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An integro-modal approach is presented in this paper for computing the acoustic properties of
irregular-shaped cavities. The method consists of discretizing the whole cavity into a series of
subcavities, whose acoustic pressure is decomposed either over a modal basis of regular subcavities
or over that of the bounding cavities in the case of irregular-shaped boundaries. An integral
formulation is then established to ensure continuity of both pressure and velocity between adjacent
subcavities using a membrane with zero mass and stiffness. To some extent, the method provides a
combined approach retaining the advantages of both the acoustoelastic &HEMd and the
Green’s function methodGFM). Numerical and experimental results are presented demonstrating
the efficiency and accuracy of the suggested technique. Comparisons with other existing methods
are also made. It is shown that good accuracy on the computation of cavity modes can be obtained
using a very limited number of subcavities. ®97 Acoustical Society of America.
[S0001-496607)04806-9

PACS numbers: 43.20.Ks, 43.55.KANN]

INTRODUCTION Approximating the cavity geometry by a series of regular
Interior noise associated with surrounding vibrating shapes introduces inevitable errors in the computation. An-

structures has been the subject of many studies. One typic }her approach, .base.d on the Green’g funct|c_)n method
example is the cabin noise of aircraft and vehicles with vi-(GFM) was described in Ref. 7. A practical application of

brating walls which frequently create noise levels exceedindhiS method was reported by SL_'%ONhO_ calculated the

the human comfort limits. In such applications, irregular-2CoUStic response of an automobile cabin by imposing the
shaped cavities are often involved, whose modal characterigiPration of panels on the cavity boundary. The method is
tics are fundamental to a better understanding of the soun¢f"y helpful since there is no need to calculate the acoustic
radiation mechanism and any noise reduction action thaihodes as far as the structural-acoustic response is concerned.
needs to be taken. The method is limited however to a cavity only slightly dis-

Analytical expressions are available to calculate naturaforted from a regular one.
frequencies and mode shapes of regular cavities. Unfortu- N the present paper an alternative approach is presented
nately, only a few simple geometries such as rectangular an@" computing the acoustic properties of cavities of arbitrary
cylindrical cavities allowing the separation of the variablesshape. This method is based on an integro-modal formulation
can be simply treated by classical methods. As far as othe&gombining the advantages of the two methods mentioned
cavities with an arbitrary shape are concerned, the literaturabove(AEM and GFM. It permits the use of mixed subcavi-
shows that the available methods are quite limited. The modies, of either regular or irregular shape, leading to a minimal
popular alternatives are numerical methiodsuch as finite  discretization. The modal characteristics of regular subcavi-
element methodFEM). This method has been widely and ties are obtained analytically while the irregular subcavities
successfully used in the past to analyze irregular cavitiesdre treated using a modal expansion over the mode shapes of
The main disadvantage is the large number of degrees réheir regular bounding cavities. An integral formulation is
quired and the related computation time. Other methods inthen established to ensure both the continuity of the pressure
volving a more physical basis rather than numerical onegnd velocity between adjacent subcavities using a membrane
have been also developed. In Ref. 5 an acoustoelastic modeith zero mass and stiffness. In regard to AEM, both regular
(AEM) was used to determine acoustic natural frequencies agind irregular subcavities can be used in this approach. In
multiply connected regular cavities. The method was thergloing this the approximation is related to the solution, rather
extended in Ref. 6 to compute the acoustic modal propertiethan the cavity shape. One would expect that the solution
of irregular-shaped cavity. The procedure is based on an agonverges more rapidly using fewer subcavities. Compared
proximation of the cavity geometry by a set of rectangularto GFM, the fact that the bounding cavities can be taken for
subcavities. Adjacent subcavities are jointed together byach subcavities makes it possible to choose envelopes even
means of vibrating membranes. Although only rectangulaif the cavity is strongly irregular. As a result, envelopes
subcavities were used in this work, it is natural to supposeloser to the subcavity geometries can be used to enhance the
that other regular subcavities can also be used if they admjirediction accuracy.
analytical solutions. However, the disadvantage of this ap- The mathematical formulation is described in Sec. | for
proach lies in the fact that the number of subcavities requiredn irregular-shaped cavity. Numerical results are then pre-
is highly dependent on the irregularity of the cavity shapesented in Sec. Il. Several configurations are then used to

