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ABSTRACT

This paper presents a study on vibration damping by means of partial
viscoelastic coating applied to the surface of vibrating panels. An optimi-
zation procedure seeking the location as well as the shape of coverage
giving the best damping performance for a given weight of material is
established. Emphasis is also put on the temperature and frequency depen-
dent characteristics of the viscoelastic material. The results show the effects
of the operating temperature and the great potential of using optimized
partial coverage, either to reduce the weight while maintaining the same
damping level or to increase the performance with the same amount of
material.

INTRODUCTION

Viscoelastic coating damping treatment is widely used in the vibration
control of various types of thin-walled structures. When exposed to
vibrations, the high polymeric molecular properties exhibited by these
materials enhance the system damping, thereby realizing considerable
dissipation of vibration energy. Viscoelastic coating is usually used in two
ways: constrained and unconstrained layer configuration. The first one,
also referred to as sandwich treatment, consists of applying the damping
material between the surface of the structure to control and a thin metallic
307
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facing. This type of configuration presents the advantage of being more
effective due to the shear deformation caused by the relative movement of
the two elastic layers. However, the presence of the constraining layer
results in a more considerable added mass to the system. Therefore,
unconstrained layer is preferred in many practical situations in which the
added weight has to be limited.

Considerable efforts have been made in the past to study the general use
of the damping treatment, which can be seen by the substantial amount of
published papers on the subject. The earliest work performed in the 1960’s
permitted a general understanding of such applications to vibration and
noise control problems.'™ A good summary can be found in a review
paper by Nakra.* With respect to the full coverage, partial coverage was
investigated to a lesser degree. In many practical applications, such as
aeronautic and space structures, damping treatment is subject to a very
careful consideration of weight economy. Since the partial coverage tech-
nique has the advantage of adding less weight, efforts should therefore be
made to find its optimal use. Most of the work on partial coverage inves-
tigated one-dimensional structures. Among the earliest papers published
ou the subject, one can cite the ones written by Mead ef al.,” ® in which the
effects of an unconstrained layer on the fundamental modes have been
reported. Since then, one-dimensional structures have been the subject for
many researchers and practitioners.” '® As far as partial coverage on two
dimensional plane structures is concerned, much less information is avail-
able. Parthasarathy investigated the subject with a rectangular plate'!
where several coverage configurations are compared in terms of increase
of the modal damping factors. The same scenario was later taken by the
same author for a rectangular plate having central cutouts.'” From these
works, one got a good understanding of the coverage position although
no automatic optimization procedure was used. In fact, from an optimi-
zation point of view, not only the optimal position of the coverage should
be determined but also the shape to get the optimal damping performance.
To our knowledge, no work was reported in the literature to tackle this
problem.

Another important aspect related to viscoelastic materials is the oper-
ating temperature. As we know, the damping properties of these materials
are very sensitive to temperature variations and, to a certain degree, to
frequency variations.'? For aeronautic and aerospace applications, struc-
tures are always exposed to a wide range of temperature. For example, a
satellite panel may undergo a temperature range varying from —100°C to
+100°C from nights to days. This can considerably affect the mechanical
properties of the viscoelastic materials and consequently, the control
performance. In this context, although great efforts have been made by
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chemical workers to study the dependence of these materials’ property
under temperature-frequency variations, no sufficient details are available
in the literature to illustrate its practical influence from the point of view
of mechanical engineering. In fact, the majority of work reported used
constant material parameters.'*'® For the above-mentioned areas of
application, it seems that an optimization algorithm should take these
factors into account.

In this paper, we propose a systematic study of the aforementioned
issues with a panel structure partially covered by unconstrained layers. A
general formulation with an integrated optimization algorithm is estab-
lished. With respect to the existing literature, this work aims to contribute
in the following aspects: (1) With the criteria imposed on the additional
weight, the optimization procedure gives the best coating configuration,
including the location and the shape, and this either for the modal damp-
ing factors or for the structure’s response when subjected to a mechanical
excitation over a given frequency band. (2) The formulation takes into
account the real materials’ properties under frequency-temperature
variations. (3) Thanks to the mounting conditions modeling of the panel
by means of artificial springs, the formulation is capable of handling a
wide variety of fixing conditions that may be encountered in practice.

