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A new substructuring technique is proposed to perform vibration analysis of line-coupled structures.
In dividing the whole structure into a master structure and several auxiliary structures, a variational
formulation is used to model the master structure, enabling one to introduce the effects of all
auxiliary structures by using their compliance characteristics at several observation points along the
junction. Continuous functions of the compliance are obtained via a regression analysis. Given the
problem of using the compliance inverse to attain a straightforward formulation, a “Coupling Load
Decomposition” technique is proposed since a direct formulation using the compliance inverse is
not feasible. By decomposing the interactive load between substructures, relations with
displacement decomposition of the master structure can be found. This new formulation permits the
direct use of the compliance of the junction, which may be obtained analytically, numerically, or
experimentally. Numerical examples using both calculated and experimentally measured
compliance data are given. Simulation results are also compared to those obtained experimentally,
showing good agreement in low- and medium-frequency ranges19@8 Acoustical Society of
America.[S0001-496808)04205-3

PACS numbers: 43.40.Dx, 43.40.AEBB]

INTRODUCTION substructures increases, since all substructures must be mod-

Mechanical systems may be composed of different eleg—:-led with the same technique. Beam-st.iffened plates_ is an-
ments coupled together through points, lines, or surfacesqther category of coupled structures which has been investi-

The complexity of such systems requires efficient simulatiord@ted by some authot§™ In an effort to develop a more
techniques. Moreover, some elements may be already corg€neral approach, Jezequel and Séitrave presented an
plex so that any attempt to model all elements in the samgxtensmn of the classical (;omponent modal synthesis tech-
manner becomes too demanding for most of the existingidue. The modal synthesis methods were reformulated to
simulation techniques. From this point of view, the develop-Take them compatible with the finite element method.
ment of hybrid approaches that can make use of different N @ real-life coupled system, there may exist some sub-
simulation techniques becomes extremely attractive. Such #ructures with complex effects that can hardly be theoreti-
hybrid approach is proposed in this paper. The method igally modeled. In such cases, experimental data are neces-
illustrated by analyzing the forced vibration of a plate Sary to represent such substructures. However, very few
coupled to different structures along continuous lines. Platénethods allow structures identified by tests to be coupled
assemblies and stiffened plates are typical applications dhrough continuous interfaces. Some substructural or modal
such systems. synthesis techniques are potentially capable of achieving the
A number of techniques have been developed over théame task?~** However, modal identification of complex
past few decades to study complex systems involvingtructures may be a very difficult task, since it requires a
coupled structures. A good summary of the techniques igletailed description of each substructure. Even if one is ca-
given by Min! As far as planar structures are concernedpable of obtaining the modal characteristics, they may be
apart from some well-known techniques like the finite ele-difficult to work with computationally> On the contrary,
ment methods, the statistical energy analysis mefhadg  compliance(or impedance, mobilityfunctions which carry
the mobility power flow approachéé,many other investiga- the dynamic information of substructures are much easier to
tions have been conducted to analyze particular configuravork with since measurements can only be conducted along
tions composed of coupled structures through continuouthe junction with other structures. Although some impedance
lines. Shen and GibBsave proposed a deterministic solu- or mobility model found in the literatufé would be even-
tion to study different configurations of rectangular plates atually modified to fit the hybrid requirement, methods should
low frequencies. Guyadet al® have used a technique based still be developed to incorporate measured data with the
on analytical calculations of the eigenmodes of connectegimulation model since they depend very much on the way in
rectangular plates. The approach has been applied to plateshich the measured data are used in the whole formulation.
like structures with a single junction. Other techniques have In this paper, a method using a regression approach to
also been presented for platelike structur®é semianalyti- model the compliance distribution along continuous lines is
cal approach was also proposed using artificial springs tpresented. Complex systems are divided into a main struc-
characterize the junction between substructdreewever, ture and auxiliary structures. The main structure is analyzed
the techniqgue becomes cumbersome when the number abing a variational formulation while the effects of all sub-
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FIG. 1. A typical complex system. FIG. 2. Distribution of forces and moments due to coupling along a line.