3313 J. Acoust. Soc. Am. 101 (6), June 1997 0001-4966/97/101(6)/3313/9/$10.00 © 1997 Acoustical Society of America 3313



study the convergence of the method and to validate the
theory. In each case, resonant frequencies of the cavity com-
puted using the present approach are compared with results
reported in the literature. An experimental validation is also
reported in Sec. lll.

ANERN

I. FORMULATION a) l

The mathematical formulation consists in treating an
irregular-shaped cavity as a combination of connected sub- junction 1,
cavities separated by elastic panels. In each subcavity, the
interior sound pressune can be calculated by transforming
the Helmholtz equation into an integral form via the second :
Green'’s theorem. in ni

S

fG(V2p+A2p)dv=J p(V2G+\2G)dv
\Y \%

g

S FIG. 1. Discretization procedure used in the present appro@thReal
where\ is the wave numben the outward normal vector of Cavity: (b) regular subcavity; panel: ----{c) irregular subcavity; panel:
the boundary surfac8, of the enclosure with volum&/; + bounding cavity: ... '
G the Green’s function corresponding to a transfer functio
obtained between an observation poinj @nd the source S . ]
(ro). The construction of the functio® for a Neumann pansion in terms of the hard-walled cavity modes:
boundary is based on the inhomogeneous Helmholtz equa- ) an(t)
tion with an infinite surface impedance written as follows: P=piC ; A, enlr), 4

V2G(r,ro) +N?G(r,ro)=—4(r—ro), where p; is the fluid density,n the modal indices of the
IG(r,ro) cavity, anda,(t) the modal pressure amplitudes to be deter-
=0 2 mined. The transverse displacement of the vibrating wall
is also expanded in terms @f vacuonormal mode shapes
in which 6(r —rg) is the Dirac delta function. The analytical ,:
expression for the functios satisfying Eq.(2) and using

b ”
G ap  IG ) c)
n Pon

) ds, (1)

r}he internal pressure is decomposed using an orthogonal ex-

an ’

normal modal expansion can be written as follows: W=, qu(t) ¥, (5)
m
c®n(1) @n(ro)
G(r,r)=2>, —znz—no. (3)  wherem contains the structural modal indiceg;(t) are the
n (5= w)VA,

structural modal coordinates. Assuming that no absorbent
wherec is the speed of the sound in the internal medium,boundary conditions are present and that the interior noise is
w, is the angular resonance frequency of the cayitythe  due to arbitrary vibrating surfaces with the remaining part
corresponding mode shape and,=(1/V)[,¢3(r)dv the  being acoustically hard wall, the substitution of E¢8, (4),

generalized acoustic mass. and(5) in Eq. (1) leads to a linear modal acoustic equation:
An irregular-shaped cavity may be composed of both A
regular and irregular subcavities, each of which being treated 3 _+ wﬁan: - Vf % AmbLnm. (6)

differently hereafter. For illustration purposes, the formula-
tion is first developed for the cavity shown in Figall The \yhereA, is the area of the vibrating surface and

whole process will then be generalized. As illustrated in Fig.

1, the cavity investigated can be divided into a reg{iFg. L :i j (N (1) ds @
1(b)] and an irregulafFig. 1(c)] subcavity. The junction be- nmUA Pt ’

tween the two subcavities is replaced by a vibrating panel.

These two subcavities are first treated separately and the\%Ith L.nm being the modal coupling coefficient between the

- . mth structure mode and theh cavity mode. This term char-
coupled together by harmonizing the motion of the panel. : A
acterizes the coupling in space between the two modes.

