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A new substructuring technique is proposed to perform vibration analysis of line-coupled structures.
In dividing the whole structure into a master structure and several auxiliary structures, a variational
formulation is used to model the master structure, enabling one to introduce the effects of all
auxiliary structures by using their compliance characteristics at several observation points along the
junction. Continuous functions of the compliance are obtained via a regression analysis. Given the
problem of using the compliance inverse to attain a straightforward formulation, a ‘‘Coupling Load
Decomposition’’ technique is proposed since a direct formulation using the compliance inverse is
not feasible. By decomposing the interactive load between substructures, relations with
displacement decomposition of the master structure can be found. This new formulation permits the
direct use of the compliance of the junction, which may be obtained analytically, numerically, or
experimentally. Numerical examples using both calculated and experimentally measured
compliance data are given. Simulation results are also compared to those obtained experimentally,
showing good agreement in low- and medium-frequency ranges. ©1998 Acoustical Society of
America.@S0001-4966~98!04205-2#

PACS numbers: 43.40.Dx, 43.40.At@CBB#
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INTRODUCTION

Mechanical systems may be composed of different e
ments coupled together through points, lines, or surfa
The complexity of such systems requires efficient simulat
techniques. Moreover, some elements may be already c
plex so that any attempt to model all elements in the sa
manner becomes too demanding for most of the exis
simulation techniques. From this point of view, the develo
ment of hybrid approaches that can make use of differ
simulation techniques becomes extremely attractive. Su
hybrid approach is proposed in this paper. The method
illustrated by analyzing the forced vibration of a pla
coupled to different structures along continuous lines. P
assemblies and stiffened plates are typical applications
such systems.

A number of techniques have been developed over
past few decades to study complex systems involv
coupled structures. A good summary of the technique
given by Min.1 As far as planar structures are concern
apart from some well-known techniques like the finite e
ment methods, the statistical energy analysis method,2 and
the mobility power flow approaches,3,4 many other investiga-
tions have been conducted to analyze particular config
tions composed of coupled structures through continu
lines. Shen and Gibbs5 have proposed a deterministic sol
tion to study different configurations of rectangular plates
low frequencies. Guyaderet al.6 have used a technique bas
on analytical calculations of the eigenmodes of connec
rectangular plates. The approach has been applied to p
like structures with a single junction. Other techniques ha
also been presented for platelike structures.7,8 A semianalyti-
cal approach was also proposed using artificial springs
characterize the junction between substructures.9 However,
the technique becomes cumbersome when the numbe
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substructures increases, since all substructures must be
eled with the same technique. Beam-stiffened plates is
other category of coupled structures which has been inve
gated by some authors.10,11 In an effort to develop a more
general approach, Jezequel and Seito12 have presented an
extension of the classical component modal synthesis te
nique. The modal synthesis methods were reformulated
make them compatible with the finite element method.

In a real-life coupled system, there may exist some s
structures with complex effects that can hardly be theor
cally modeled. In such cases, experimental data are ne
sary to represent such substructures. However, very
methods allow structures identified by tests to be coup
through continuous interfaces. Some substructural or mo
synthesis techniques are potentially capable of achieving
same task.12–14 However, modal identification of comple
structures may be a very difficult task, since it requires
detailed description of each substructure. Even if one is
pable of obtaining the modal characteristics, they may
difficult to work with computationally.15 On the contrary,
compliance~or impedance, mobility! functions which carry
the dynamic information of substructures are much easie
work with since measurements can only be conducted al
the junction with other structures. Although some impedan
or mobility model found in the literature7,8 would be even-
tually modified to fit the hybrid requirement, methods shou
still be developed to incorporate measured data with
simulation model since they depend very much on the wa
which the measured data are used in the whole formulat

In this paper, a method using a regression approac
model the compliance distribution along continuous lines
presented. Complex systems are divided into a main st
ture and auxiliary structures. The main structure is analy
using a variational formulation while the effects of all su
33766)/3376/10/$10.00 © 1998 Acoustical Society of America
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structures are introduced using their compliances at the
tact line with the main structure. Using a plate as the ma
structure, it is first demonstrated that direct use of com
ance inverse data, which could have led to a straightforw
formulation, results in an unstable solution. To address
problem, a new technique, named the ‘‘Coupling Load D
composition’’ technique~CLD! is proposed. By decompos
ing the coupling load between substructures into a poly
mial series, relations with the displacement of the mas
structure are found. Based on this new formulation, com
ance data can be directly used with the help of a regres
analysis.