structures are introduced using their compliances at the con- In the case of a multipoint contact between two struc-
tact line with the main structure. Using a plate as the mastetures, the compliancﬁ'kj,m, is defined by the following rela-
structure, it is first demonstrated that direct use of complition
ance inverse data, which could have led to a straightforward Dl
formulation, results in an unstable solution. To address this Bii —_K 1)
problem, a new technique, named the “Coupling Load De- k'’ F'm,’
composition” techniqugCLD) is proposed. By decompos- P _ o
ing t?]e coupling Ioa?j between s[l)Jbsptructuresyinto a p%lynoyvhere Dy is the displacement at pointj” in direction
mial series, relations with the displacement of the master k'~ due to a loadF ., , applied at point T in direction
structure are found. Based on this new formulation, compli-'M’." If more than one contact point is involved, a compli-
ance data can be directly used with the help of a regressionce matrix should be used. When the contact zone between
analysis. two coupled structures has dimensions comparable to the
Several examples are treated to numerically and experivavelength of the vibrating system, the point coupling rep-
mentally assess the technique. A real-life structure demandesentation is no more valid. In this case, each component of
ing both numerical and experimental treatments is also preh® compliance matrix is a continuous function of the exci-
sented to illustrate the hybrid aspect of the methodfation and response point coordinates.
Whenever possible, simulated results are compared either to  The compliance variation along the junction may be ob-
finite element simulations or to experimental data. The relained by first considering the line of contact as a combina-
sults are restricted to low- and middle-frequency rangest,ion of a finite number of contact points as shown in Fig. 2.
since a semianalytical formulation is used to model the maift regression analysis leads to continuous functions repre-
structure. However, the proposed methodology is quite gens,enting the compliance components and ensures a continuous
eral and may be used in conjunction with any other energyvariation along the junction. Each component of the compli-
based formulations. ance matrix,B'k',m, is replaced by a continuous function
Brrmr (X, €). Herex and¢ indicate the local coordinate of the
excitation and response points, respectively, along the con-
tact line.
Consider a system composed of a thin rectangular plate
as the master structure shown in Fig. 3, wittb<x=<b,

Consider a structure composed of different elements
connected along continuous lines, or as a special case, 7
through specific points. The whole structure is divided into y
two parts: a master structure and several auxiliary structures n/
y:

I. METHODOLOGY AND COUPLING
REPRESENTATION

as shown in Fig. 1. The dynamic behavior of the master
structure may be formulated using any energy-based ap-
proach which involves the effects of the auxiliary structures
via their energy terms. In this paper, the formulation is based
on a semianalytical approach using artificial springs inspired __ =
_ i X=-b

by our previous worR. The effects of all auxiliary structures
are represented by their compliance characteristics. At each
contact zone, compliance data may be obtained by treating

each auxiliary substructure separately via any available ap- | o2
proach: analytical, numerical, or experimental. Interfaces y=-h !
should then be developed to incorporate the effects of auxil-

iary structures. FIG. 3. A thin plate used as the main structure.
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—h=<y=h, and —t=<z=t. The boundary conditions of the Il. CHARACTERIZATION OF AUXILIARY
plate are modeled using artificial springs. Both translationaBUBSTRUCTURES

and rotational springs are supposed to be uniformly distribn pirect formulation using compliance inverse
uted at each edge. Use of artificial springs enables one tgatrix

simulate various boundary conditions. In the present work,

small deformations are assumed and classical linear thin USing the compliance inverse leads to a quite straight-
plate theory(Love—Kirchhoff is used. forward formulation. Assuming a junction parallel to tke

In order to achieve a general solution of the plate with®XiS, the coupling load vector between the main plate and an
arbitrary boundary conditions, an approximative solution carrPitrary substructure may be written as
be obtained using the Rayleigh—Ritz method. The transverse

N
displacement of the rectangular plate is approximated by a Fo(X)= fb 2 T (X%, E)D o (£)dé )
series: by

o0 [

whereF .,/ (x) andD (&) denote the functions representing
W(vavt)zz 211 a;; fi(x)g;(y), @ the coupling load and the corresponding deformation varia-
tions, respectively, along the junction. It should be men-
where functionsf;(x) and g;(y) are linearly independent. tioned that the so-called “coupling load” represents the in-
Assuming polynomial functions fofi(x) andg;(y) yields  teracting effects between the connected substructures, which
m n x\i{y\i may be in the form of forces or moments. Consequently the
W(X,y,t)zz 2 aij| = <_ , ©) corresponding deformations are translation and rotation, re-
=0 j=0 bj \h spectively. In the above equationy(X,£) is the inverse
where the series is truncatedroandn terms, in thex and of the compliance matrix of a substructure. Each component
y directions, respectively. Appropriate values mfandn IS @ continuous function ok and ¢. The terms *k’” and
depend on the configuration of the plate and the desired fre-M' "~ vary from 1 to N andN denotes the number of cou-
quency range. pImg load .components along the junction and depends on the
Using the Rayleigh—Ritz method, the coefficients of theconfiguration. In a general problem where all degrees of frge-
polynomial decompositioa;; may be obtained by minimiz- dom are present is equal to 6. The energy term stored in