A. Regular subcavity B. Irregular subcavity

In the case of a regular-shaped cavity, analytical expres- An irregular-shaped subcavity may be considered as a
sions are available for the mode shapes and the natural freleviation from a regular shape, as shown in Fig).1n this
guencies. Typical examples are rectangular, cylindrical, osection the procedure consists of enclosing the irregular cav-
semi-cylindrical enclosures. Based on a fluid formulation,ity by a regular one, called the envelope or bounding cavity,
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for which modal information is available. Since the naturalC. Coupling between the two subcavities
modes of the irregular-shaped cavity are not known analyti-
cally, the modes of the bounding caviy are then used to
perform the pressure decomposition in a similar way to th

The cavity illustrated in Fig. (&) has been discretized to

a regular and an irregular subcavity, connected by elastic
: . : o abanel, as shown in Fig.() and (c). The acoustic pressure
lllustrated in Eq.(3), by replacinge by ¢. Similarly, the difference across the interconnected region is governed by

Green'’s function can also be obtained. Except for the flexiblq:he vibrations of the elastic panel. The pressure jiprgnd
part, all the remaining boundary are supposed to be acoustfhe normal gradient pressure jump on both sides and

cally hard. Equatior(1) hence becomes —) of the panel can be expressed respectively as:

an(t) - c? ¢n(r) an’(t) - 2 an + 2 ap B
En: /\n ¢n(r)_ Y; % En: (wﬁ_wz)/\n /\n’ p=p¢C ; /\_n d’n) —psC (En: /\_n ¢n) ) (13)
dpn(ro) p a, do,\ "+ a, o,
X r ds = 2 —n ~7¥n _ 2 —-n n
Ld%( o) ang on_ Pi¢ (; Nn an*) piC ( = N\, an‘) '
As Um®n(r)Lnm These two quantities depend on the structural properties. In
TV % ; /\n(wﬁ_wz)’ (®) fact, the panel is exposed to an acoustic pressure loading on

both sides. Assuming a harmonic behavior for the whole
whereV, ,, and/\, belong to the bounding cavityd, is  system[a,(t)=P, sin(wt) for sound pressure andp(t)
the surface of the irregular subcavity with a unit normal vec-= U, sin(wt) for the panel, the governing equation of mo-
tor ng. L, is again the coupling coefficient defined in Eq. tion of a thin isotropic panel may be used:
(7), after replacingp by ¢. Using the orthogonality principle 2w
of the eigenfunction of the bounding cavity, the following D V*W+pshg —=p*—p~, (14)
modal equation is obtained: Jt
) whereDy is the bending stiffness ang, andhg are, respec-
A+ wla+ c 2 anr f . ai’n ds tively, the mass density and the thickness of the panel, and
UMV S A Jgg " an V4 is the biharmonic operator. Substituting E§) into Eq.
(14) and using the orthogonality property of the structural
- ﬁ & modes, Eq(14) is then transformed into a modal structural
2 Gnlam- 9 s, Ed
V m equation given by:

In EqQ. (9), the integration is performed over the surface of M 2 2 _f o d f -

. . . . . - = S— ds, 15

the irregular cavity, either analytically or numerically, de- m(@m= @) Afp Yim Afp Ym (19

pending on the complexity of the shape. One can see that an . .

irregularity of the boundary shape has the effect of couplin here Mp, is the structural generalized mass ang, the .

the acoustic modes of its envelope. One property of the ing:mgular structural resonant frequency. In the real physical
ystem, which is a combination of a series of subcavities,

tegral term can be evaluated from the Helmholtz equation bz :
uch a panel does not really exist. The purpose of the above

the following simple expression: . . 2 o :
formulation, using a panel, is just an artificial means to simu-

a late the continuity between adjacent subcavities. Therefore,
2 _ 2 _ 2 n . . .
(o wn)f ¢ndpdv=c ( f b o ds one can imagine a massless and stiffness-free membrane ex
Va S d isting to separate the subcavities. As a special case of Eq.
Ay (15 by neglecting the generalized mass, the equation is re-
| én——d (100 duced to
d
Sy Ng

In the special case where both cavities coincide, the hard f P ¥m ds—f P~ mds=0. (16)

wall condition gives: At At

For each subsystem (subcavitsnembrane), the above
equation will be used, together with the modal acoustic equa-
tion (9), to handle a more general case composed of a num-
ber of subsystems.