Several examples are treated to numerically and exp
mentally assess the technique. A real-life structure dema
ing both numerical and experimental treatments is also
sented to illustrate the hybrid aspect of the meth
Whenever possible, simulated results are compared eith
finite element simulations or to experimental data. The
sults are restricted to low- and middle-frequency rang
since a semianalytical formulation is used to model the m
structure. However, the proposed methodology is quite g
eral and may be used in conjunction with any other ener
based formulations.

I. METHODOLOGY AND COUPLING
REPRESENTATION

Consider a structure composed of different eleme
connected along continuous lines, or as a special c
through specific points. The whole structure is divided in
two parts: a master structure and several auxiliary struct
as shown in Fig. 1. The dynamic behavior of the mas
structure may be formulated using any energy-based
proach which involves the effects of the auxiliary structu
via their energy terms. In this paper, the formulation is ba
on a semianalytical approach using artificial springs inspi
by our previous work.9 The effects of all auxiliary structure
are represented by their compliance characteristics. At e
contact zone, compliance data may be obtained by trea
each auxiliary substructure separately via any available
proach: analytical, numerical, or experimental. Interfac
should then be developed to incorporate the effects of au
iary structures.

FIG. 1. A typical complex system.
3377 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998
n-
er
i-
rd
is
-

-
r

i-
on

ri-
d-
e-
.
to
-

s,
in
n-
-

ts
e,

es
r
p-
s
d
d

ch
ng
p-
s
il-

In the case of a multipoint contact between two stru
tures, the compliancebk8m8

i j is defined by the following rela-
tion

bk8m8
i j

5
Dk8

j

Fm8
i , ~1!

where Dk8
j is the displacement at point ‘‘j ’’ in direction

‘‘ k8’’ due to a loadFm8
i , applied at point ‘‘i ’’ in direction

‘‘ m8. ’’ If more than one contact point is involved, a compl
ance matrix should be used. When the contact zone betw
two coupled structures has dimensions comparable to
wavelength of the vibrating system, the point coupling re
resentation is no more valid. In this case, each componen
the compliance matrix is a continuous function of the ex
tation and response point coordinates.

The compliance variation along the junction may be o
tained by first considering the line of contact as a combi
tion of a finite number of contact points as shown in Fig.
A regression analysis leads to continuous functions rep
senting the compliance components and ensures a contin
variation along the junction. Each component of the comp
ance matrixbk8m8

i j is replaced by a continuous functio
bk8m8(x,j). Herex andj indicate the local coordinate of th
excitation and response points, respectively, along the c
tact line.

Consider a system composed of a thin rectangular p
as the master structure shown in Fig. 3, with2b<x<b,

FIG. 2. Distribution of forces and moments due to coupling along a lin

FIG. 3. A thin plate used as the main structure.
3377Hatam et al.: Line-coupled structures
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2h<y<h, and2t<z<t. The boundary conditions of th
plate are modeled using artificial springs. Both translatio
and rotational springs are supposed to be uniformly dist
uted at each edge. Use of artificial springs enables on
simulate various boundary conditions. In the present wo
small deformations are assumed and classical linear
plate theory~Love–Kirchhoff! is used.

In order to achieve a general solution of the plate w
arbitrary boundary conditions, an approximative solution c
be obtained using the Rayleigh–Ritz method. The transv
displacement of the rectangular plate is approximated b
series:

w~x,y,t !5(
i

`

(
j

`

ai j f i~x!gj~y!, ~2!

where functionsf i(x) and gj (y) are linearly independent
Assuming polynomial functions forf i(x) andgj (y) yields

w~x,y,t !5(
i 50

m

(
j 50

n

ai j S x

bD i S y

hD j

, ~3!

where the series is truncated tom andn terms, in thex and
y directions, respectively. Appropriate values ofm and n
depend on the configuration of the plate and the desired
quency range.

Using the Rayleigh–Ritz method, the coefficients of t
polynomial decompositionai j may be obtained by minimiz
ing Lagrangian of the systemL:

d

dt S ]L

]ȧpq
D2S ]L

]apq
D50, ~4!

L5Ec2Ep
T1W, ~5!

with Ec and Ep
T being, respectively, the kinetic and tot

potential energies of the system. The termW represents the
contribution of~or the work done by! surface loads or body
forces. The total potential energy can be written as

Ep
T5Ep1Ep

b1Ep
cp , ~6!

whereEp is the total strain energy of the main structure,Ep
b

is the potential energy stored at the boundary springs,
Ep

cp is the substructure contribution to the total energy of
coupled system. The energy approach and a double seri
admissible functions for the field variable leads to the f
lowing forms of the energy terms

Ec5
1

2(p
(

q
(

r
(

s
M pqrsȧpq~ t !ȧrs~ t !, ~7!