FORMULATION AND RESOLUTION METHOD
Modeling of the system

The investigated structure is a rectangular thin plate (dimensions 2b, 2A,
2e) symmetrically covered on both sides by a certain number of thin
unconstrained rectangular pieces of viscoelastic material (see Fig.1a). The
mounting conditions are simulated by a set of translational and rotational
springs connecting the plate along its edges to a fixed foundation. As
shown in Fig. 1b, these springs are continuously distributed along the
edges with various stiffness for each one (k; in N/m?* for translation and c;
in N/rad for rotation, i = 1,2, 3,4). This technique allows the representa-
tion of a wide variety of attaching conditions by simply adjusting the
stiffness level of the springs.!” '® For example, simply supported bound-
aries can be obtained by giving a high value to the translational springs
and a value of zero to the rotational ones. The physical properties of both
the plate and the viscoelastic material are assumed to be homogeneous.
The own internal damping of the plate is introduced into the model and
the temperature—frequency dependent stiffness and loss factor of the
viscoelastic material are also taken into consideration.
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(b)

Fig. 1. (a) Representation of the system; (b) modeling of the mounting conditions.

It is well known that shear effects for unconstrained layers are second-
ary with respect to tension—compression ones. For a thin plate symme-
trically coated on both sides, the Love—Kirchoff theory is therefore used as
a displacement field for the model:

ow ow

{u,v,w} = {—za—,—z —a;,w(x,y,t)} Q)

Here the vector {u, v, w} represents the displacement of a point either on
the plate or on the viscoelastic layer. The flexural displacement w, which
has now become the only independent variable, is then approximated by a
polynomial expansion over x and y:

w(x e - - (1 ic. i ..y_ j
2 =3 3 a7 ) (3 )
i=0 j=0

where the factors a;,(¢) are complex and functions of time ¢. The Lagran-
ge’s equations can then be applied to find the stationary state of the
system with the factors a,/(¢) as generalized coordinates:
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d ( oL ), oL
dt \ 9a,,(t)) Oap(t)

(p=0,1,2,....mand ¢ =0,1,2,...,n) (3)
where L is the Lagrangian of the system expressed as:
L=FE —E+W S

Here, Ey represents the kinetic energy of the system, E, the potential
energy and W, the work done by the external forces. These terms are given
by:

1 2
Ekzijvp(%—g dv (5)
L[ KT 1 ’w\*  [9'w\? . 9w d'w
“EJ 2(1+v) {(l—v)KaxZ) +(a_y2> ””Wa—yz}
Bxay) }

1
EJ { 1W(=b,y, OF + ka[w(b, y, OF +

(9w(b ¥, t)] }dy

Ey

ow(—b,y, 1)1
o[ MG

, _ 2
+% J_b {k3[w(x, —h, OF + kalw(x, b, OF + 3 [?”—(’By—h”—)}
2
o [M] } doc (6)
dy
A —
W= 1/5(t) w(xs, s, )] 7

=1

The symbol A in eqn (7) represents the number of forces applied to the
system and (x5, ys, t) the application point of each of them. It should be
pointed out that the volume integration described in eqns (5) and (6)
should be carried out for both the plate and the viscoelastic layer. Conse-
quently, the corresponding material properties (modulus E, density p and
Poisson’s ratio v) should be used in due case. The application of the eqns
(3) yields a classic m x n degree of freedom system of linear equations:

[M{a(n} +[K{a)} = {f(0} (8)
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in which [M ] and [K ] are, respectively, the mass matrix (real) and stiffness
matrix (complex due to the frequency and temperature dependent char-
acteristics of the viscoelastic material). For harmonic excitations the
vector of the force and the vector of the response are represented in the
following way:

{f(} = {F} & 9

{a(n} = {4} & (10)
which reduce eqn (8) to:

[[K] - o’ [M]{4} = {F} (1)

The formulas for calculating the terms of the matrices and the force
vector are given in Appendix 1.

