-wall mode

expansion for the sound field does not always describe correctly the particle velocity
or pressure gradient where absorptive or flexible part of the cavity boundary is
assumed. It is known that in using such approach, although the pressure distribution
in the interior domain can be accurately predicted, inaccurate results can be
obtained for modeling impedance on the vibrating boundary, as determined by
Gibbs’ phenomenon in the Fourier series. Jayachandran et al. studied these inac-
curacies and proposed a particular solution approach, which allows one to retain the
advantages of the modal solution technique without compromising its accuracy [15].
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In solving a one dimensional sound field problem bounded by a soft acoustic impe-
dance using Lagrangian function, Pan [16] introduced the concept of extended mode
shape function to tackle the same problem. This problem is likely to occur when the
integro-modal approach is applied, because of the assumed flexible surface con-
necting two adjacent sub-cavities. To handle it, an improved integro-modal
approach similar to the concept proposed by Pan [16] is developed. The sound
pressure is still expanded over rigid-wall modes, but the selected base functions must
allow a non-zero velocity over the connecting membranes. For this purpose, a slight
overlap is permitted among the regular bounding cavities. It can be shown that this
technique can greatly improve the accuracy of the prediction for the modal pressure
and velocity distribution.
In the first step, the original integro-modal theory is briefly summarized with a

special focus on how to select the base functions. The difference between the present
formulation and the previous one is specified as the concept of overlapped bounding
cavities is introduced in the general equations. A standard eigenvalue problem is
then established. Numerical results are then presented and discussed, which show
reasonably good results with the original approach, yet further improvement is
obtained thanks to the modified integro-modal method.

2. Theoretical developpement

2.1. Basis for the integro-modal approach

An irregular shaped cavity, with acoustically rigid walls, is treated as a sum of
connected sub-cavities, regular or not, separated by an elastic membrane as shown
in Fig. 1. As most investigations did in the past, we assume that the cavity has no
damping and absorption inside. Morse and Feshbach [17] stated that in each sub-
volume V, the interior pressure � satisfies the Green integral equation with asso-
ciated boundary conditions on the enclosing surface S.

� rð Þ ¼

ð
S

G r; r0ð Þ
@� r0ð Þ

@n
�� r0ð Þ

@G r; r0ð Þ

@n

� �
dS ð1Þ

r and r0 are the observation and source points in the cavity respectively. The
boundary conditions over the flexible membrane is determined by continuity of the
normal air particle velocity and the structural velocity on the separating surface,
noted SF. Hence

@�

@n
¼ ��fw

: :
on SF ð2Þ

where n is the normal to the surface of the boundary (positive outwards) and w is
the flexural displacement of the separating membrane. �f is the air density within the
cavity. The flexible portion of S refers only to the separating membrane between two
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adjacent sub-cavities. Anywhere else on the remaining surface, noted SR, the pres-
sure gradient is zero.
Each sub-volume is treated separately. To construct the Green function G and the

solution, the initial sub-volume V is enclosed in a larger bounding volume Vb
(Fig. 1), of standard geometry and with rigid walls Sb. The modal characteristics (�n
!n) of Vb are obtained analytically, then used as base functions to express � and G
in an orthogonal expansion, as in Ref. [17]:

G r; r0ð Þ ¼
X
n

c2�n rð Þ�n r0
� �

!2n � !2
� �

Vb�n

ð3Þ

� r; tð Þ ¼ �
f
c2f

X
n

an tð Þ

�n
�n rð Þ ð4Þ

Where c is the speed of sound in air; �n is the generalised mass of the n th normal
mode of Vb. an are unknown coefficients and

�n;n0�
2
n ¼

ð
Vb

�n rð Þ�n0 rð ÞdV

More will be discussed later on the selection of the bounding cavity. Similarly, the
flexural displacement of the membrane w can be expanded in terms of base function
jm defined over the region SF:

w ¼
X
m

qm tð Þ’m ð5Þ

Fig. 1. Discretization of a non-standard acoustical cavity using integro-modal approach.
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where m is the structural modal indices; qm(t) are the structural modal coordinates.
Eq. (1) is an integral equation for general time dependence. Assume

an tð Þ ¼ ane
i!t ð6Þ

Knowing the orthogonal properties of the base functions, and the boundary con-
ditions, then using the modal expansions in Eqs. (3)–(5), the integral equation Eq.
(1) becomes:

!2n � !2
� �

an þ
c2

V1

X
n0

an0

�n0
Tn0;n ¼ !2

Sf
Vb

X
m

qmLnm ð7Þ

Tn0;n ¼

ð
S

�n0
@�n

@n
ds Lnm ¼

1

SF

ð
SF

�n r
S
o

� �
’m r

S
o

� �
dS ð8Þ

whereTn’,n is the spatial coupling between the nth and the n
0th acoustic modes of the

bounding cavity and Lnm the modal spatial coupling coefficient between the mth
base function of the membrane and the nth acoustic mode.
Furthermore, by assuming a mass-less and stiffness-free membrane, it was

demonstrated in Ref. [6] that the equation describing the flexural motion of the
separating membrane is reduced to the following:

ð
SF

�þ’mds�

ð
SF

��’mds ¼ 0 ð9Þ

where �+ and et �� are the sound pressure at each side of the membrane. It can be
noticed that the above expression represents a global continuity of the pressure due
to the integrals involved and therefore indicates a pure opening between two adja-
cent sub-cavities.
The key relations for solving the internal acoustic distribution in the cavity are

Eqs. (7) and (9). These coupled acoustic-structural equations form an eigenvalue
system, o2 being the unknown eigenvalue. For each eigenvalue, there is a corre-
sponding eigenvector given by the coefficients an and qm. All series expansions used
in the calculations of G, � and w have to be truncated, in order to implement a
numerical procedure.

2.2. Selecting the base functions

2.2.1. The original approach and its limitations
As stated above, the rigid-wall modes of a standard shaped cavity Vb are used as

base functions to describe the cavity sound field in normal mode expansion. In a
two-dimensional case, the bounding cavity may be rectangular, circular, or of any
other shape as far its modal characteristics are known. In practical application, to
ensure good accuracy, the selected bounding cavity must fit, as much as possible, the
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geometrical shape of its corresponding enclosed sub-cavity V. For an automobile
cabin, rectangular boxes seem to be a good option [9], but for an aircraft, circular
geometry would be more appropriate [10].
In a standard geometry, V and Vb coincide, as well as their respective boundary

surfaces S and Sb. Sb having acoustic rigid walls, the normal derivative of �n along
S (Sb) is zero. Using �n as the cavity normal modes and base functions for the series
expansion of �(r,t) and G(r0,r), it is found that @�/@n=0 and G/n=0 along the entire
surface S. Consequently Tn,n0=0, which simplifies Eq. (7). However, most studied
cavities can’t be conceptually dismantled into regular sub-cavities only. Irregular
ones must be dealt as well. Selecting the convenient bounding cavity thus becomes
an important part of the method. It was suggested earlier that the shape of the
bounding cavity, should fit, as much as possible, the corresponding enclosed sub-
cavity. Considering this, for a given subdivision, it seemed suitable so far (see irre-
gular sub-cavity in Fig. 1), that the derived opening surface (Sf) should be a member
of Sb, the bounding sub-cavity’s boundary,

i:e: Sf � Sb

Again, using the normal modes expansion of the acoustic pressure based upon the
eigenmodes (�n) of Vb, the following results can be established:

@�n

@n

� �
Sb

¼ 0 )
@�n

@n

� �
Sf

¼ 0 )
@�

@n

� �
Sf

¼ 0

Yet the boundary condition of the particle velocity @�/@n has been defined as non-
zero by Eq. (2) which was derived from structural considerations. Relying on the
observation made in Ref. [6], it is expected that the speed of convergence of the
expansion (of pressure and pressure gradient) to the exact value may be affected in
the vicinity of the assumed flexible membranes. As a result, the prediction accuracy
in the whole multi-connected cavity could also be compromised. The effect of this
inevitable handicap will be further discussed along with the numerical results.