Ep1Ep
b1Ep

cp5
1

2(p
(

q
(

r
(

s
Kpqrsapq~ t !ars~ t !,

~8!

whereM pqrs andKpqrs are the general mass and stiffness
the system, respectively. The procedure for deriving the g
eralized mass and stiffness matrices of the plate~i.e., the
main structure! with boundary springs and generalized for
are explained in Ref. 16. It should be noted that the effec
the auxiliary structures are modeled through the termEp

cp ,
which should be further analyzed.
3378 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998
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II. CHARACTERIZATION OF AUXILIARY
SUBSTRUCTURES

A. Direct formulation using compliance inverse
matrix

Using the compliance inverse leads to a quite straig
forward formulation. Assuming a junction parallel to thex
axis, the coupling load vector between the main plate and
arbitrary substructure may be written as

Fm8~x!5E
2b

b

(
k8

N

hk8m8~x,j!Dk8~j!dj, ~9!

whereFm8(x) andDm8(j) denote the functions representin
the coupling load and the corresponding deformation va
tions, respectively, along the junction. It should be me
tioned that the so-called ‘‘coupling load’’ represents the
teracting effects between the connected substructures, w
may be in the form of forces or moments. Consequently
corresponding deformations are translation and rotation,
spectively. In the above equation,hk8m8(x,j) is the inverse
of the compliance matrix of a substructure. Each compon
is a continuous function ofx and j. The terms ‘‘k8’’ and
‘‘ m8’’ vary from 1 to N andN denotes the number of cou
pling load components along the junction and depends on
configuration. In a general problem where all degrees of fr
dom are present,N is equal to 6. The energy term stored
the substructure, in its general form, can be written as

Ecp5
1

2E2b

b

(
m8

N

Fm8~x!Dm8~x!dx. ~10!

Applying Eq. ~9! yields

Ecp5
1

2E2b

b E
2b

b

(
k8

N

(
m8

N

hk8m8~x,j!Dk8~j!Dm8~x!dj dx.

~11!

In order to derive the compliance matrix, the junctio
line is discretized into a series of observation points as ill
trated in Fig. 2. By applying a unit excitation at pointi while
measuring the response at pointj , the compliance matrix

b i j
k8m8 can be constructed. The inverse of this matrix giv

h i j
k8m8 . A polynomial regression analysis can then be p

formed onh, and a continuous functionhk8m8(x,j) can be
found as follows:

hk8m8~x,j!5 (
k50

n1

(
l 50

n2

ckl
k8m8xkj l , ~12!

where ckl
k8m8 denotes the regression coefficients and ‘‘n1’’

and ‘‘n2’’ are the degree of regression for independent va
ables x and j, respectively. The regression technique
briefly explained in the Appendix. Notice that the procedu
is, in principle, applicable to the analysis of both the comp
ance and its inverse. For special cases when there is only
compliance functionFm8(x) at the junction or in any specia
case where the substructure compliance inversehm8m8(x,j)
is decoupled from other components, the energy contribu
3378Hatam et al.: Line-coupled structures
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of the substructure, given by Eq.~11!, can be written as

Ecp5
1

2E2b

b E
2b

b

hm8m8~x,j!Dm8~j!Dm8~x!dj dx. ~13!

This equation may then be used to obtain the general
stiffness matrix representing the contribution of substr
tures on the vibration of the coupled system. As we c
notice, this formulation is quite straightforward and is bas
however, on a successful regression analysis on theh matrix.
This issue is addressed below.

The formulation developed previously uses the com
ance inverse function~or matrix! h. The direct measuremen
of this quantity is not feasible, since there is no practical w
of introducing a unit displacement at one location, wh
keeping the other locations fixed. On the contrary, the co
pliance matrixb is much easier to obtain. In this case, t
compliance matrix must be inverted to obtain theh matrix.
However, this inversion process becomes difficult when
number of contact points is increased. This phenomenon
been explained by Fung17 for the flexibility matrix which is a
special case of the compliance matrix in the static case
turns out that when the number of observation points
proaches infinity, the distance between adjacent points
proaches zero and the components of theh matrix approach
infinity. As a result, by increasing the number of conta
points, the compliance matrix becomes hardly invertible.