ing Lagrangian of the systein: the substructure, in its general form, can be written as
d [ dL oL o . 100 &
gt qu qu =0, (4) Ecp= EJD% Fr (X) D (X)dX. (10)
_ T
L=E.—E;+W, 5 Applying Eq. (9) yields

with E. and Eg being, respectively, the kinetic and total Lo b NN
ial i f th . Th h
potential energies of the system. The teéivhrepresents the Ecom Ef_bf_ S S e (%, E)D i (£)D () dé dx.

contribution of(or the work done bysurface loads or body b m
forces. The total potential energy can be written as (17
Ep=Ep+ EB+ E:’, (6) In order to derive the compliance matrix, the junction

whereE, is the total strain energy of the main structLEé line is discretized into a series of observation points as illus-
is the potential energy stored at the boundary springs, antr&n""ted Irr;nFlgt.hz. I?y ap;r)]Iylng ta ur]'tt?ﬁc'tat'?nn ﬁ‘t Eoml;/:llt? i
E," is the substructure contribution to the total energy of the Si,su g the response 4a pom € comp _a ce _a _
coupled system. The energy approach and a double series 8~ ¢an be constructed. The inverse of this matrix gives

admissible functions for the field variable leads to the fol-n!‘j’m'. A polynomial regression analysis can then be per-

lowing forms of the energy terms formed on#, and a continuous functiom, ., (X,£) can be
1 found as follows:
Ec= E% % Z g Mpqrs.apq(t)'ars(t)v (7) nl n2
Mo (66)= 2 2 clg™ XKE, (12

1
EP+EB+Egp: EE 2 2 2 qursapq(t)ars(t)v .
poa s wherecy,™ denotes the regression coefficients anail”

®) and “n2" are the degree of regression for independent vari-
whereM ;s andK 4,5 are the general mass and stiffness ofables x and ¢, respectively. The regression technique is
the system, respectively. The procedure for deriving the gerbriefly explained in the Appendix. Notice that the procedure
eralized mass and stiffness matrices of the plat, the s, in principle, applicable to the analysis of both the compli-
main structurgwith boundary springs and generalized force ance and its inverse. For special cases when there is only one
are explained in Ref. 16. It should be noted that the effect o€ompliance functiorF,,/(x) at the junction or in any special
the auxiliary structures are modeled through the tE@H, case where the substructure compliance invergse, (X, &)
which should be further analyzed. is decoupled from other components, the energy contribution
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FIG. 5. Variation of the real part of along the line of contact.
FIG. 4. Variation of the real part g8 along the line of contact.

and VIII are four new observation points added to form the

of the substructure, given by E€L1), can be written as nine contact points case. It can be observed, in Fig. 4, that in
both cases, the compliance values are the same for each com-
mon observation point. Obviously, the nine point configura-
tion defines the compliance characteristics of the plate more
i i i . precisely than the five point configuration does. The smooth-
Tr_ns equatlon_ may then b_e used to obtalh the generalizeflass of the compliance variation makes it possible to perform
stiffness matrix representing the contribution of substruc-; ¢iapie regression analysis.
tures on the vibration of the coupled system. As we can  ynger the same conditions, Fig. 5 shows the variation of
notice, this formulation is quite str.alghtforwqrd and is pased,n_ Again, two curves denote thevariations for the five and
however, on a successful regression analysis omtimatrix.  nine contact point cases, respectively. It can be seen that the
This issue is addressed below. , _value of 5 at an arbitrary point strongly depends on the num-