As to the modeling of the stiffness and the damping of viscoelastic
materials, substantial research has been done in the past. Among others.
Nashiff'* presented a data base for different kinds of materials via
measurements. Several curve-fitting formulas were also developed in the
literature. In the present work, the formulas® for the viscoelastic layer of
Soundcoat D made by SOUNDCOAT were used for illustrative purposes.
These formulas give the Young’s modulus and the loss factor of the
material as a function of temperature and frequency. The details are given
in Appendix 2.

Resolution of the system

In the present study, both the free and the forced vibration of the structure
will be treated. For the case of forced vibrations, eqn (11) should be
resolved. For a given temperature and frequency, the corresponding stiff-
ness and damping characteristics of the viscoelastic material are calculated
and inserted into the stiffness matrix. The resolution is then made using
standard numerical procedures.”’ The accuracy of the result depends
mainly on the truncation of the series used in eqn (2), a compromise has to
be found between using high values for m and » (giving great precision
and high calculation costs) and low values (giving little precision and low
calculation costs). Note that the first modes region do not require high
values to give a good precision but the higher ones do.

For the free vibration analysis, the natural frequencies and the corre-
sponding loss factors of the system are found by calculating the eigenva-
lues of the following equation:

[([M]'[K]{A} = 0’ {4} (12)
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which is directly taken from eqn (11). The system matrix being tempera-
ture and frequency dependent, it requires an iterative procedure to obtain
the natural frequencies. For each mode, an initial guess is made (the
natural frequency of the undamped plate is a good start) and the calcula-
tion is carried out with the corresponding stiffness terms. The value
obtained by resolving eqn (12) is then used as a guess for the next itera-
tion. Convergence is obtained in a few steps. The system being complex,
the eigenvalues will then have the form:

o’ = w1+ jn) (13)

where w, represents the natural frequency and 7 the corresponding modal
loss factor of the system.

Optimization process

The optimization of the damping performance of the coating is the main
issue to be addressed in the present paper. To define the coverage config-
uration, the plate is first divided into a certain number of small sections (X
and Y sections along the x and y axis, respectively). Then, the components
of a configuration vector c(i, j) are assigned a value of 1 or 0, depending
whether the corresponding section (i, j) is covered or not (see Fig. 2). To
find the optimal configuration, an optimization algorithm is developed.
Figure 3 shows the main steps of the algorithm. With a pre-determined
percentage of the plate to cover and a fixed thickness of viscoelastic
material, it starts off with a randomly chosen initial configuration and
calculates the objective function, which can be either the modal damping
factors or the response. Then it makes a slight change in the configuration
and compares the objective function with the previous one. if the result is
better, the new configuration is kept. Otherwise, another change is made
starting from the previous configuration. This routine is repeated until no
noticeable improvement of the performance is encountered after a certain
number of steps. A verification of the convergence of the solution has been

Vector c(ij) y Coverage
I X
1j01{1

i=123[1 |0 |1

i=1,2,3 —

Fig. 2. Representation of the configuration vector.
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Fig. 3. Optimization algorithm.

carefully made during the calculations to make sure that a global optimal
solution was obtained. This way, the calculation gives the optimal location
as well as the optimal shape in each case.

EXPERIMENTAL VERIFICATION

To verify the accuracy of the model, an experimental test has been made
on an aluminum plate (200 mm by 480 mm by 3-175 mm), as illustrated in
Fig. 4. To simulate a free boundary condition, the plate was fixed by four
rubber bands of very weak stiffness at the plate’s border to a stiff steel
frame. The EAR SD-40 viscoelastic material layer was used to cover the
plate and a total number of six pieces of 60 mm by 140 mm by 0-040 mm
was used. Figure 4 shows the details of the coating.