Consequently, Eq10) shows the orthogonality relations be-

tween the acoustic modes

0')¢n 0')¢n’
fsd)nr W ds= fs¢n W ds=0. (11

D. Generalization of the formulation

fvd’”d’”/dv:O; n#n’. (12 In order to generalize the procedure, the four subcavity

system shown in Fig. (3 and (b) was first investigated.
It should be observed that EP) is a more general form From the topological description illustrated in Figh® Eq.
than Eq.(6). Hence, in the following development E@) is  (9) is applied to each subcavity (k=1,2,3,4) and Eq(16)
retained as a characteristic equation of the subcavities.  for each membrane. This procedure results in the following
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Crxlij= 7% [Lkklji -
[ k,k]] /\_R][ k,k]]

1
[Cir alij = AKT [Lir1xlji -
j

Equation(18) describing the pressure continuity at the inter-
face between adjacent portions can also be formulated in
terms of the unknown vector§ containing the structural
modal amplitudes. In fact, substituting Eq4.7) into Eq.

(18) gives

1
JZO [—Cyyj ,kAk_+11 By kiU K+ [ Chs 1A 1B 1 k1]

x{Ukti=0, k=1,
1
[ck,kAglsk,k_l]{uk*1}+i§0 [ — Chrj kA iBrsj k]

X{US +[Cys 1xAr 1 1Brr 141 {UK 1} =0, k=2,

(19
1

FIG. 2. Comparison between discretization procedu@@sRkeal cavity;(b) -1 K—1 -1

discretization procedure used in the present approach; real cavity: —ECk,kAk Bk,k—l]{u }+‘20 [_Ckﬂ,kAkHBkﬂvk]
bounding cavity: ........; panel: ----- ¢¢) discretization procedure used in the 1=
acoustoelastic approach; real cavity: s-s-s--¢; subcavities: —; panel: ------ .

x{UK'=0, k=3.

equations, expressed in matrix form, describing the coupling? the more general case in whidd subcavities are in-
between the vectorB andU comprised respectively of the volved, this discretization procedure may be generalized. In

acoustic and structural modal amplitudes: fact, the governing equations fé=1 andk=4 can be di-
rectly applied to the first and the last subcavity of an arbi-
[A{P} =By J{U"=0, k=1, trary system, while the equations fer=2,3 hold for all in-

_ termediate subcavities. Furthermore, EBB) applies to all
k k-1 Ky — _
(AP H[Big-a HUT 3= [Bi iU =0, k=23, (17)  empranes. The complete procedure yields the following

[Ak]{Pk}+[Bk'k_l]{ukfl}zoy k=4, general equation.
where the components of matrices] and[B] are [Q{U}=0; {u}={u*u?.. UuN"HT (20)
c2 g ¢ik Submatrices constituting the above system can calculated as
[Adij = (0 — ?) & + AV L¢}< il follows:
Al [Qij]=—[CiiA 'Bi 1= [CisrABiey ], T=],
[Bk,k]ij =w? VK [Lk,k]ij ) [Qi,j]:[cjiAj_lBj,j]n j=i+1,
- (22)

[Qij1=[CiA 'B;;l, i=j+1,

[Qi;1=0, |i—j|=2.
whered;; is the Kronecker parameter apid] is the coupling )
matrix. Note that the first and the third equations hold for thelt ¢an be seen from these equations that the glpQdlma-
two subcavities at the two ends with one separating mem{/ix iS @ banded one. This property is very helpful for reduc-
brane. The second equation is for the two intermediate sufd the final size of the matrix to be treated. In fact, using a
cavities which have two separating membranes at each enBartitioning technique of linear algebra for the banded ma-
On the other hand, the application of the modal structuraffiX. any linear system can be reduced to a simple form in-

equation Eq(16) for each membrane leads to a set of equaY°IVing only one set of modal coordinates. For example, if
tions summarized in the following matrix form: one chooses the coordinate set related to the first membrane

