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An integro-modal approach is presented in this paper for computing the acoustic properties of
irregular-shaped cavities. The method consists of discretizing the whole cavity into a series of
subcavities, whose acoustic pressure is decomposed either over a modal basis of regular subcavities
or over that of the bounding cavities in the case of irregular-shaped boundaries. An integral
formulation is then established to ensure continuity of both pressure and velocity between adjacent
subcavities using a membrane with zero mass and stiffness. To some extent, the method provides a
combined approach retaining the advantages of both the acoustoelastic method~AEM! and the
Green’s function method~GFM!. Numerical and experimental results are presented demonstrating
the efficiency and accuracy of the suggested technique. Comparisons with other existing methods
are also made. It is shown that good accuracy on the computation of cavity modes can be obtained
using a very limited number of subcavities. ©1997 Acoustical Society of America.
@S0001-4966~97!04806-6#
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INTRODUCTION

Interior noise associated with surrounding vibrati
structures has been the subject of many studies. One ty
example is the cabin noise of aircraft and vehicles with
brating walls which frequently create noise levels exceed
the human comfort limits. In such applications, irregula
shaped cavities are often involved, whose modal charact
tics are fundamental to a better understanding of the so
radiation mechanism and any noise reduction action
needs to be taken.

Analytical expressions are available to calculate natu
frequencies and mode shapes of regular cavities. Unfo
nately, only a few simple geometries such as rectangular
cylindrical cavities allowing the separation of the variab
can be simply treated by classical methods. As far as o
cavities with an arbitrary shape are concerned, the litera
shows that the available methods are quite limited. The m
popular alternatives are numerical methods1–4 such as finite
element method~FEM!. This method has been widely an
successfully used in the past to analyze irregular cavit
The main disadvantage is the large number of degrees
quired and the related computation time. Other methods
volving a more physical basis rather than numerical o
have been also developed. In Ref. 5 an acoustoelastic m
~AEM! was used to determine acoustic natural frequencie
multiply connected regular cavities. The method was th
extended in Ref. 6 to compute the acoustic modal proper
of irregular-shaped cavity. The procedure is based on an
proximation of the cavity geometry by a set of rectangu
subcavities. Adjacent subcavities are jointed together
means of vibrating membranes. Although only rectangu
subcavities were used in this work, it is natural to supp
that other regular subcavities can also be used if they ad
analytical solutions. However, the disadvantage of this
proach lies in the fact that the number of subcavities requ
is highly dependent on the irregularity of the cavity sha
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Approximating the cavity geometry by a series of regu
shapes introduces inevitable errors in the computation.
other approach, based on the Green’s function met
~GFM! was described in Ref. 7. A practical application
this method was reported by Succi8 who calculated the
acoustic response of an automobile cabin by imposing
vibration of panels on the cavity boundary. The method
very helpful since there is no need to calculate the acou
modes as far as the structural-acoustic response is conce
The method is limited however to a cavity only slightly di
torted from a regular one.

In the present paper an alternative approach is prese
for computing the acoustic properties of cavities of arbitra
shape. This method is based on an integro-modal formula
combining the advantages of the two methods mentio
above~AEM and GFM!. It permits the use of mixed subcav
ties, of either regular or irregular shape, leading to a minim
discretization. The modal characteristics of regular subca
ties are obtained analytically while the irregular subcavit
are treated using a modal expansion over the mode shap
their regular bounding cavities. An integral formulation
then established to ensure both the continuity of the pres
and velocity between adjacent subcavities using a memb
with zero mass and stiffness. In regard to AEM, both regu
and irregular subcavities can be used in this approach
doing this the approximation is related to the solution, rat
than the cavity shape. One would expect that the solu
converges more rapidly using fewer subcavities. Compa
to GFM, the fact that the bounding cavities can be taken
each subcavities makes it possible to choose envelopes
if the cavity is strongly irregular. As a result, envelop
closer to the subcavity geometries can be used to enhanc
prediction accuracy.