The formulation developed previously uses the compli-yer of contact points. For example, although points 2, 3, and
ance inverse functiofor matriy 7. The direct measurement 4 paye the same coordinates as points Ill, V, and VI, values

of this quantity is not feasible, since there is no practical way¢ 7 considerably vary from one case to another for these

of in'Froducing a unit d_isplagement at one location, while .5mmon points. This strong dependency on the number of
keeping the other locations fixed. On the contrary, the COMzantact points is such that the regression analysis orythe

pliance matrix5 is much easier to obtain. In this case, the y4ix should be avoided. Therefore a new formulation is
compliance matrix must be inverted to obtain thenatrix. required to directly use the compliance matrix.
However, this inversion process becomes difficult when the

number of pontact points is increage.q. This pheno.me.non h3$ Eormulation via coupling load decomposition
been explained by Fuhgfor the flexibility matrix which is a
special case of the compliance matrix in the static case. It A new formulation is proposed to avoid the use of the
turns out that when the number of observation points apmatrix in the computation of the energy contributed by the
proaches infinity, the distance between adjacent points agubstructures. A load distribution along the junction is con-
proaches zero and the components of thmatrix approach Sidered and efforts are made to find a relation between the
infinity. As a result, by increasing the number of contactcoefficients of the load distribution and coefficients of previ-
pointsy the Comp"ance matrix becomes hard|y invertible. OUSIy defined displacement fields. The formulation is devel-
Apart from the problem mentioned above, inherent tooped for an arbitrary load distribution which can either be
the characteristics of the function, an additional problem forces or moments. At this point, for the sake of briefness, it
emerges when a regression analysis should be further pdf supposed that there is no coupling between coupling loads
formed on they matrix. To illustrate this problem, let us of different naturegforces and moments corresponding to a
consider how the compliance functighand the compliance different degree of freedom, for examplend, accordingly,
inverse functionz vary with the number of observation the summation term in Eq9) can be removed. It should be
points. A simply supported rectangular thin pldég. 3 is  noted that in cases where this simplification does not apply,
taken as an example, whose rotational compliaaeand the formalism that will be developed still remains valid, al-
its inverse along one edgg € —h) are studied. The plate though the mathematical description will be different. Equa-
used is made of aluminum with dimensiobs=15 cm, h tion (9) can be rewritten in the following form to relate the
=22.5cm, and=15.875 mm. Figure 4 shows the variation displacement of the junctio®, (x) to the load function
of the 8 matrix when a unit torque is applied at the midpoint Fm’(X) using the compliance functiofi: m' (X, £)

1(b (b
Ecp= Ef_bJ_bnm’m’(x’f)Dm’(g)Dm’(X)dg dx. (13

of the junction &=0) and the rotational responses are mea- b

sured at different contact points along the junction. Two Dmr(X,yo)If Bmrm (X, &,Y0) Frv (€,Y0)dé. (14
curves using, respectively, five and nine contact points are P

presented. In the case of nine observation points, points I, Ill,  In the above expression, the junction is obviously as-

V, VII, and IX have the same coordinates as points 1, 2, 3, 4sumed to be parallel to theaxis withy, as itsy coordinate.
and 5, in the five observation point case. Points Il, 1V, VI, A regression analysis over the compliance matrix gives

3379 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998 Hatam et al.: Line-coupled structures 3379



nl n2 m n b,.+1

- Yo

— m'm’ k¢l . g T+Ii
Brim (X, EYo)= 2 2 ¢l " XK€ a5 2 ¥ B g @D
Inserting Eq.(15) into Eq. (14) yields :§ é o m’m’ (ﬁ)’

1o T &M Th
D (X,Y0) = f 2, 2, i "X (£yodé. (16) plr!+r+2
AT Dkt r+ 1)

In the above expression, the load distributfoR (£,Yo) X (1+(—1) A+ (— 1)k ). (22)

is an unknown function which constitutes the major obstacle _ o _
when using the compliance matrix. To tackle this problem,  Two series of coefficients are defined as
the load distribution along the junction is decomposed over a

j
polynomial base as ri=> Bij<%> : (23
]
U &\ o) i
Fm,(g,yO):Z 21: bij(B) (F) ' 17 QFE bij(% (24
i
with b;; being unknpwn coefficients to be determined. Hence  The above procedure is only valid at the junction, and
Eqg. (16) may be written as accordingly, a complete relation between the series of coef-
ficients B;; and b;; is not available. Fortunately, only the
nl n2 m n . . . .
2 2 ST e ke global relation between two series of new coefficidntand
D (X,Yo) = Eoish 4 45 ¢ ), is needed in the formulation. This relation can be found

by inserting Eqs(23) and(24) in Eqg. (22) as

£\'yo)]
e g

7 i+7+1

Q+(-1™

The polynomial decomposition for transverse displace-
ments of a rectangular thin plate given by E8) may be
written in a more general form fdD .,/ (X,y) as

m nl n2 pk+1+7+2

2 E me'( i+l+1)(k+7+1)

i(y)J XA+ (=1)"Y@+(=1)k ). (25)