2.2.2. The ‘‘overlapped cavities’’ option
To handle the expected zero-gradient obstacle, one should select base functions

that satisfy the inhomogeneous boundary condition on the membrane surfaces SF.
In contrast to the previous approach, the bounding cavity is lengthened so that its
boundary does not cover the membrane surfaces SF, but permits a certain degree of
overlapping. � is defined as the ratio of the additional length to the original length
(related to the original approach) of the bounding cavity in the direction normal to
the separating membrane surfaces (Fig. 2). Whereas adjacent bounding cavities were
previously stuck together along their connecting surfaces, a slight overlap is allowed
among them in the new approach, for which reason � is called the overlapping ratio.
In each sub-cavity, the base functions are now related to the extended bounding
cavity and are expressed in terms of the selected coordinates system and �. The term
@G/@n must be retained in the whole sub-cavity boundary. Taking �=0 leads us back
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to the classical approach. The integrals in Eq. (8) can be calculated numerically or
analytically, depending on the complexity of the sub-enclosure shape.

2.2.3. Relation between the original and the modified integro-modal approach
For illustration purpose, rectangular bounding cavities will be used hereafter. To

stress the relation between the original integro-modal approach and the one using
overlapped cavities, the integrals are computed for a rectangular box with sides of
length Lx and Ly in x and y directions respectively.
Let us use two adjacent bounding cavities of dimensions Ly	(1+�)L1 and

Ly	(1+�)L2 [�=0 represents the real rectangular cavity of dimension
Ly	(L1+L2)]. In Cartesian coordinates, the connecting membrane is defined by
equation x=L1. The first sub-cavity of volume V01 will have the following modes
and properties:

�n x; yð Þ ¼ cos
nx	x

1þ �ð ÞL1

� �
	 cos

ny	y

Ly

� �
ð10Þ

@�n

@n
jSF¼ �

@�n

@x
jx¼L1¼

nx	

1þ �ð ÞL1
	 sin

nx	

1þ �

� �
cos

ny	y

Ly

� �
ð11Þ

S01 andSb1 coincide everywhere apart from the connecting panel SF. Hence �n (x, y)
can now satisfy the Neuman homogeneous boundary condition on the rigid part of
S01 and the inhomogeneous condition on SF. The coupling between then nth mode
and the n0 th mode in Eq. (8) can be calculated:

Fig. 2. Selection of extended bounding cavity for the ‘overlapped cavities’ approach.
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Tn;n0 ¼

ð
So1

�n0
@�n

@n
ds ¼

ð
SF

�n0
@�n

@n
ds ¼

nx	

1þ �ð ÞL1
	 sin

nx	

1þ �

� �

	

ðLy
0

cos
n0y	y

Ly

� �
cos

ny	y

Ly

� �
dy

ð12aÞ

Tn0;n ¼
nx	Ly
1þ �ð ÞL1

	 sin
nx	

1þ �

� �
	

1

2
þ
1

2
�0;ny

� �
�n0y;ny ð12bÞ

If �=0, Tn,n0=0, thus, the addition of � has the effect of coupling the acoustic
modes of the bounding cavities in their respective enclosed sub-cavities.
The flexural displacement of the flexible membrane can be represented by any set

of orthogonal functions providing they are complete in the region of the membrane
surface. In Ref. [6], following base functions been used:

’m yð Þ ¼ sin
m	y

Ly

� �
ð13Þ

Hence

Lnm ¼ cos
nx	

1þ �

� �
	

ðLy
0

cos
ny	y

Ly

� �
sin

m	y

Ly

� �
dy ð14aÞ

Lnm ¼ �cos
nx	

1þ �

� �
	
m �1ð Þ

nyþm�1
� �
	 n2y �m

2
� � Ly

if n 6¼ m;Lnm ¼ 0 if ny ¼ m or ny ¼ 0

ð14bÞ

As the base function form an infinite set, the systems of linear equations are of
infinite order. A truncation to a finite order is thus required to obtain a numerical
solution. Such an approximation has been widely justified in different studies [9,18]
whenever normal mode expansions were concerned.