Apart from the problem mentioned above, inherent
the characteristics of theh function, an additional problem
emerges when a regression analysis should be further
formed on theh matrix. To illustrate this problem, let u
consider how the compliance functionb and the compliance
inverse functionh vary with the number of observatio
points. A simply supported rectangular thin plate~Fig. 3! is
taken as an example, whose rotational complianceb44

i j and
its inverse along one edge (y52h) are studied. The plate
used is made of aluminum with dimensionsb515 cm, h
522.5 cm, andt515.875 mm. Figure 4 shows the variatio
of theb matrix when a unit torque is applied at the midpo
of the junction (x50) and the rotational responses are m
sured at different contact points along the junction. T
curves using, respectively, five and nine contact points
presented. In the case of nine observation points, points I
V, VII, and IX have the same coordinates as points 1, 2, 3
and 5, in the five observation point case. Points II, IV, V

FIG. 4. Variation of the real part ofb along the line of contact.
3379 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998
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and VIII are four new observation points added to form t
nine contact points case. It can be observed, in Fig. 4, tha
both cases, the compliance values are the same for each
mon observation point. Obviously, the nine point configu
tion defines the compliance characteristics of the plate m
precisely than the five point configuration does. The smoo
ness of the compliance variation makes it possible to perfo
a stable regression analysis.

Under the same conditions, Fig. 5 shows the variation
h. Again, two curves denote theh variations for the five and
nine contact point cases, respectively. It can be seen tha
value ofh at an arbitrary point strongly depends on the nu
ber of contact points. For example, although points 2, 3,
4 have the same coordinates as points III, V, and VII, valu
of h considerably vary from one case to another for the
common points. This strong dependency on the numbe
contact points is such that the regression analysis on thh
matrix should be avoided. Therefore a new formulation
required to directly use the compliance matrix.

B. Formulation via coupling load decomposition

A new formulation is proposed to avoid the use of theh
matrix in the computation of the energy contributed by t
substructures. A load distribution along the junction is co
sidered and efforts are made to find a relation between
coefficients of the load distribution and coefficients of pre
ously defined displacement fields. The formulation is dev
oped for an arbitrary load distribution which can either
forces or moments. At this point, for the sake of briefness
is supposed that there is no coupling between coupling lo
of different natures~forces and moments corresponding to
different degree of freedom, for example! and, accordingly,
the summation term in Eq.~9! can be removed. It should b
noted that in cases where this simplification does not ap
the formalism that will be developed still remains valid, a
though the mathematical description will be different. Equ
tion ~9! can be rewritten in the following form to relate th
displacement of the junctionDm8(x) to the load function
Fm8(x) using the compliance functionbm8m8(x,j)

Dm8~x,y0!5E
2b

b

bm8m8~x,j,y0!Fm8~j,y0!dj. ~14!

In the above expression, the junction is obviously a
sumed to be parallel to thex axis withy0 as itsy coordinate.
A regression analysis over the compliance matrix gives

FIG. 5. Variation of the real part ofh along the line of contact.
3379Hatam et al.: Line-coupled structures
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bm8m8~x,j,y0!5 (
k50

n1

(
l 50

n2

ckl
m8m8xkj l . ~15!

Inserting Eq.~15! into Eq. ~14! yields

Dm8~x,y0!5E
2b

b

(
k50

n1

(
l 50

n2

ckl
m8m8xkj lFm8~j,y0!dj. ~16!

In the above expression, the load distributionFm8(j,y0)
is an unknown function which constitutes the major obsta
when using the compliance matrix. To tackle this proble
the load distribution along the junction is decomposed ove
polynomial base as

Fm8~j,y0!5(
i

m

(
j

n

bi j S j

bD i S y0

h D j

, ~17!

with bi j being unknown coefficients to be determined. Hen
Eq. ~16! may be written as

Dm8~x,y0!5E
2b

b

(
k50

n1

(
l 50

n2

(
i

m

(
j

n

ckl
m8m8bi j x

kj l

3S j

bD i S y0

h D j

dj. ~18!

The polynomial decomposition for transverse displa
ments of a rectangular thin plate given by Eq.~3! may be
written in a more general form forDm8(x,y) as

Dm8~x,y!5(
i 50

m

(
j 50

n

Bi j S x

bD i S y

hD j

. ~19!

Inserting this polynomial decomposition in Eq.~18!
yields

(
i

m

(
j

n

Bi j S x

bD i S y0

h D j

5E
2b

b

(
k50

n1

(
l 50

n2

(
i

m

(
j

n

ckl
m8m8bi j x

kj l

3S j

bD i S y0

h D j

dj. ~20!

After integrating with respect toj, the following relation
is obtained

(
i

m

(
j

n

Bi j S x

bD i S y0

h D j

5 (
k50

n1

(
l 50

n2

(
i

m

(
j

n

ckl
m8m8bi j

3S y0

h D j bl 11

i 1 l 11
„11~21! i 1 l

…xk. ~21!

In order to find the relation between two series of co
ficientsBi j andbi j , the two sides of the above equation a
multiplied by xt, wheret50,...,m. Integrating the resulting
equation with respect tox along the junction yields
3380 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998
e
,
a

e

-

-

(
i

m

(
j

n

Bi j

bt11

i 1t11 S y0

h D j

„11~21!t1 i
…

5(
i

m

(
j

n

(
k50

n1

(
l 50

n2

ckl
m8m8bi j S y0

h D j

3
bk1 l 1t12

~ i 1 l 11!~k1t11!