A shaker was used to apply an external force to the system. The
measurement of the force was made by a force transducer placed right
between the shaker and the plate via a properly chosen thin rod to avoid
any possible moment excitation. The response was given by an accel-

¥ (10,24)

/ C:(3.9)

3
(-10,-24)

Fig. 4. Coverage used in experimental test.
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TABLE 1
Comparison Between Theory and Experiment
Undamped plate Damped plate
Theory  Experimental Theory Experimental
Mode w, (Hz) w, (Hz) w, (Hz) n w, (Hz) 7

4 725 724 70-7 0-0220 70-25 0-0202

5 107-2 106-4 103-6 0-0224 101-75 0-0207

6 201-5 201-6 198.3 0-0259 196-5 0-0246

7 2309 229-6 2254 0-0283 22175 0-0338

8 3881 — 3822 0-0299 — —

9 3899 — 386-3 0-0321 — —
10 4411 450-2 4379 0-0190 442.5 0-0174
11 4810 484-8 479-7 0-0208 476-3 0-0205
12 593-6 594-5 586-0 0-0329 574-25 0-0352

erometer placed on the surface of the plate. Both signals were then sent to
an HP-35660 spectral analyzer. The frequency response of the system
under a random excitation (white noise) was used to measure the natural
frequencies while the damping was measured using the half-power method
(—3 dB) with sinusoidal excitations. The results were computed using the
SMS-STAR software and they are presented in Table 1.

Since the damping of the aluminum is negligible, only the natural
frequencies were measured for the undamped plate. For the damped
system, both natural frequencies and the corresponding loss factors are
compared. Satisfying results were obtained for the undamped case, as well
as for the damped case. In fact, not only did the theory predict the same
trend of variation as the experiment, but also the error between the theory
and the experiment for both the natural frequencies and the modal damp-
ing factors stays within a very satisfactory range. Note that the modes 8 and
9 were very close to one another. No special effort was made during the
experiment to identify them. Nevertheless, by the comparison carried out
with the rest of the modes, it is concluded that the developed model is
accurate enough to ascertain the validity of the simulations.

NUMERICAL RESULTS AND DISCUSSIONS

The characteristics of the plate (aluminum) and the damping material
(Soundcoat-D) that were used for the numerical analysis are presented in
Table 2 and Appendix 2. For illustrative purposes, a simply supported
rectangular plate has been chosen. The main factor leading to this choice
was its easiness for visualizing the physical phenomena. For the bare plate,
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TABLE 2
Characteristics of the Plate

Plate ( Aluminum)
Dimensions and physical properties

Width (2b) 0-3 [m]
Length (2k) 0-45 [m]
Thickness (2¢) 0-003175 [m]
Density (p,) 2700 [kg/m’]
Young’s modulus (E}) 70 x 10° [Pa}
Loss factor (yp) 0-01

a structural damping model with constant damping factor (0-01) was used
in all calculations. In each studied case, both the free and the forced
vibration are addressed.

General effects of the viscoelastic coatings

To show the general trend of the damped system, Fig. 5 compares the
response of the bare plate to that of the same plate but covered entirely by
two layers of 1/16” thick viscoelastic material (on both sides) for a room
temperature (7 = 20°C). A harmonic driving force of 1 N ranging from
0 Hz to 1200 Hz was applied at x = 3-4 cm and y = 8-7 cm on the plate
(the coordinate system having its origin at the center of the plate). From
this figure the effects of the coating can be clearly identified. With respect
to the bare plate, two main effects are noticed. First, the resonance peaks
of the damped system are shifted to lower frequencies in this case due to

70 T T T T T
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60
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= 40
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Fig. 5. Effect of 1/16" thick full coverage on the response.
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the dominated added mass over the stiffness. Second, vibration levels are
reduced, particularly in the vicinity of the resonance due to the increase of
the effective damping of the system.