{U1}, successive substitutions yields

f
[Bk,k—l]ij =w? VK [Lk,k—l]ij )

[Cii{P}—[Cir1 i l{P*' =0, k=123, (18
’ ’ U =[H,{UY, {UZ=[H,]{u"},
where the components of the matfi€] can be calculated (=IO, U3 =TH:HU (22)
from: {UY =[H,J{UY}; 3<k=N-1,
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where 350 T T T

[H]=[1], [Hz]:_[Qilel,ﬂ,

(23 SR S ]

[Hyl= _[lefll,k][Qkfl,kfz"_Qkfl,klekfl]v i ol ]
3sksN-1. %

This whole procedure transforms the system expressed by "Z wor 1

Eq. (21) into a much more compact form using only the ¢ _ T ]
coordinates related to the first membrane: S

1 100

Ck,kAk_lBk,k—lHk—l_;O Cicr j kA1 Bicr . kcHK | {U}

50 1 1 1
2 3 4 5 6

= 0, k=N-—1. (24) Number of sub-cavities

Equation(24) should be solved to calculate the resonant fre+FIG. 3. Convergence study as a function of subcavity number for a semi-
quencies. Note that Eq24) is a nonstandard eigenvalue circular enclosure with unit radius. Exact: —; present approach: ----- with
. . . n,=10; mg=10.

problem so that numerical methods such as the bisectior? s
method should be used by making a distinction between
poles and true solutions. The modal structural amplitude vedser of subcavities to get a rough idea about the frequency
tor U can then be calculated. A back substitution into Eq.range of the modes of interest. The number of decomposition
(22) then gives all the other vectord,. Modal sound- terms for each series can then be increased until no signifi-
pressure vectorB for each subcavity can then be computedcant change is observed. Another cycle follows by increasing
from Eq.(17). For each resonant acoustic frequengy, the  the number of subcavities and repeating the procedure for the
modal shape of the cavity can also be evaluated using E@ecomposition series. This procedure should give the appro-
(4). priate number of indices required to ensure a convergent

At this stage it is of interest to highlight the difference stable solution. For a two-dimensional problem, two indices
between the present formulation and the acoustoelastiorresponding to the two orthogonal directions are involved
method(AEM) concerning the discretization procedure. Onefor each acoustic mode. The maximum values of these indi-
particular aspect of the AEM, as illustrated in FigcRis  ces are denoted by, andn,. In all calculations reported
that the discretization introduces an approximation in the gehereafter, these two indices are always set eqougk ny
ometry of the irregular cavity, since the cavity, in practice, is=n,. As far as the membrane is concerned, only one index
replaced b a a series of regular-shaped subcavities whosgs necessary, witimg standing for the maximum number of
boundaries deviate more or less from the real cavity boundterms used in the decomposition series.
ary. In the proposed integro-modal meth@iM ), no such In order to demonstrate the convergence properties of
geometry approximation is necessary. Although the naturahe method, a semi-circular cavity with a unit radius was
modes of the bounding cavity are used, it is the subcavitievestigated. In the calculations, rectangular bounding enclo-
with real boundaries that are treated as shown in Fig).2 sures were used for each subcavity. The fluid speed inside
From this point of view, the IMM is expected to be more the cavity was taken to be 343 m/s. The calculated natural
accurate than the AEM while using fewer subcavities. On thérequencies are compared with the analytical solution given
other hand, the partitioning technique on the band matrixpy:
adopted here considerably reduces the size of the final ma-
trix. Consequently, storage requirements are less demanding,

—e 2 a2
permitting a substantial reduction in computation time. @psq= €\ YpsT (qm/1)", (29
1. NUMERICAL RESULTS wherepsqare the modal indices of the semi-cylindrical cav-

ity of lengthl and radiusa, y, is the value of thesth root of
the Bessel function of the first kind and ordaz:rJ[’)(ypSa)