3„11~21! i 1 l
…„11~21!k1t

…. ~22!

Two series of coefficients are defined as

G i5(
j

Bi j S y0

h D j

, ~23!

V i5(
j

bi j S y0

h D j

. ~24!

The above procedure is only valid at the junction, a
accordingly, a complete relation between the series of co
ficients Bi j and bi j is not available. Fortunately, only th
global relation between two series of new coefficientsG i and
V i is needed in the formulation. This relation can be fou
by inserting Eqs.~23! and ~24! in Eq. ~22! as

(
i

m

G i

bt11

i 1t11
„11~21!t1 i

…

5(
i

m

(
k50

n1

(
l 50

n2

ckl
m8m8V i

bk1 l 1t12

~ i 1 l 11!~k1t11!

3„11~21! i 1 l
…„11~21!k1t

…. ~25!

Note that the above equation is valid for each value
t50,...,m so that the whole set of equations can be written
matrix form as

@D#
~m̂3m̂!

$G%
~m̂31!

5 @L#
~m̂3m̂!

$V%
~m̂31!

, ~26!

wherem̂5m11,

D~ i , j !5
bi 11

i 1 j 11
„11~21! i 1 j

… ~27!

and

L~ i , j !5 (
k50

n1

(
l 50

n2

ckl
m8m8

bk1 l 1 i 12

~ i 1 l 11!~k1 i 11!

3„11~21! i 1k
…„11~21! j 1 l

…. ~28!

Consequently,

$V%
~m̂31!

5@L#21

~m̂3m̂!

@D#
~m̂3m̂!

$G%
~m̂31!

. ~29!

Finally, the following relation between the two series
coefficientsG i andV i is obtained

$V%5@H#$G% ~30!

where

@H#5@L#21@D#. ~31!
3380Hatam et al.: Line-coupled structures
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The substructural energy term, resulting from the pr
ence of the coupling loadFm8(j,y0) on the main plate, is
then calculated as

Ecp5
1

2 E
2b

b

Fm8~x,y0!Dm8~x,y0!dx

5
1

2 E
2b

b

(
i

(
j

(
r

Bi j V r S y0

h D j S x

bD i 1r

, ~32!

where

Fm8~x,y0!5(
r

V r S x

bD r

, ~33!

V r5(
j

br j S y0

h D j

. ~34!

After integrating along the junction, Eq.~32! becomes

Ecp5
1

2 (
i

(
j

(
r

Bi j V r S y0

h D j

3
b

~ i 1r 11!
„11~21! i 1r

…. ~35!

One may write Eq.~30! in the following form

V r5(
s

HrsGs . ~36!

Hence Eq.~35! is given as

Ecp5
1

2 (
i

(
j

(
r

(
s

Bi j GsHrsS y0

h D j

3
b

~ i 1r 11!
„11~21! i 1r

…, ~37!

where

Gs5(
t

BstS y0

h D t

. ~38!

The final form of the substructure energy is obtained
replacing the above equation in Eq.~37!

Ecp5
1

2h2 (
i

(
j

(
p

(
q

(
r

jqBi j BpqHrpS y0

h D q1 j 22

3
b

~ i 1r 11!
„11~21! i 1r

…, ~39!

where i ,p,r 50,...,m and j ,q50,...,n. Differentiation must
be conducted to obtain the substructural stiffness matrix

]Ecp

]Bi j
5

1

2 (
p

(
q

(
k

BpqbS y0

h D q1 j

3H Hkp

~ i 1k11!
„11~21! i 1k

…1
Hki

~p1k11!

3„11~21!p1k
…J . ~40!

Finally, the generalized stiffness matrix due to themth
component of the coupling loads is obtained.
3381 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998
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It is a complex frequency-dependent matrix which must
added to the previously developed stiffness matrices of
main structure.

Several factors affect the accuracy of the present form
lation. Limiting the infinite series in Eq.~2! to a finite series
is a computational restriction. The general criteria for tru
cating the series is to ensure sufficient accuracy in the res
ing solutions. The number of terms in the series is theref
increased until no significant variations are noticed in
frequency range of interest. This problem, related to
Rayleigh–Ritz method, has been fully discussed.9

The determination of the degree of the polynomial ser
in the regression analysis is also an important factor. In g
eral, the maximum degree of the polynomial should be c
sen in such a way that the number of coefficients does
exceed the number of samples so that

~n111!3~n211!<~np!2, ~42!

where ‘‘n1’’ and ‘‘ n2’’ are the degree of regression for in
dependent variablesx andj, respectively, andnp is the num-
ber of observation points. The proposed regression techn
permits minimizing errors when more contact points a
used.