Coatings with optimization

Table 3 shows the effect of various coating configurations on the natural
frequency and the damping factor of the first five modes (7' = 20°C). Note
that the same amount of material was used for each configuration of
coverage (leading to an added weight of 18% with respect to the bare plate,
which means a thickness of 1/32” for the full coverage and 1/8" for the 1/4
coverage). For the full coverage, as the frequency gets higher, the effect of
the viscoelastic material on the damping level is easily seen by the increase
of the damping factors. It is worth mentioning that the 1/4 coverage
performs generally better than the full coverage and that, without even
optimizing the configuration. This is mainly due to the thickness increase of
the 1/4 coating layers. However, best results are obtained when the opti-
mization routine is applied to the partial coverage. This can be easily seen
by comparing the last two columns. In the last column, the optimal 1/4
coverage is given for each mode with their corresponding natural frequency
and damping factor. By engaging the optimization process, one obtains the
optimal locations with the associated shapes. For the five modes presented
in the table, the increase of damping compared to the full coverage ranges

TABLE 3
Effect of the Coverage on the Modes

Uncovered plate Full coverage 1/4 Coverage

x Optimal
v ] v
1/4 coverage

Mode ©, (Hz) M w,Hy M o,Hy M w,H n Configuration

1 1233 0.01000 114.2 0.01350 114.9 0.02067 103.9 0.02758

2 236.9 0.01000 219.7 0.01373 2235 0.02051 200.5 0.02801

3 379.1  0.01000 353.0 0.01386 360.6 0.02093 325.5 0.03438

4 426.2 0.01000 3959 0.01388 399.3 0.02274 363.1 0.03118

S IHC

S 492.5 0.01000 458.5 0.01391 4750 0.01725 421.0 0.02949

o
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from 2:12 to 2-48. Compared to the non-optimized 1/4 coverage, a notice-
able damping increase is also obtained for all the modes considered. It
should also be mentioned that the obtained optimal configurations are
consistent with the commonly used rules of applying the layers at the anti-
nodal portion of the structure. Moreover, the results indicate that the
obtained optimal shapes are more or less ellipse-like.

The same analysis has been made for the response of the plate over
different frequency bands. A sinusoidal force of 1 N is still applied at
(3-4 cm, 8-7 cm) and for each frequency, the mean quadratic velocity is
calculated (7 = 20°C). The area under the curve of the mean quadratic
velocity (calculated numerically with the frequency on the x-axis) is used
as a way of measuring the energy level within a given band. The “Gain”
used is defined as follow:

_ Undamped Level — Damped Level
B Undamped Level

Gain x 100% (14)

Table 4 shows the results for three different frequency bands: 50 Hz—
300 Hz (covering the first two modes), 300 Hz-550 Hz (covering the
modes 3, 4, 5) and 550 Hz-800 Hz (covering the modes 6, 7 and 8). For
each frequency band of interest, the last column of the table gives the
optimal configuration. Again the 1/4 coverage shows itself more effective
than the full coverage. The optimization process enhances even more the
damping performance, reaching a damping increase varying from 78-0%
to 88-:3% compared to the bare plate, which is approximately twice the
performance of the full coverage and about 50% higher than the non-
optimized ones. It is interesting to note that, depending on the dominating

TABLE 4
Effect of the Coverage on the Response
Jx Gain
% (Undamped plate as reference)
Frequency Full 14 Optimized
band coverage coverage 1/4 coverage
50 - 300 -
(Hz)
78.0%
300 - 550 . i W
(Hz) &
49.4% 88.3%
550 - 800 ® f ]
(Hz) & &

31.3% 55.6% 86.9%
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mode involved for each frequency band and on the location of the exciting
force, the obtained optimal arrangement is a combination of the ones
previously obtained for each single mode.

It is worth noting that careful convergence verification was made during
each optimization calculation to make sure that the final result was a
global optimum. It was observed that the developed algorithm permitted a
rather rapid convergence and the calculations were carried out within a
reasonable time. To illustrate the convergence issue, a typical result is
given in Figs 6a and 6b to show the evolution of the gain and the config-
uration for the 50 Hz-300 Hz band. Starting from a randomly chosen
initial configuration, the result converges gradually towards the one that
gives the best result. Most of the improvement is made in the first half of
the process. In the second half, no significant amelioration of the coverage
is made even if the configuration undergoes visible changes.