The mathematical formulation is described in Sec. I
an irregular-shaped cavity. Numerical results are then p
sented in Sec. II. Several configurations are then used
3313(6)/3313/9/$10.00 © 1997 Acoustical Society of America
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study the convergence of the method and to validate
theory. In each case, resonant frequencies of the cavity c
puted using the present approach are compared with re
reported in the literature. An experimental validation is a
reported in Sec. III.

I. FORMULATION

The mathematical formulation consists in treating
irregular-shaped cavity as a combination of connected s
cavities separated by elastic panels. In each subcavity,
interior sound pressurep can be calculated by transformin
the Helmholtz equation into an integral form via the seco
Green’s theorem.

E
V
G~¹2p1l2p!dv5E

V
p~¹2G1l2G!dv

1E
Sb

SG ]p

]n
2p

]G

]n Dds, ~1!

wherel is the wave number;n the outward normal vector o
the boundary surfaceSb of the enclosure with volumeV;
G the Green’s function corresponding to a transfer funct
obtained between an observation point (r ) and the source
(r 0). The construction of the functionG for a Neumann
boundary is based on the inhomogeneous Helmholtz e
tion with an infinite surface impedance written as follows

¹2G~r ,r 0!1l2G~r ,r 0!52d~r2r 0!,

]G~r ,r 0!

]n
50, ~2!

in which d(r2r 0) is the Dirac delta function. The analytica
expression for the functionG satisfying Eq.~2! and using
normal modal expansion can be written as follows:

G~r ,r 0!5(
n

c2wn~r !wn~r 0!

~vn
22v2!V`n

, ~3!

wherec is the speed of the sound in the internal mediu
vn is the angular resonance frequency of the cavity,wn the
corresponding mode shape and̀n5(1/V)*vwn

2(r )dv the
generalized acoustic mass.

An irregular-shaped cavity may be composed of b
regular and irregular subcavities, each of which being trea
differently hereafter. For illustration purposes, the formu
tion is first developed for the cavity shown in Fig. 1~a!. The
whole process will then be generalized. As illustrated in F
1, the cavity investigated can be divided into a regular@Fig.
1~b!# and an irregular@Fig. 1~c!# subcavity. The junction be
tween the two subcavities is replaced by a vibrating pa
These two subcavities are first treated separately and
coupled together by harmonizing the motion of the pane

A. Regular subcavity

In the case of a regular-shaped cavity, analytical exp
sions are available for the mode shapes and the natura
quencies. Typical examples are rectangular, cylindrical,
semi-cylindrical enclosures. Based on a fluid formulatio
3314 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997
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the internal pressure is decomposed using an orthogona
pansion in terms of the hard-walled cavity modes:

p5r fc
2(

n

an~ t !

`n
wn~r !, ~4!

where r f is the fluid density,n the modal indices of the
cavity, andan(t) the modal pressure amplitudes to be det
mined. The transverse displacement of the vibrating walw
is also expanded in terms ofin vacuonormal mode shape
cm :

w5(
m

qm~ t !cm , ~5!

wherem contains the structural modal indices;qm(t) are the
structural modal coordinates. Assuming that no absorb
boundary conditions are present and that the interior nois
due to arbitrary vibrating surfaces with the remaining p
being acoustically hard wall, the substitution of Eqs.~3!, ~4!,
and ~5! in Eq. ~1! leads to a linear modal acoustic equatio

än1vn
2an52

Af

V (
m

q̈mLnm , ~6!

whereAf is the area of the vibrating surface and

Lnm5
1

Af
E
s
wn~r !cm~r !ds, ~7!

with Lnm being the modal coupling coefficient between t
mth structure mode and thenth cavity mode. This term char
acterizes the coupling in space between the two modes.