The choice of the appropriate number of observat
points plays an important role in determining the accuracy
this hybrid approach. During our simulations, it was not
that the discretization distance should be at least four or
times smaller than the minimum wavelength in the frequen
range of interest. This ensured an acceptable represent
of the compliance variation along the junction. The sa
criteria is used in finite element analysis to estimate a su
cient number of elements for modal analysis of structure

III. NUMERICAL APPLICATIONS

The developed technique has been applied to a serie
platelike structures and beam-stiffened plates. In the fo
coming examples, the components of the coupled system
made of aluminum with modulus of elasticityE50.7E
111 N/m2, mass densityr52700 kg/m3, and Poisson’s ratio
n50.3. A damping factorj50.01 is used in all cases. Th
main plate is 30-cm wide (2b), 45-cm long (2h) and
3.175-mm thick (2t). In all cases, nine observation poin
are considered withn15n258, where ‘‘n1’’ and ‘‘ n2’’ are
the degree of regression for the two independent variab
respectively.

The first example considers two plates connected
gether along one edge to form an L-shaped plate. Both pl
are simply supported along their edges and, conseque
only a rotational moment distribution along the junction
3381Hatam et al.: Line-coupled structures
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present. A transverse force excitation of 100 N is applied
point x5y57.5 cm of the main plate and the transvers
response is calculated at the same point.

A finite element simulation using theIDEAS package is
conducted to validate the CLD technique. Linear quadri
eral thin shell elements have been used and mode supe
sition is applied to derive the response of the coupled sys
up to 1000 Hz. Figure 6 shows the comparison between
two methods. The response of the coupled system is sh
when 12 or 24 modes of vibration are superimposed. G
agreement is observed between the CLD technique and
finite element method using 24 modes over the freque
band of interest.

Another example is presented in Fig. 7 using a ribb
plate. The previously used plate is stiffened by three ide
cal stiffeners with cross section 1.530.9 cm along linesy
50.125 m,y50 m, andY520.125 m. The presence of th
stiffeners introduces two kinds of coupling with the pla
The first one is related to the torsional effect of the be
which includes a distribution of torsional moment along t
junction, and the second one is due to its flexural stiffne
which includes a transverse force distribution. Assum
small deformations,the torsional and flexural behavior of
beam are decoupled and may be treated separately to
two generalized stiffness matrices related to the torsional
transverse vibrations of the stiffener. The compliances w
derived semianalytically in this case. Again, compariso

FIG. 6. Response of an L-shaped plate,~a! CLD technique,~b! FE method
using the first 12 modes,~c! FE method using the first 24 modes.

FIG. 7. Responses of the plate stiffened by three identical beams:~a! CLD
technique,~b! finite element model.
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with FE simulation validates the CLD technique.
The advantage of the proposed technique in dealing w

structures with identical elements is quite obvious. The g
eralized stiffness matrix of a substructure may be obtaine
a function of the global coordinates of the connection lin
When the number of contact points and the degree of reg
sion for different substructures remain unchanged, the
namic stiffness matrix related to a series of identical s
structures can be simply obtained. A typical indication of t
computation efficiency of the approach can be shown usin
previously treated L-shaped plate by increasing the num
of auxiliary plates. It was shown that there is typically a
increase of 140% in processing time when six other pla
are added to the original configuration.

IV. EXPERIMENTAL APPLICATIONS

As an example to show the hybrid aspect of the meth
a system composed of simple and complex elements is
vestigated. Figure 8 shows a schematic view of the sys
that was studied. The whole structure consists of a thin s
plate~45.7-cm long, 30.5-cm wide, and 2.3-mm thick! as the
main structure. The coordinate system is located at the ce
of the plate. Two steel circular rods with a radius of 3.2 m
and a length of 15.6 cm were coupled to the plate at the
corners. The main structure was supported by a more c
plex substructure along the liney5222.9 cm. This support
substructure was composed of a plate~30.5-cm wide,
45.7-cm long, 5.1-mm thick! which is connected to a stee
table. Notice that the supporting plate has similar dimensi
and properties to the main plate to ensure an effective c
pling between both. The main plate is held by the support
plate and caught between two symmetrical notches.
bolts were tightened so that both the main structure and
supporting plate underwent the same translational movem
along the line of junction. At the same time, no moment w
transmitted across the plates.