The solution of Eq(24) depends on the modal proper- =0. Since a two-dimensional problem is considered here,
ties of the uncoupled component of each subsystem and th@e hasq=0.
discretization of the whole enclosure. The truncation to a  The first example concerns convergence with respect to
finite order of the decomposition series for both acoustidhe number of subcavities, keeping the number of decompo-
pressure and the membrane vibration and the number of subition terms constant at an appropriate value., n,= 10,
cavities used should be the two main factors affecting theneaning that 100 modes are used for each subcavity and 10
accuracy of the method. Therefore, a convergence analysis térms for each membrapeThe convergence curves of the
the method concerning these parameters is required. In ordérst five acoustic modes using the present method are com-
to ensure good convergence, three indices should be detgrared with the exact solution in Fig. 3. It can be seen from
mined: the number of subcavities and the number of term#&ig. 3 that the convergence rate depends on particular mode
used in each of the acoustic and membrane series in(Bgs. and that the computed solutions agree closely with the exact
and(5). For a given cavity, one can start with a small num-values. It is also worth noting that the solution seems to be

A. Remarks on numerical solution
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Modal indices (a) Frequency (Hz)
FIG. 4. Convergence study as a function of the modal indices of eact te-03 T T T T T
subsystem. Exact: —; present approach: ----- . The semi-circular enclosure i
discretized byN=5 subcavities.
Se-06 1
g
quite stable with a small number of subcavities, and rela- 7
tively insensitive to any further increase in the number of g .
subcavities. g N
Using five subcavitiesN=5), the same investigation &
. . . . i3
was carried out varying the number of terms in the different = __ 1 i
series. For the sake of convenience, the same values we
taken for all the indices involvedng=my) and were in-
creased accordingly. Comparisons with the analytical solu. ;. ¢s . ! s !

tion are presented in Fig. 4. Again, the calculated frequencie 180 200 220 240 260 260

seem to converge quickly and closely to the exact solutior (b)

with the increase in the number of decomposition terms.  FIG. 5. Graphical representation of computed solutions of a semi-circular
A few remarks are necessary regarding the numericagnclosure withN=5; n,=10; ms=10. (a) Frequency range 80-180 Hz;

technique for the calculation of the natural frequencies. AJP) freauency range 180-290 Hz.

mentioned before, the bisection method is used in the present

work by making a distinction between poles and true solufigure, the determinant of Eq24) is plotted in Fig. %a) and

tions to find the roots of the characteristic equation of the5(b) over a frequency band ranging from 80 to 290 Hz, com-

nonstandard eigenvalue problem. This procedure is illusprising the five first modes. As can be seen, the presence of

trated in Fig. 5 based on the cavity treated previously. In thipoles changes locally the property of the characteristic equa-

Frequency (Hz)

TABLE |. Resonant frequencies of a semi-circular enclosure with unit radius: A comparison between the
present approactN=>5; n,=ms= 10), the acoustoelastic methéd = 15; n,=my=10) and the exact solution.

. Present approach Acoustoelastic method
Exact solution
Mode order f, (H2) f, (Hz) Error (%) f, (H2) Error (%)
1 100.4459 98.0 —2.43 100.0 —-0.44
2 166.4999 168.0 0.90 165.0 —0.90
3 209.0803 206.0 —1.47 210.0 0.44
4 229.2786 229.0 -0.12 229.0 -0.12
5 289.8737 289.0 —0.30 287.0 —0.99
6 290.9655 295.0 1.38 293.0 0.70
7 349.9228 354.0 1.16 346.0 -1.12
8 365.7540 369.0 0.88 367.0 0.34
9 382.6769 383.0 0.08 386.0 0.86
10 409.4261 412.0 0.63 404.0 -1.32
11 437.2671 437.0 —0.06 440.0 0.62
12 465.6539 463.0 —-0.57 457.0 -1.85
13 467.8375 475.0 1.53 468.0 0.03
14 506.5966 510.0 0.67 508.0 0.27
15 526.2490 532.0 1.09 519.0 -1.37
16 543.7178 544.0 0.05 546.0 0.42
17 555.1818 554.0 -0.21 559.0 0.68
18 573.7424 567.0 -1.17 565.0 —-1.52
19 584.6605 583.0 -0.28 576.0 —1.48
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FIG. 6. A two-dimensional simplified aircraft cabin: —; bounding cavity:
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i . . i Acoustic Mode order