Dy (x,y) =2, 2, Bi,-(g (19

Note that the above equation is valid for each value of

7=0,...m so that the whole set of equations can be written in
Inserting this polynomial decomposition in E418)  matrix form as

yields
[A] {T} =[A] {Q}, (26)
(mXm(mx1l) (MXm(mx1)

m n x| Yo i b m n .

i+1

&\"yo\! i i)= )it
<[ o) %o ae. (20) A= g @D (27
. . . . : and

After integrating with respect tg, the following relation

is obtained ntone pkti+it2
ALD=2 2 " kT
m n i y j
0 . .
Ei) EJ) Bi; ( ) (ﬂ X (1+ (= 1) )1+ (= 1)I*). (28)
nl n2 m n Consequently,
_ m'm’y _
& & Z 2 Ca  Bij {Q} =[A]*[A] {T}. (29
o (nx1)  (mxim (nxin(nx1)
+
% Yo : _ b (1+(—1) Xk, (21) Finally, the following relation between the two series of
h) i+l+1 coefficientsI'; and); is obtained

In order to find the relation between two series of coef-  {Q}=[H}T} (30
ficientsBj; andb;;, the two sides of the above equation are where
multlphed by x™, wherer=0,...m. Integrating the resulting
equation with respect ta along the junction yields [H]=[A] YA]. (31
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The substructural energy term, resulting from the pres-

ence of the coupling loa&,, (£,yo) on the main plate, is
then calculated as

1

b
Ecp:_ Fm,(X,yo)Dm'(XyYO)dX
2 )-p

B 1 b Yo i X i+r
2LE3zelfllf] . e
where
oty = 03] (33
j
QF? br,-(%) . (34)

After integrating along the junction, E¢32) becomes

1 Yo\l
Ecpzzzi E 2 BijQr(Fo)
G

NI+
X—(i+r+1) @A+(=1'"". (35
One may write Eq(30) in the following form
Q,=ZS H,ls. (36)
Hence Eq(35) is given as
1 Yo’
Ecpzzz E Z E BistHrs<F)
i i r S
4N+
G+ D) @+(=1)"), (37)
where
y t
R=284ﬁ) (39

The final form of the substructure energy is obtained b

replacing the above equation in E&7)
1 : yo|9*172
Ecp:2h2 2 Z 2 2 E JqBiijqup<F>
i ] p g r

L+(-1'n, (39

Sy

wherei,p,r=0,...m and j,q=0,...n. Differentiation must
be conducted to obtain the substructural stiffness matrix

JEep 1 yo| 9"
D PPL
Hkp i+k Hii
X[(i+k+1)(l+(_1) )+(p+k+1)

><(1+(—1)p+k)]. (40

Finally, the generalized stiffness matrix due to théh
component of the coupling loads is obtained.
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Kiors—3 2 b( h) (ke AFEDTD

Hkr

kD) “y

(1+(—l)‘”")]-

It is a complex frequency-dependent matrix which must be
added to the previously developed stiffness matrices of the
main structure.

Several factors affect the accuracy of the present formu-
lation. Limiting the infinite series in Eq2) to a finite series
is a computational restriction. The general criteria for trun-
cating the series is to ensure sufficient accuracy in the result-
ing solutions. The number of terms in the series is therefore
increased until no significant variations are noticed in the
frequency range of interest. This problem, related to the
Rayleigh—Ritz method, has been fully discus3ed.

The determination of the degree of the polynomial series
in the regression analysis is also an important factor. In gen-
eral, the maximum degree of the polynomial should be cho-
sen in such a way that the number of coefficients does not
exceed the number of samples so that

(n1+1)X(n24+1)<(np)?, (42

where “nl1” and “n2” are the degree of regression for in-
dependent variablesand¢, respectively, andp is the num-

ber of observation points. The proposed regression technique
permits minimizing errors when more contact points are
used.

The choice of the appropriate number of observation
points plays an important role in determining the accuracy of
this hybrid approach. During our simulations, it was noted
that the discretization distance should be at least four or five
times smaller than the minimum wavelength in the frequency
range of interest. This ensured an acceptable representation
of the compliance variation along the junction. The same

ycriteria is used in finite element analysis to estimate a suffi-

cient number of elements for modal analysis of structures.