2.3. The truncated generalized system

To illustrate how the method works for a general case, a four sub-cavity system of
irregular shape is treated. Eq. (7) is applied in each sub-system k (k=1, 2, 3, 4) and
Eq. (9) for the k�l separating membranes between adjacent sub-volumes. The pro-
cedure yields a system of linear equations that describes the coupling between � and
W vectors. � andW are the acoustic and structural modal amplitudes, respectively,
of the multi-connected model. Subscript k or k�1 will stand for the membrane
indices and superscripts for the cavity.
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Ak �k
	 


� !2 Ik �k
	 


þQk
k Wkf g

� �
¼ 0 k ¼ 1 ð15aÞ

Ak �k
	 


� !2 Ik �k
	 


þQk
k Wkf g �Qk

k�1 Wk�1f g
� �

¼ 0 k ¼ 2;Ncav or ¼ 3

ð15bÞ

Ak �k
	 


� !2 Ik �k
	 


þQk
k�1 Wk�1f g

� �
¼ 0 k ¼ Ncav ¼ 4 ð15cÞ

where

Ak
� �

ij
¼ !ki

� �2
�ij þ

c2

Vk
b�

k
j

Tkj;i I k
� �

ij
¼ �ij Qk1k2

h i
ij
¼
Sk2F

Vk1
b

Lik1;jk2; ð15dÞ

In the above equations, [Q] is the coupling matrix. With Ncav sub-cavities, the first
equation applies to the first and the last sub-cavity having only one separating
membrane, while the second equation hold for all intermediate sub-cavities delim-
ited by two membranes at each side. Equations on the membrane vibrations yield
the following matrix form:

Hk
k �k
	 


�Hkþ1
k �kþ1

	 

¼ 0 k ¼ 1; 2; . . .Ncav � 1 ¼ 3 ð16aÞ

Hk1
k2

h i
ij
¼

1

�k1
j

Lik1;jk2 ð16bÞ

where H include terms related to the inter-modal coupling between each set of
adjacent sub-cavities.
The use of bisection method gave undesirable poles, which are not the eigenvalues

of the system. To avoid this problem, the system will be treated as a whole hereafter.
Upon assembling the entire system, a standard eigenvalue problem is obtained as
follows:

Kþ !2M
� �

Ff g ¼ 0

Ff g ¼ �1; W1;�
2; W2; . . . ;�

Ncav�1;WNcav�1;�
Ncav

	 
T
ð17Þ

K ¼

A1 0 0 0 0 0 0

H1
1 0 H 2

1 0 0 0 0

0 0 A2 0 0 0 0

0 0 H 2
2 0 H 3

2 0 0

0 0 0 0 A 3 0 0

0 0 0 0 H 3
3 0 H4

3

0 0 0 0 0 0 A4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

M ¼

I1 Q1
1 0 0 0 0 0

0 0 0 0 0 0 0

0 Q2
1 I2 Q2

2 0 0 0

0 0 0 0 0 0 0

0 0 0 Q3
2 I3 Q3

3 0

0 0 0 0 0 0 0

0 0 0 0 0 Q4
3 I4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
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whereM is the inertia matrix, K is the stiffness matrix and F is the eigenvector of the
system with all the unknown coefficients and its components. For each eigenvalue,
an eigenvector can be obtained. The components of this eigenvector are used to
describe the distribution of the corresponding acoustical mode.

3. Numerical results and validation

3.1. Assessment of the original integro-modal approach (a=0)

A simple rectangular cavity is first used to test the method. Analytical solutions
available for this configuration provide a good basis for comparison purposes.
Actually, the analysis for this simple model will mostly focus on the prediction of the
modal pressure distribution mainly in the vicinity of connecting surfaces. The rec-
tangular cavity used will have dimensions: Lx	Ly=2.0	1.1 m; the two-sub-cavities
system will first be discussed. Lxk and Lyk (k=1,2) are the dimensions of sub-cavity
number k in the directions x and y. Lx1=0.81, Lx2=1.19 and Ly1 ¼ Ly2 ¼
Ly ¼ 1:1. The connecting zero-mass and stiffness-free membrane between the two
sub-cavities will be therefore located at x1=0.81. When �=0, the bounding cavity
selected to construct the base functions in each sub-cavity will have the same
dimensions as its corresponding enclosed sub-volume
For a two-dimensional problem, two indices corresponding to the two orthogonal

directions are involved for each acoustic mode. Their respective maximum value is
denoted Nx and Ny. In all calculations reported hereafter, these two indices are
always set equal: Nx=Ny=Na. As far as the membrane is concerned, only one
index is used. Ms stands for the maximum number of terms in the structural
decomposition series. Two different base functions can be used for the membrane.
One is the sine function as proposed in our previous work [1]

(’m yð Þ ¼ sin m	y
Ly

� �
;m ¼ 1; 2; 3; . . .Ms), while the other is a cosine function

(’m yð Þ ¼ cos m	y
Ly

� �
;m ¼ 0; 1; 2; 3 . . .Ms). Effects of using different base functions will

be discussed later.