Different procedures were used to get the complian
characteristics of the subsystems. For each of the steel
~substructures B and C!, the translational compliance in th
axial direction of the rod, as well as two bending complian
terms were calculated using a classical approach. Since
the flexural vibration of the main structure is considere

FIG. 8. Schematic view of the complex structure under study.
3382Hatam et al.: Line-coupled structures
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other components of interactive forces and moments rel
to the in-plane vibration of the main structure were n
glected. Substructure A~supporting plate with the steel table!
is, by itself, a complex system composed of different e
ments. Experimental measurements were conducted at
observation points along the line of contact to obtain
compliance matrix. A regression analysis was then p
formed on the measured data. At each observation p
along the contact line, the supporting plate was excited b
shaker driven by a broadband random signal produced b
analyzer. Transverse responses were measured at all o
vation points using an accelerometer. The two measured
nals, the acceleration and the force, were then capture
the analyzer to compute the compliance function. In orde
enhance the quality of the measurements, a mass corre
procedure was used to compensate for the effect of the a
mass due to the exciter and the force transducer.19

Figure 9 shows the variation of the real component
the compliance function of the supporting structure at 4
Hz. Both measured data and the results of the regres
analysis withn15n257 are compared. In this figure, ‘‘i ’’
denotes the excitation point and ‘‘j , ’’ the response point. It
can be seen that the regression model adequately repre
the compliance variation as a continuous function.

Using these compliance data, the response of the w
system is calculated using the hybrid approach. Experime
measurements were also carried out to validate the sim
tion results. In both cases, the excitation is a unit transve
harmonic force applied at point~8.35, 7.0!. The displacemen
response of the structure was obtained using an average
three points~12.25, 3.0!, ~212.25, 3.0!, and ~3.25, 14.3!,
with all coordinates in centimeters.

Simulated results and experimental data are compa
up to 1600 Hz in Fig. 10. Generally speaking, results sugg
that the hybrid model works reasonably well to predict t
general trend of the structure in the whole frequency rang
interest. Considering the fact that a large number of str

FIG. 9. Variation of the real part of the compliance function of substruct
A at a frequency of 420 H.~a! Measured values,~b! result of the regression
analysis.
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tural modes are involved, one gets a good appreciation of
hybrid method’s ability to handle complex structures. Agre
ment between the two sets of results is excellent up to ab
600 Hz, where 16 modes of vibration are involved. The d
viation at higher frequencies indicates that there is still ro
for improvement in both experimental and numerical a
pects. One of the plausible factors may be the fact that
condition of line coupling~which is supposed to transm
only transverse forces! becomes doubtful at higher frequen
cies. Also, the variational formulation with polynomial de
composition has been shown to be reliable mainly at l
frequencies. The developed method permits the use of
other energy based formulations involving the effects of
auxiliary structures via their energy terms. As a result, alt
native formulations on the main structure may improve
precision of the technique at higher frequencies.

V. CONCLUSIONS

Vibrations of coupled structures along a continuous l
have been investigated. Difficulties inherent to the invers
of theb matrix and the feasibility of a regression analysis
theh matrix has been illustrated. It was shown that the va
of h at a fixed point significantly varies with the number
contact points and, accordingly, the regression analysis d
not converge toward a correct estimation of theh function.
This point prevents the use of a direct formulation. To tac
the problem, a new approach, based on the direct use o
compliance matrix via a coupling load decomposition tec
nique was proposed. The approach was illustrated for s
tems composed of a thin plate as the main structure.
approach is versatile enough to include both calculated
experimentally measured compliance data of the subst
tures. This hybrid feature may allow one to go beyond
limit of the most commonly used approaches to handle m
complex structures. Vibrations of typical coupled structu
along a continuous line were investigated. Numerical res
were compared to finite element models and good agreem
was observed. The proposed approach was also applied

eFIG. 10. Frequency response function of the complex structure.~a! Hybrid
method and~b! experimental measurements.
3383Hatam et al.: Line-coupled structures
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real-life configuration which required different treatment f
each substructure. Comparisons with experimental d
showed good agreement in a frequency range involvin
large number of structural modes.

Further improvement of the approach should focus on
extension to higher frequency applications. Extension of
method to cases where all possible degree of freedoms
along the junction requires the development of reliable co
pliance measurement techniques~especially rotational
terms!.