. NUMERICAL APPLICATIONS

The developed technique has been applied to a series of
platelike structures and beam-stiffened plates. In the forth-
coming examples, the components of the coupled system are
made of aluminum with modulus of elasticit¢E=0.7E
+11 N/n?, mass densitp = 2700 kg/ni, and Poisson’s ratio
v=0.3. A damping factog=0.01 is used in all cases. The
main plate is 30-cm wide (®, 45-cm long (4) and
3.175-mm thick (2). In all cases, nine observation points
are considered with1=n2=8, where ‘h1” and “n2" are
the degree of regression for the two independent variables,
respectively.

The first example considers two plates connected to-
gether along one edge to form an L-shaped plate. Both plates
are simply supported along their edges and, consequently,
only a rotational moment distribution along the junction is

Hatam et al.: Line-coupled structures 3381
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FIG. 6. Response of an L-shaped pla@®,CLD technique(b) FE method Steel block
using the first 12 modes¢) FE method using the first 24 modes. FIG. 8. Schematic view of the complex structure under study.

present. A transverse force excitation of 100 N is applied a{yith FE simulation validates the CLD technique.
point x=y=7.5cm of the main plate and the transversal  The advantage of the proposed technique in dealing with
response is calculated at the same point. structures with identical elements is quite obvious. The gen-
A finite element simulation using theeAs package is  eralized stiffness matrix of a substructure may be obtained as
conducted to validate the CLD technique. Linear quadrilaty function of the global coordinates of the connection line.
eral thin shell elements have been used and mode superp@hen the number of contact points and the degree of regres-
sition is applied to derive the response of the coupled syster§jon for different substructures remain unchanged, the dy-
up to 1000 Hz. Figure 6 shows the comparison between thgamic stiffness matrix related to a series of identical sub-
two methods. The response of the coupled system is showgryctures can be simply obtained. A typical indication of the
when 12 or 24 modes of vibration are superimposed. Googdomputation efficiency of the approach can be shown using a
agreement is observed between the CLD technique and theviously treated L-shaped plate by increasing the number
finite element method using 24 modes over the frequencyt auxiliary plates. It was shown that there is typically an
band of interest. increase of 140% in processing time when six other plates

plate. The previously used plate is stiffened by three identi-

cal stiffeners with cross section X%.9 cm along linesy
=0.125 m,y=0m, andY=—0.125 m. The presence of the IV. EXPERIMENTAL APPLICATIONS
stiffeners introduces two kinds of Coupling with the plate. As an examp|e to show the hyb“d aspect of the method’
The first one is related to the torsional effect of the beamy system composed of simple and complex elements is in-
which includes a distribution of torsional moment along theyestigated. Figure 8 shows a schematic view of the system
junction, and the second one is due to its flexural stiffnessihat was studied. The whole structure consists of a thin steel
which includes a transverse force distribution. Assumingp|ate(45.7-cm long, 30.5-cm wide, and 2.3-mm thicls the
small deformations,the torsional and flexural behavior of themain structure. The coordinate system is located at the center
beam are decoupled and may be treated separately to forgj the plate. Two steel circular rods with a radius of 3.2 mm
two generalized stiffness matrices related to the torsional angnd a length of 15.6 cm were coupled to the plate at the two
transverse vibrations of the stiffener. The Compliances Wereorners_ The main structure was Supported by a more com-
derived semianalytically in this case. Again, comparisonglex substructure along the line= —22.9 cm. This support
substructure was composed of a platg0.5-cm wide,

-2 — T T T T T T 45.7-cm long, 5.1-mm thigkwhich is connected to a steel
table. Notice that the supporting plate has similar dimensions
and properties to the main plate to ensure an effective cou-
pling between both. The main plate is held by the supporting
plate and caught between two symmetrical notches. The
bolts were tightened so that both the main structure and the
supporting plate underwent the same translational movement
along the line of junction. At the same time, no moment was
transmitted across the plates.