3.1.1. Normal modes (natural frequency and mode shape)
Numerical results for the rectangular box are compared with the exact solution.

Although many details on the natural frequency calculation can be found in Ref. [6],
this brief section gives a general idea of the accuracy of the method. The first 10
natural frequencies, listed in Table 1, are compared with the analytical solutions.
Good estimation is observed even for a small numbers of terms. The error depends
on the resonant mode, and the number of terms in the expansion. As expected, the
results for the resonant frequencies are more accurate as the number of modes in the
expansion is increased. The numbers of the base function of the membrane regulates
essentially the pressure continuity between the two adjacent sub-cavities as per
Eq. (9).
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Fig. 3 depicts a typical contour plot of the pressure field distribution, computed
with 25 terms (i.e. Na=5) in the expansion. The lines of equal sound pressure are
calculated for the mode (1,2), the 10th mode at 324.4 Hz (exact value is 323.4 Hz).
The sound pressure amplitude was normalized to its maximum value in the cavity.
The contour plot shows good agreement with exact distribution in major part of the
cavity. However, errors between exact and numerical solutions depend on the posi-
tion where the amplitude is evaluated. Maximum error is observed in the vicinity of
the connecting surface between the two sub-cavities. In fact, although the membrane
ensures continuity of the pressures at both sides, the equal pressure lines are visibly
different from the exact solutions. This phenomenon can be better seen in Fig. 4, in
which the sound field distribution in the direction normal to the membrane surface
at y=0.49 is investigated when different number of the decomposition terms are
used in sub-cavities. The discontinuous slope at the separation area was expected

Table 1

Natural frequencies of a rectangular cavity calculated with integro-modal approach (five acoustic and

opening modes, two sub-cavities)

Mode order Exact solution (Hz) Na=5 (Hz) Na=8 (Hz) Na=12 (Hz)

1 (1,0) 85.7 89.4 87.9 87.5

2 (0,1) 155.9 155.9 155.9 155.91

3 (2,0) 171.5 174.0 173.0 172.5

4 (1,1) 177.9 179.7 179.0 178.6

5 (2,1) 231.8 233.7 232.9 232.5

6 (3,0) 257.25 261.8 259.9 259.0

7 (3,1) 300.8 304.7 303.1 302.3

8 (0,2) 311.8 311.8 311.8 311.8

9 (1,2) 323.4 324.4 324.0 323.8

10 (4,0) 343.0 357.1 351.5 348.4

Fig. 3. The calculated lines of equal sound pressure for a rectangular cavity with Na=Ms=5. - - - - -

Exact results (324 Hz), ———– Integro-modal analysis (323.4 Hz).
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from the analysis made in 2.2.1. In fact, the Green’s function for each sub-volume
satisfies the second-order homogeneous condition on the aperture surface; thus leads
automatically to a zero pressure gradient along the area of interest. It can been seen
from Fig. 4 that the speed of convergence of the expansion (of the slope of the
function) to the exact value will depend on the number of terms in the expansion
and the position chosen for the evaluation. Near the connecting boundary, more
terms may be needed to achieve the convergence. But only a few terms can give a
good estimation away from such flexural panel. This observation suggests the use of
a large number of decomposition terms, increasing such significantly the size of the
matrices to be treated.

Fig. 4. Longitudinal sound field distribution (normalised by maximum value in the cavity) of the 10th

acoustic modes (1,2) of a rectangular cavity ; Na=Ms = 5. - - - - Analytical solution, 	–	Na=Ms=4, – –