APPENDIX: REGRESSION ANALYSIS ON THE
COMPLIANCE MATRIX OR ITS INVERSE

The linear model for relating a dependent variableY to
p-independent variables is

Yi5a01a1xi11a2xi21¯1apxip , ~A1!

where subscripti , varying from one ton, indicates the ob-
servation unit from which dataY and p-independent vari-
ables are taken. The second subscript designates the ind
dent variable. Hence there are (p11) coefficientsa to be
estimated. For convenience, let us assume thatp85p11. In
matrix form, one has

Y5Xa, ~A2!

whereY is a n31 column vector observation on the depe
dent variablesYi ; X a n3p8 matrix consisting of a column
n

in

ve

-
th

st
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of ones, followed by thep column vectors of the observa
tions on the independent variables; A least-squares estim
on the optimal values of coefficientsa i can be obtained by

â5~XTX!21~XTY!, ~A3!

whereXT is the transpose of matrixX.
The most frequently used curvilinear response model

practice, is a polynomial regression model. As a special c
of the general linear regression model,18 it is easy to handle.
This model can contain, one, two, or more independent v
ables. In the case where two variables are used, theX matrix
can be written as

X5F 1 X11 X12 X11
2 X12

2 X11X12 ...

1 X21 X22 X21
2 X22

2 X21X22 ...

A A A A A A

1 Xn1 Xn2 Xn1
2 Xn2

2 Xn1Xn2 ...

G . ~A4!

This regression analysis technique may be applied to
compliance functionb which is approximated by a polyno
mial of two variables. For example the rotational termb44

i j

can be defined as

b44
i j ~x,j!5 (

k50

n1

(
l 50

n2

ckl
44xkj l . ~A5!

Using the above definition, Eq.~A2! may be written in the
following form
¦

b44
11

b44
12

A
b44

1z

b44
21

b44
22

A
b44

2z

A
b44

zz

§

53
1 x1

0j1
1 ... x1

0j1
n2 x1

1j1
1 ... x1

1j1
n2 ... x1

n1j1
n2

1 x1
0j2

1 ... x1
0j2

n2 x1
1j2

1 ... x1
1j2

n2 ... x1
n1j2

n2

A A A A A A

1 x1
0jz

1 ... x1
0jz

n2 x1
1jz

1 ... x1
1jz

n2 ... x1
n1jz

n2

1 x2
0j1

1 ... x2
0j1

n2 x2
1j1

1 ... x2
1j1

n2 ... x2
n1j1

n2

1 x2
0j2

1 ... x2
0j2

n2 x2
1j2

1 ... x2
1j2

n2 ... x2
n1j2

n2

A A A A A A

1 x2
0jz

1 ... x2
0jz

n2 x2
1jz

1 ... x2
1jz

n2 ... x2
n1jz

n2

A A A A A A

1 xz
0jz

1 ... xz
0jz

n2 xz
1jz

1 ... xz
1jz

n2 ... xz
n1jz

n2

4 ¦
c0 0

44

c0 1
44

A
c0 n2

44

c1 0
44

c1 1
44

A
c1 n2

44

A
cn1 n2

44

§

, ~A6!
te-
tion

am-

t
ncy
whereY, a column vector (n31), is a vector representatio
of b as stated above.z51,...,np, n5np3np wherenp is
the number of selected contact points or observation po
The X matrix is a (n3n̂) matrix wheren̂5(n111)3(n2
11) with n1 andn2 being the maximum degree ofx andj
in the response surface function, respectively. Hence the
tor of parameters, consisting of the elements ofckl

44, is a
column vector with dimension (n̂31). In a regression analy
sis, the number of observations must be equal or greater
the number of parameters.

The dependent variable vectorY is a frequency-
dependent vector. It means that the above process mu
ts.

c-

an

be

repeated for each frequency. It seems to be a relatively
dious approach. Fortunately, as long as the observa
points remain unchanged for different frequencies, theX ma-
trix remains the same. Therefore at each frequency, par
etersa are obtained by the following relation

â~v!5X̄Y, ~A7!

whereX̄ can be calculated by

X̄5~XTX!21XT. ~A8!

As explained before, matrixX̄ depends only on independen
variables and, accordingly, does not change with freque
3384Hatam et al.: Line-coupled structures
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changed. It is clear that at higher frequencies, the shap
the compliance curve along the junction line becomes m
complicated and more observation points are required.

trix X̄ must be recalculated after each change in the num
of contact points. This constitutes the major part of the
gression analysis and takes more than 80% of the tota
quired time for the analysis. Therefore it is recommended
choose a sufficient number of observation points for a re
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tively large band of frequency to avoid recalculation ofX̄ too
frequently.

The whole procedure gives an analytical expression
estimating the variation of the compliance between an e
tation pointj and the response pointx in the form ofb(x,j)
along the junction. It is written as

b~x,j!5cTa, ~A9!

where
cT5@1 x0j1
¯ x0jn2 x1j1

¯ x1jn2
¯ xn1jn2#, ~A10!

a5$c0 0 c0 1 ¯ c0 n2 c1 0 c1 1 ¯ c1 n2 ¯ cn1 n2%. ~A11!
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