Different procedures were used to get the compliance
characteristics of the subsystems. For each of the steel rods
(substructures B and)Cthe translational compliance in the
FREQUENCY (HZ) axial direction of the rod, as well as two bending compliance

FIG. 7. Responses of the plate stiffened by three identical be@ne€lD  [€rMS were CQICUI‘?‘ted using a CI""\SSical apprqach. Si!"ce only
technique,(b) finite element model. the flexural vibration of the main structure is considered,
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FIG. 9. Variation of the real part of the compliance function of substructureFIG. 10. Frequency response function of the complex structeyedybrid

A at a frequency of 420 Ha) Measured valuegb) result of the regression ~method andb) experimental measurements.

analysis.
tural modes are involved, one gets a good appreciation of the
hybrid method'’s ability to handle complex structures. Agree-

other cqmponents_ of mteractwe force_s and moments relater(fj?/ent between the two sets of results is excellent up to about
to the in-plane vibration of the main structure were ne-

lected. Substruct " late with the steel tabl 600 Hz, where 16 modes of vibration are involved. The de-
glected. substructure fsupporting plate wi € stee able viation at higher frequencies indicates that there is still room
is, by itself, a complex system composed of different ele-,

s E . tal i ducted at _for improvement in both experimental and numerical as-
ments. EXxperimental measurements were conducted at Nig, s “one of the plausible factors may be the fact that the
observation points along the line of contact to obtain th

compliance matrix. A regression analysis was then perE:ondition of line coupling(which is suppose.d to transmit
formed on the méasured data. At each observation poing.n ly ransverse for.ce.QJecomes doqbtful at higher frequen-

. o . ies. Also, the variational formulation with polynomial de-
along the contact line, the supporting plate was excited by %omposition has been shown to be reliable mainly at low
shaker driven by a broadband random signal produced by a1’F'equencies. The developed method permits the use of any

ane_llyzer._Trans_verse responses were measured at all Ob.SS{ﬁer energy based formulations involving the effects of the
vation points using an accelerometer. The two measured Sig;

. uxiliary structures via their energy terms. As a result, alter-
nals, the acceleration and the forc_e, were th_e n captured tp(ative formulations on the main structure may improve the
the analyzer to co.mpute the compliance function. In order t.%)recision of the technique at higher frequencies.
enhance the quality of the measurements, a mass correction

procedure was used Fo compensate for the effect of the addQﬂ CONCLUSIONS

mass due to the exciter and the force transdliter.

Figure 9 shows the variation of the real component of  Vibrations of coupled structures along a continuous line
the compliance function of the supporting structure at 42thave been investigated. Difficulties inherent to the inversion
Hz. Both measured data and the results of the regressianf the 8 matrix and the feasibility of a regression analysis on
analysis withnl=n2=7 are compared. In this figure,i™ the » matrix has been illustrated. It was shown that the value
denotes the excitation point and,” the response point. It of # at a fixed point significantly varies with the number of
can be seen that the regression model adequately representsitact points and, accordingly, the regression analysis does
the compliance variation as a continuous function. not converge toward a correct estimation of théunction.

Using these compliance data, the response of the whol€his point prevents the use of a direct formulation. To tackle
system is calculated using the hybrid approach. Experimentahe problem, a new approach, based on the direct use of the
measurements were also carried out to validate the simula&ompliance matrix via a coupling load decomposition tech-
tion results. In both cases, the excitation is a unit transverseique was proposed. The approach was illustrated for sys-
harmonic force applied at poif8.35, 7.0. The displacement tems composed of a thin plate as the main structure. The
response of the structure was obtained using an average ovaoproach is versatile enough to include both calculated and
three points(12.25, 3.0, (—12.25, 3.0, and (3.25, 14.3, experimentally measured compliance data of the substruc-
with all coordinates in centimeters. tures. This hybrid feature may allow one to go beyond the

Simulated results and experimental data are comparelimit of the most commonly used approaches to handle more
up to 1600 Hz in Fig. 10. Generally speaking, results suggestomplex structures. Vibrations of typical coupled structures
that the hybrid model works reasonably well to predict thealong a continuous line were investigated. Numerical results
general trend of the structure in the whole frequency range ofvere compared to finite element models and good agreement
interest. Considering the fact that a large number of strucwas observed. The proposed approach was also applied to a
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real-life configuration which required different treatment for of ones, followed by thep column vectors of the observa-

each substructure. Comparisons with experimental datdons on the independent variables; A least-squares estimate

showed good agreement in a frequency range involving an the optimal values of coefficientg can be obtained by

large numbgr of structural modes. . &=(XTX)"YXTY), (A3)
Further improvement of the approach should focus on its

extension to higher frequency applications. Extension of th&vhereX is the transpose of matriX.