Na=Ms=8. —–Na=Ms=12.
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3.1.2. Particle velocity
Moreover, the non-uniform convergence of the pressure gradient doesn’t allow us

to estimate the values of the particle velocity by normal derivation of the pressure
expansion, but using the structural solution for the particle velocity in the flexible
panel according to Eq. (2). The velocity distribution along the flexible surface has
been plotted in Fig. 5 for two different configurations. One option is to use the sine
base functions; the other choice is to use cosine functions, in order to agree with the
mathematical expression of the sound pressure expansion as was stated above.
Obviously the second option agrees much more with the analytical solution and
seems to be a good alternative at least as far as a rectangular bounding cavity is
concerned. Hence the pressure gradient estimation on the membrane surface agrees
with the exact value when its relation to the particle velocity is considered.
Increasing the number of terms improves the convergence of the velocity expan-

sion in the inter-cavity connection, and of the sound pressure anywhere in the cavity.
Hence, � and @�/@n can be determined anywhere in the cavity. It was pointed [8] that
expression [Eq. (4)] is still suitable for calculating the pressure itself throughout the
cavity and everywhere on the wall surface, including the flexible portion (referring
here to the connecting aperture); and this despite the non-uniform convergence of
the normal derivative of the pressure expansion. Altogether the previous assessment
suggests that the original integro-modal approach can achieve good convergence
both for the natural frequencies and the natural mode shapes. Yet, it is clear that the
discontinuity of @�/@n affects the convergence not only near the opening surface, but
also in the whole cavity.

Fig. 5. Structural velocity distribution for the connecting membrane surface. - - - - Analytical result,

	–	 present approach with sine base functions,*–*–* Present approach with cosine base functions.

E. Anyunzoghe, L. Cheng /Applied Acoustics 63 (2002) 1233–1255 1245



Fig. 6. Longitudinal modal sound field distribution (normalised by maximum value in the cavity) and for

the first acoustic modes of a rectangular cavity, Na=Ms=5. – – Analytical results, —– integro-modal

distribution. (a) Fexact=85.7 Hz, FIMM =89.4 Hz; (b) Fexact=171.5 Hz FIMM=174 Hz; (c) Fexact=178 Hz

FIMM=180 Hz.
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Fig. 7. Longitudinal modal sound field distribution (normalised by maximum value in the cavity) for a

rectangular cavity, Na=Ms=5. – – Analytical results, —– integro-modal distribution. (a) Fexact=232 Hz,

FIMM=234 Hz; (b) Fexact=257 Hz, FIMM=262 Hz; (c) Fexact=301 Hz, FIMM=305 Hz.
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More results are given in Figs. 6 and 7, in which a number of selected modes are
investigated. It can be noticed that when @�/@n is near zero throughout the opening
wall [see modes (1,1) and (2,1)], best resolution is achieved for the sound pressure
distribution and natural frequencies prediction. In the meanwhile, lower convergence
in the cavity occurs for the mode (3,0) when discontinuity of pressure gradient is
steeper. These observations suggest a way of improving the prediction in certain
cases: when dividing the acoustic enclosure, one should for any specific natural
mode, if convenient, locate the opening walls where minimum gradient is expected.
Increasing the number of sub-cavities also affect the accuracy of the prediction. In

Fig. 8 the sound field distribution of the rectangular cavity is investigated for a two
and a four subdivisions model using the same number of terms. The latter generates
much better results in the whole cavity than the two sub-cavities case.

3.2. The modified integro-modal approach using overlapped cavities

The modified approach is tested using the same configuration with a two-con-
nected sub-cavities system. Eq. (17) was solved for different overlapping rates, with
only few acoustic modes and membrane terms (Na=Ms=5). The resulting estima-
tion of mode (1,2) frequency was plotted in Fig. 9, using a value of �=8%. A
comparison with Fig. 3 reveals the improvement brought by the use of overlapped
cavities. In fact, the calculated distribution of sound pressure agrees well with the
exact distribution in the whole cavity. Comparing with Fig. 3, there is no more
irregularity near the connecting aperture. By allowing the inhomogeneous condition

Fig. 8. Sound field distribution of the first acoustic mode of a rectangular cavity divided in two or four

subcavities. Exact and approximated results with Na =Ms=5 flexural modes. - - - Analytical result,

—*— present approach (two sub-cavities), –present approach (four sub-cavities), -..-..-..-..-boundary line

(two sub-cavities), ————boundary lines (four-sub-cavities).
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in the separating opening, the numerical sound pressure can adjust itself to satisfy
the boundary condition of the pressure gradient or velocity continuity. Conse-
quently, the discontinuity of slope has dropped considerably.
The influence of � is significant particularly near the opening boundary. In fact,

for each configuration, it exists an optimal value of � to ensure a good accuracy in
terms of natural frequencies. In the present case, Fig. 10 shows the sensitivity of the
natural frequency on the � value, with the optimal value being �=8%. The contour

Fig. 9. Calculated lines of equal sound pressure amplitude for a rectangular cavity with Na=Ms=5,

�=8%; mode (1,2). - - - Exact results, ———–IMM analysis.