Temperature effects

To show the effect of the temperature on the modal damping performance
of the viscoelastic coatings, the damping factor of the first mode has been
calculated for three typical temperatures. The results are presented in
Table 5 for —50°C, 20°C and 100°C (the thickness of the coverage is 1/8"
for both configurations). Note that the damping materials used give
maximal loss modulus around 10°C. Therefore it is not surprising to see
that, for both coating configurations specified in the first column, stronger
damping is obtained at 20°C among the three investigated temperatures.
However, a comparison between the two configurations allows one to
realize the effects of temperature variation on the optimized results. In
fact, the first configuration is the optimal result at —50°C, a temperature
at which the damping factor of the viscoelastic material is smaller than the
damping that has been assigned to the aluminum. The second one corre-
sponds to the configuration generated by the optimization routine at
20°C, a temperature at which the viscoelastic material is much more
dissipating than the bare plate. Therefore, at —50°C, the optimized result
indicates that the coverage is made in such a way that the viscoelastic
layers interfere as little as possible with the deformation of the structure to
be covered. However, when the temperature rises above the critical point
of equal damping coefficients, which is the case at 20°C, the damping
material should be applied at the anti-nodal portion of the structure. With
these two temperatures, the forced responses of the corresponding optimal
configurations are plotted in Fig. 7. It can be seen that temperature is an
important parameter to consider for predicting precisely the dynamic
behavior of the damped system.
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Fig. 6. (a) Evolution of the configuration; (b) evolution of the gain.

Optimization with added weight consideration

This section is intended to show two important issues: firstly, with a
certain allowable added weight, how the optimized partial coating may
improve the damping performance or inversely, how to get the same
damping performance by keeping the added weight minimal. To answer
these questions, Fig. 8 compares three configurations: full coverage, non-
optimized 1/4 coverage and optimized 1/4 coverage. To better illustrate
the additional weight to the structure, the mean quadratic velocity is
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TABLE 5§
Effect of the Temperature on the Modes

X T=-50°C 7=20°C T=100°C
y ]

®,=123.2Hz ®,= 121.6Hz ®,=121.1 Hz
n=0.00980 nN=001299 1 =0.01001

®,=1121Hz ®,=1039Hz ®,=101.2Hz
. N=0.00888 1 =0.02758 1 =0.01007

Mean Quadratic Velocity (dB)

0 100 200 300 400 500 600 700 800
Frequency (Hz)

Fig. 7. Effect of the temperature on the response.

expressed as a function of the percentage of weight added (the weight of
the plate alone is used as the reference). Note that the thickness of the
viscoelastic layers are different depending on the coverage configurations
to keep the same added weight. Also, the maximal thickness of the cover-
age is limited to 1/8" (the thickness of the plate). The reason is that our
model has been made with the assumption of thin structures. Therefore,
the results obtained in this range of thickness can be considered as suffi-
ciently accurate. The frequency band of interest is the 50 Hz-300 Hz with
the same external force as the one specified previously. It can be observed
that for the same weight added, the 1/4 coverage shows a greater effect on
the damping increase than the full coverage. In fact, at the maximum
thickness, the gain of the 1/4 coverage (without optimization) is about 1-4
times higher than the one obtained with the full coverage. However, more
interesting results are obtained with the optimized 1/4 coverage. For the
same amount of viscoelastic material, the 1/4 coverage with optimal shape
reaches a reduction of 78% while the full coverage gives only a reduction
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Fig. 8. Effect of the added weight on the response.

of 42%. To get the same reduction level, the full coverage requires an
addition of weight of 45%, compared to 18% for the quarter coverage.
The non-optimized 1/4 overage gives intermediate performance. It should
be stressed that the gain used here is for a relatively large frequency band.
If the excitation has a pure tone or a narrow band, the optimization
certainly gives a more appreciable damping improvement.