tion. These poles correspond to subcavity frequencies which

make the matri§ A.] singular so that they are not the true FIG. 7. Acoustic frequencies of a two-dimensional simplified aircraft cabin
resonant frequencies of the whole cavity. In our case, fowith unit radius and a floor location ofy=56.6°. Frequencies calculated
example, the first solution is a true root, while the second ondSi"d the present approach with=2: - - --- ; the acoustoelastic method

. . . with N=5: ----- ; the finite difference method in Ref. 12: —.

is a pole. For the whole frequency range under consideration,

all five roots are marked by a circle in the various pldt.

5(a) and(b)]. lope for the lower subcavity. The acoustoelastic coupling
between the semi-circular cavity and the membrane is evalu-
B. Validation and comparison with other methods ated by a numerical integration over the vibrating surface.

The modal coupling coefficient is given b
Validation tests were also performed using the regular ping g y

cavity cited above and another geometry simulating a sim- _i aJ (yoa)| sin mar(r +a)
plified two-dimensional aircraft cabin, including compari- psmoAc Jo TP Yps 2a
sons with other available methods. All the simulations used
=my= i i iti mm(a—r)
n,=ms=10 with a variable number of subcavities. +(—)P sin (2a ) dr, 26)
1. Semi-circular cavity where (,s) are the acoustic modal indices amadis the

Again, the semi-circular cavity used before was investi-fadius of the semi-circle. With an angle 6f=56.6° defin-
gated. The computed results of cavity frequencies for a frel"d the position of the floor, different results regarding the
quency range of 90-600 Hz are reported in Table I, togethe‘i‘atura| frequencies are _compared in Fig. 7. The results used
with a comparison between the present mettiddM ), the ~ Were calculated respectively py IMM, AEM, and also taken
acoustoelastic method@EM), and the analytical solution. It from Ref. 12 based on the finite difference approach. The
can be observed that both methods agree well with the andMM used two subcavities while the AEM used five. The
lytical solutions. The mean percentage erf@alculated with ~agreement between the three methods is reasonably good.
absolute valuesover the whole frequency range is about ONce again, comparable accuracy was obtained using IMM,
0.8% for both methods. However, only 5 subcavities were/ith less subcavities than the AEM. o .
used in the present method while 15 subcavities were used in _©One of the appealing features of the IMM is its flexibil-
AEM. Also, the present approach needs 30% of the discretilly In choosing different strategies to handle different con-
zation size of the AEM. From this point of view, the pro- figurations. As an example, consider the cabin configuration
posed approach seems to be more efficient than the AEM to

achieve comparable accuracy. TABLE II. Resonant frequencies of a simplified cabin with a floor location
of #;=49° and a unit radius: A comparison between the present approach

2. Two-dimensional simplified aircraft cabin (N=1; n,=10) and Ref. 13,

Another computational example was performed on a Reference 13 Present approach
simplified aircraft cabin with an irregular shape. This con- o o 1der £ (H2) f (H2) Error (%)
n n

figuration is of great interest in recent research on aircraft

cabin nois€~** The addition of the floor to the cylindrical ! 96.416 95.0 —147
model leads to a more realistic configuration compared with 2 113.002 117.0 353
i g~ 9 mpare: 3 166.997 173.0 3.60
the single cylindrical model reported frequently in the litera- 4 178.748 179.0 0.14
ture, but results in a cavity cannot be treated by analytical 5 212.718 217.0 2,01
methods. The cavity geometry is illustrated in Fig. 6. The 6 238.019 244.0 251
proposed method is applied to this configuration which is 7 243.915 252.0 3.31
discretized into two subcavities: an upper semi-circular cav- 8 280.915 283.0 0.r4
) ) ' pper 9 283.663 288.0 1.53
ity coupled to a lower irregular cavity with a rectangular 10 305.542 295.0 _3.45

envelope. It is equally possible to use a semi-circular enve:
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araas X TABLE lIl. Resonant frequencies of a simplified cabin with a floor location
N of §;=49° and a 0.254 m radius. A comparison between the present ap-
proach(N=2; n,=my=10) and experimental results.