Fig. 10. Evaluated resonnant frequencies of a rectangular cavity, mode (1,2) versus overlapping ratio and

Na =Ms=5. - * - * - Integro-modal approach, Exact solution.
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plot of the sound field in Fig. 11 confirms the relevance of the selected rate for good
convergence where maximum error for the sound field is observed when �=0. This
error is significantly reduced with �=8%. Beyond 8% the bounding cavities are too
distorted from the real sub-cavities to give a reasonable approximation.
The square of the amplitude error between the approximated sound field dis-

tribution and exact solution in the cavity (Fig. 12), reveals that the technique of
overlapped cavities also helps to improve the convergence of the standard integro-
modal solution, without increasing the number of base functions in the expansions.
This can be very convenient when dealing with systems of more complex shapes.

Fig. 11. Longitudinal sound field distribution (normalised by maximum value) of a rectangular cavity;

modes (1,2); Na=Ms=5 and �=8%. Analytical solution, –	–	–, �=0% —, �=8%, – – �=15%.

1250 E. Anyunzoghe, L. Cheng /Applied Acoustics 63 (2002) 1233–1255



Tests with irregular acoustic enclosures will be necessary to complete the assessment
of the reliability of the integro-modal approach.

3.3. Validation with a trapezoidal cavity

In order to understand how the method works for an irregular cavity, a trapezoi-
dal cavity is considered. Hamery and Dupire [19] stressed the need for investigating
acoustic fields in trapezoidal cavities with very strong shape perturbation. They
worked on devices involving trapezoidal shaped cavities having an angle between
adjacent walls close to 55�. In Ref. [20], experimental and finite element methods
were used to calculate the first three acoustic modes of a trapezoidal cavity with a
deviation of 54�. The estimation is based on the finite element method using trian-
gular elements. The same trapezoidal cavity is considered in the present paper as an
example for calculating the normal acoustic modes, using the modified integro-
modal approach. The cavity can be separated in two regions. One is rectangular and
the other is triangular. Acoustic properties of the former region are determined,
using the normal modes of the rectangular cavity (extended if �>0). As there is no
analytical solution for the triangular enclosure, it is conceptually dismantled in four
sub-cavities. Again rectangular bounding cavities are chosen to describe the modal
properties in each sub-cavity. In short, the whole cavity is divided in five rectangular
sub-volumes. Five acoustic and membrane terms in each sub-cavity were proved to
give a reasonable estimation of the first frequencies. For higher frequencies, more
acoustic modes and membrane terms should be used.

Fig. 12. Square of the amplitude error between the approximated sound field distribution and exact

solution of the first modal pressure. –*– Na=Ms =5, �=0%, —–Na=Ms =10, �=0% — —

Na=Ms=5, �=8%.
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In Fig. 13 the lines of constant pressure are drawn, corresponding to the first three
modes of the trapezoidal cavity. The pressure amplitude is normalized by its max-
imum value. 0.2 units of pressure amplitude differentiate two successive lines. The
nodal lines are clearly indicated. The lines outside the cavity have no physical sig-
nificance, but they illustrate how the method works, i.e. approximates the acoustic
pressure using rigid-wall modes of rectangular sub-cavities. On the left-hand side a
zero-overlapping ratio was considered, then a non-zero ratio on the right. As
expected, numerical solutions with zero-overlapping show discontinuous slopes of
the acoustic pressure lines across the connecting panels. The generated error due to
the slope discontinuity is increased in the nearby of such areas and propagates
eventually in the entire cavity. With the use of over-lapping cavities (5%), the cur-
ving of the pressure amplitude lines is apparently smoother compared to the a=0
case. Numerical tests for the three modes of interest revealed that, using a ratio
beyond 5% does not give any noticeable change in the pressure amplitude approx-
imation. In Table 2, results in terms of natural frequencies are tabulated. Compar-
isons with finite element and experimental method are also provided. The agreement
is excellent whether a is 0 or 6%. In Fig. 14, simulation results with and without
overlapping are compared to both FE results and experimental results. Again, no
overlapping was used for the left-hand side figures and then a 5% overlapping ratio
for the right-hand side ones. Improvement brought by the use of a 5% overlapping

Fig. 13. Lines of constant acoustic pressure amplitude (normalised to maximum value) in a trapezoidal

cicular cavity; (a) first mode; (b) second mode; (c) third mode: left: �=0%; right: �=5%.
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is obvious especially for the third mode (Fig. 13b). In fact, original IMM (�=0%)
fails to give an acceptable prediction of the sound pressure with two segments of
lines split out, whilst the improved method gives very nice agreement with the two
reference cases.