method to cases where all possible degree of freedoms exist The most frequently used curvilinear response model, in

along the junction requires the development of reliable compractice, is a polynomial regression model. As a special case

pliance measurement technique@specially rotational Of the general linear regression modlt is easy to handle.

terms. This model can contain, one, two, or more independent vari-
ables. In the case where two variables are usedXthmatrix
APPENDIX: REGRESSION ANALYSIS ON THE can be written as
COMPLIANCE MATRIX OR ITS INVERSE
_ , | 1 Xu Xz Xip X§, XaXap
_ The linear m0(_1el for _relatlng a dependent varia¥léo 1 Xy Xop X3 X2 XoXan
p-independent variables is X = ) ' ' ' ‘ (Ad)
Y= agt arXip+ aXipt o+ apXis, Al S '
S0 T e PP AD 1 Xoo Xz X1 XB XnnXe:

where subscript, varying from one to, indicates the ob- ) ) . . .
servation unit from which dat¥ and p-independent vari- This regression analysis technique may be applied to the

ables are taken. The second subscript designates the indep&RMPliance function3 which is approximated by a polyno-
dent variable. Hence there arp41) coefficientsa to be mial of two variables. For example the rotational tefi,

estimated. For convenience, let us assumepihatp+1. In  ¢an be defined as
matrix form, one has nl n2

ij - 44, k £l

whereY is anXx 1 column vector observation on the depen-Using the above definition, E4A2) may be written in the
dent variablesr;; X anXp’ matrix consisting of a column following form

- 01 0sn2  Jlgl 102 nlgen2m
1 x3é&1 ... X367 xpé1 ... X3&° ... X&)
pH 041 02 1.1 102 nien2 | [ cat
4 1 x3& ... x16° x1&6 ... x1&E° .. X1 00
B : Co1
E 0¢l 0gn2  Llgl 102 nlgn2 :
iﬁ 1 X1§Z e Xlgz Xng e Xlgz e Xl z Cé4n2
01 0 ¢n2 11 102 nlgn2
B RS THTER 13 R CTS R T3 WS 3 ctto (A6)
22— 0g1 0gn2 11 1gn2 nlgn2 44 )
. : : : : : : 4;1
44 0,1 0,12 L1l 1402 i n2 C1in2
. 1 X ... X367 X3& ... X3&° ... Xy &, .
: a4
Bzzlzzl ’ ’ ’ Cnl n2
1 XOgl XO n2 Xlgl Xlgnz an n2
- yAVA 57 zZ527 yA-VA z Z =

whereY, a column vectorifxX 1), is a vector representation repeated for each frequency. It seems to be a relatively te-

of B as stated above=1,..np, n=npXnp wherenp is  dious approach. Fortunately, as long as the observation

the number of selected contact points or observation pointg0ints remain unchanged for different frequencies Xheaa-

The X matrix is a (1XA) matrix wherefi=(n1+1)x(n2 trix remains the. same. Therefore. at each_ frequency, param-

+1) with n1 andn2 being the maximum degree ®fand £ etersa are obtained by the following relation

in the response surface function, respectively. Hence the vec- &(w)=;Y, (A7)

tor of parameters, consisting of the elementscﬁf, is a _

column vector with dimensiom(x 1). In a regression analy- WhereX can be calculated by

sis, the number of observations must be equal or greater than

the number of parameters. .
The dependent variable vector is a frequency- As explained before, matriX depends only on independent

dependent vector. It means that the above process must bariables and, accordingly, does not change with frequency

X=(XTX)"1XT. (A8)
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if the number and location of observation points remain untively large band of frequency to avoid recalculationofoo
changed. It is clear that at higher frequencies, the shape dfequently.

the compliance curve along the junction line becomes more  The whole procedure gives an analytical expression for
complicated and more observation points are required. Maestimating the variation of the compliance between an exci-
trix X must be recalculated after each change in the numbdation point¢ and the response poirtin the form of 5(x, £)

of contact points. This constitutes the major part of the realong the junction. It is written as

grgssion analysis and tak_es more than 80% of the total re- BX.E)=ya, (A9)
quired time for the analysis. Therefore it is recommended to
choose a sufficient number of observation points for a relawhere

PT=[1 X0l .- x0gn2 xlgl ... ylgn2 ... ynlgn2] (A10)

a={Coo Co1 *** Conz C10 C11 *** Cinz “* Cpninat (A11)
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