CONCLUSIONS

The concept of optimal damping with weight constraints using partial
coverage on a panel structure has been presented and an application on a
simply supported plate has been described. Experimental studies show the
validation of the established formulation. The analytical procedure
demonstrates its merits in several aspects with respect to the existing litera-
ture: capacity of taking into account the real frequency-temperature
dependent characteristics of the viscoelastic materials, the generality of the
modeling of the boundary conditions of the structures and most impor-
tantly, the search for the optimal coating shapes. Numerical studies indicate
that, with the cost or the weight of the damping treatment kept constant,
partial arrangement with optimal cutting shapes significantly increases the
damping performance of the system. Moreover, the operating temperature
is a crucial parameter to consider at the design stage for the fields of appli-
cation where the structures are subject to a wide range of temperature
variations. It is concluded that shape optimization with temperature
consideration are worth considering in many practical situations.
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APPENDIX 1

Formulas for [M], |K], and [F]

lat isC
Mpqrs = Mpae+Mv13(0

pars pqrs
8p,bhe (for (p+r)and
Mige=q (p+r+Dg+s+1) \ (g+s)even
0 (otherwise)

X Y
M) =20l {2p,ebhl(=X + 20 — (=X + 2~ 1))

i=1 j=I
X[(=Y +2/)7 ! — (=¥ +2(j - )]}
/(p+ r -+ 1)(q+5+ I)Xp+r+l Yq+s+l

_ gprplate visco edges
K pars — K pqrs t+K pars + qu’S

Kplate — SE'pe3
s =1 3(1-2)

hpr(p — 1)(r — 1) bgs(g — 1)(s — 1)
B(p+r—=3)g+s+1) Mg+s=-3)p+r+1)
X | vplgr(g — D(r = 1) + ps(p — 1)(s — D] + 2(1 — v,) pgrs
bhip+r—1)g+s—1)
0

for (p+r) and
(g + s) even

(otherwise)

X Y 2 2 3

visco .. 2Ev 3e e, + 3€ev + e,

Kpir =33 a2 v e)
i=1 j=1 3(1=v})

Drake, M. L., Section7.1 — Fourth-Order Beam Theory. Vibration Damping

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P., Numer-
ical Recipes in FORTRAN, 2nd edn. Cambridge University Press, UK (1992)
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(=X +2)P77 — (=X +2(—1)"")
hpr(p - l)(r - 1){ X[(—Y+ 2j)q+x+l _ (_ Y + 2(]_ 1))q+s+l]
b3(p +r— 3) (q 45+ 1)xp+r—3 Yq+s+l
(=X +20)7 — (=X +2(— 1)77""]
bgs(g — 1) (s ~ 1){ x[(= Y + 2j)4+s—3 —(~Y+2(j-1) q+sf3]
R(p+r+1)(g+s—3)x"7 Ty
, [ grig — D) (r = 1) }
*Lps(p— s - 1) {
+2(1 — v,)pgrs
bh(p+r— 1)(qg+s— DHxrr—Tysts!

X < +

(X + 21‘)P+r7] —(=X+2(i- 1))p+r7]] }
x[(=Y + 2077 — (=Y +2(j - D))

h [(~1)P+’kl +k; +p—2 (=D e + cz)]
edges -2 b
pars g+s+1

+

b [(—1)‘1“ ks + ko + g((—l)‘”“z e+ c4)]
p+r+1

*Note: k; and ¢, :edge x (-) k, and ¢, :edge x (+)
k3 and c3:edge y (—) k4 and c4:edge y (+)

reyn(3) (3)
= sl — —
pq - b h

**Note: This formulation for F,, is valid only for sinusoidal concentrated loads of ampli-
tude F; at (x;, ¥s).

APPENDIX 2
Properties of the viscoelastic material

Soundcoat D

( Material parameters)
Density (kg/m?) 970
To (°C) 120
FROM 1.00E4
MROM (N/m?) 9-11ES
N 0-204
ML (N/m?) 1-64E3
ETAFROL 0-800
SL 0-300
Sn —0-220
FROL 1-64E3

C 5-00
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12(T — To)
log (FR) = log (F) ~ 291-6(6+ 7o T,

1 FR
4=z [log <FROL>}
C (SL+ SmA+

log (y,) = log(ETAFROL) + (5) [(SL Sl — T

2log (MROM/ML)
[14 (FROM/FR)™]

log(G}) = log(ML) +

E, =G x2(1+v) E =E,(1+j)