4. Conclusions

The original Integro-Modal Method was assessed through investigation of mode
shapes. It was established that the selected base functions reveal the limitations of
such an approach. A zero pressure gradient was imposed on the surface separating
two adjacent sub-cavities, whereas its true value was proportional to the non-zero
particle velocity. Because of such discontinuity, the convergence of the pressure was
affected in the vicinity of opening apertures and eventually in the whole cavity. In

Table 2

Natural frequency for a trapezoidal cavity (five acoustic and opening modes, five sub-cavities)

Present analysis Experimental results Finite element method

�=0% �=6%

First mode (Hz) 93.4 91.0 93.0 92.5

Second mode (Hz) 165.1 162.4 164.0 162.5

Third mode (Hz) 182.2 180.0 182.0 179.1

Fig. 14. nodal lines of trapezoidal cavity; (a) second mode; (b) third mode: left: �= 0%; right �=5%. - - -

Finite elements results, ———–Integro-modal results,—— —Experimental results, – – – -Sub-cavity

boundary line.
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order to handle the obstacle, an improved technique, based on the use of extended
bounding cavities, was proposed. The new base functions related to the extended
sub-cavities permitted a non-zero gradient between adjacent sub-cavities. Numerical
tests were performed either with the zero-ratio or the non-zero-ratio model. It was
observed that:

� The original approach allowed a good prediction of the natural frequency of
cavities. In terms of the sound pressure prediction, however, the accuracy of
the original approach is questionable in the vicinity of the junctions between
sub-cavities. The use of a non-zero-overlapping ratio helped to solve or at
least attenuate the problem of gradient discontinuity between adjacent sub-
cavities without altering the good accuracy in the frequency estimation.

� By minimizing the discontinuity of slope, the improved method also helped
to improve the convergence of sound pressure in the whole cavity.

� Satisfactory results could be achieved with very limited number of acoustic
modes in the series expansion, when one introduces a non-zero ratio.

Actually, the above results illustrated how the extended approach can help deal
with the problem of discontinuous gradient and achieve better convergence, pro-
viding a proper selection of the different parameters, namely the number of sub-
cavities, the number of acoustic and structural modes per each sub-cavity, and the
overlapping ratio. From the presented examples, it is clear that there is no general or
analytical role, including all engineering designs, to calculate the optimal choice of
the parameters of convergence. Each mode has to be handled individually. Whilst
Ref. [6] established a standard procedure to determine the optimal number of sub-
cavities and acoustic and structural base functions, the choice of � involves however
successive numerical tests. Some useful information can be obtained in the work of
Pan [21], which shows that the optimal range of � is related to the orthogonal
properties of the base function. Whether this statement is applicable to the present
situation requires further investigations.
As a final remark, some problems which go beyond the assumptions of the present

paper are briefly mentioned. The extension of the present approach to 3D problems
involving vibrating boundary should be possible, although complications due to the
possible strong irregularities in all three dimensions are foreseeable. As mentioned
before, modeling of the vibrating boundary should be coupled to the acoustic mod-
eling of the cavity. Since acoustic treatment based on the modal solution leads to
inaccurate estimation of the velocity, usual practice is to use the vibration equation
for this purpose [8]. The original IMA has already been applied to the case of a
simplified 3D aircraft fuselage involving vibrating structures and an irregular-shaped
cabin [10,22]. Modifications proposed in the present paper should not affect the
applicability of the method in this regard. Moreover, possible present of absorption
material on the wall can be simulated using the local reacting impedance model as
outlined in Ref. [23]. Further investigations on other cases involving sharp geome-
trical discontinuities are still needed to have a more overall assessment of the
method.
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