irregular

) Present approach
Experimental results

Mode order f, (Hz) f, (Hz) Error (%)
1 380.0 375.0 —-1.31
2 460.0 463.0 0.65
3 678.0 684.0 0.88
envelope T 4 720.0 710.0 -1.39
J 5 848.0 856.0 0.94
6 968.0 963.0 —0.51

FIG. 8. Discretization of a two-dimensional simplified aircraft cabin of unit

radius using one subcavity. The floor location isfat-49°. out any desired measurement point. Acoustic excitation was

produced by a loudspeaker with a cone connector fixed to the
with 6;=49° and unit radius, as in Fig. 8. The fact that theight end cap through a hole. The characteristics of the cone
floor position is lower than the previous one makes the cavgonnector was chosen in such a way that neither its acoustic
ity closer to a completely circular one. In this case, the enyor jts structural resonances lie in the frequency range of
closure can be treated as one single cavity with a completgerest. The measured sound pressure was treated by a
circular envelope. In this case, only E@) is needed with  yyti-channel BK 3550 FFT analyzer. Care was taken to
the left hand side term equal to zero, since no membrane ig,oiqd any strong coupling between the cavity and the bound-
present in the system. A comparison with Ref. 13 is given ingry formed by structure. It was observed that stiffening the
Table II. It can be observed that, although the agreement igycture did not noticeably change the measured resonant
acceptable, the error is greater than that obtained previouslyr.equencies_ Although more than a dozen resonant modes
This can certainly be attributed to the deviation in the boundyyere clearly identified, only the two-dimensional modes,
ary shape, since even with the low floor position it is still ¢orresponding to modes in the cross section are compared
quite different from the envelope. Accuracy can certainly b&yith our calculations in Table Ill. The values of these two-

enhanced by using more subcavities at the price of increasingmensional modes can be used to derive the other three-

the calculation effort. dimensional modes involved, since simple formulas are
available for the longitudinal direction. It can be seen that the
lll. EXPERIMENTAL VALIDATION theoretical results and the experimental measurements agree

Experimental tests were performed to assess the provell with a maximal error of 1.3%.
posed method on a cavity simulating an aircraft cabin. The
experimental setup and instrumentation used are illustratety- CONCLUSION

in Fig. 9. The cavity was formed by a steel cylinder with a A new approach has been proposed for the computation
floor. The interior space of concern was the volume aboveyf acoustic modes of irregular-shaped cavities. The method
the floor. The ends of the cavity were closed with thick steelgpproximates the solution via an integro-modal formulation
end caps. The test cylinder had an internal diameter of 0.504sing multi-connected subcavities. The formulation is gen-
m and was 1.1684 m long. The floor was made of the samera| and flexible enough to handle different cavity configu-
material as the cylinder and was located at an amglef  rations. From this point of view, the Green's function
49°. Two 3-in. microphones were placed inside the cavity method can be considered as a special case of the present
supported by a thin tube along the cylinder centerline. Theechnique using one single bounding cavity. With respect to
tube could be rotated and moved along the centerline to picihe acoustoelastic method, the proposed formulation permits
the use of irregular-shaped subcavities, thus making the ap-
proach more powerful. Numerical results on two-

2 dimensional cavities have been presented to demonstrate the
efficiency and the accuracy of the approach. Preliminary
% comparisons with the acoustoelastic method shows that the
7 proposed technique gives comparable results using fewer

subcavities.

Future work is required to extend this approach to the
prediction of interior noise inside irregular-shaped cavity
coupled with vibrating structures.
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