B. Irregular subcavity

An irregular-shaped subcavity may be considered a
deviation from a regular shape, as shown in Fig. 1~c!. In this
section the procedure consists of enclosing the irregular c
ity by a regular one, called the envelope or bounding cav

FIG. 1. Discretization procedure used in the present approach.~a! Real
cavity; ~b! regular subcavity; panel: -----;~c! irregular subcavity; panel:
-----; bounding cavity: ........ .
3314J. Missaoui and L. Cheng: Integro-modal approach
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for which modal information is available. Since the natu
modes of the irregular-shaped cavity are not known ana
cally, the modes of the bounding cavityf are then used to
perform the pressure decomposition in a similar way to t
illustrated in Eq.~3!, by replacingw by f. Similarly, the
Green’s function can also be obtained. Except for the flex
part, all the remaining boundary are supposed to be aco
cally hard. Equation~1! hence becomes

(
n

an~ t !

`n
fn~r !52

c2

V (
n8

(
n

fn~r !

~vn
22v2!`n

an8~ t !

`n8

3E
Sd

fn8~r 0!
]fn~r 0!

]nd
ds

2
Af

V (
m

(
n

q̈mfn~r !Lnm
`n~vn

22v2!
, ~8!

whereV, vn , and`n belong to the bounding cavity;Sd is
the surface of the irregular subcavity with a unit normal ve
tor nd . Lnm is again the coupling coefficient defined in E
~7!, after replacingw by f. Using the orthogonality principle
of the eigenfunction of the bounding cavity, the followin
modal equation is obtained:

än1vn
2an1

c2

V (
n8

an8
`n8

E
Sd

fn8

]fn

]nd
ds

52
Af

V (
m

q̈mLnm . ~9!

In Eq. ~9!, the integration is performed over the surface
the irregular cavity, either analytically or numerically, d
pending on the complexity of the shape. One can see that
irregularity of the boundary shape has the effect of coupl
the acoustic modes of its envelope. One property of the
tegral term can be evaluated from the Helmholtz equation
the following simple expression:

~vn8
2

2vn
2!E

Vd

fnfn8dv5c2S E
Sd

fn8

]fn

]nd
ds

2E
Sd

fn

]fn8
]nd

dsD . ~10!

In the special case where both cavities coincide, the h
wall condition gives:

E
S
fn8

]fn

]n
ds5E

S
fn

]fn8
]n

ds50. ~11!

Consequently, Eq.~10! shows the orthogonality relations be
tween the acoustic modes

E
V
fnfn8dv50; nÞn8. ~12!

It should be observed that Eq.~9! is a more general form
than Eq.~6!. Hence, in the following development Eq.~9! is
retained as a characteristic equation of the subcavities.
3315 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997
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C. Coupling between the two subcavities

The cavity illustrated in Fig. 1~a! has been discretized t
a regular and an irregular subcavity, connected by ela
panel, as shown in Fig. 1~b! and ~c!. The acoustic pressur
difference across the interconnected region is governed
the vibrations of the elastic panel. The pressure jumpp̄ and
the normal gradient pressure jump on both sides~1 and
2! of the panel can be expressed respectively as:

p̄5r fc
2S (

n

an
`n

fnD 1

2r fc
2S (

n

an
`n

fnD 2

,

~13!
] p̄

]n
5r fc

2S (
n

an
`n

]fn

]n1D 1

2r fc
2S (

n

an
`n

]fn

]n2D 2

.

These two quantities depend on the structural properties
fact, the panel is exposed to an acoustic pressure loadin
both sides. Assuming a harmonic behavior for the wh
system @an(t)5Pn sin(vt) for sound pressure andqm(t)
5Um sin(vt) for the panel#, the governing equation of mo
tion of a thin isotropic panel may be used:

Ds¹
4w1rshs

]2w

]t2
5p12p2, ~14!

whereDs is the bending stiffness andrs andhs are, respec-
tively, the mass density and the thickness of the panel,
¹4 is the biharmonic operator. Substituting Eq.~5! into Eq.
~14! and using the orthogonality property of the structu
modes, Eq.~14! is then transformed into a modal structur
equation given by:

Mm~vm
2 2v2!qm5E

Af

p1cm ds2E
Af

p2cm ds, ~15!

whereMm is the structural generalized mass andvm the
angular structural resonant frequency. In the real phys
system, which is a combination of a series of subcavit
such a panel does not really exist. The purpose of the ab
formulation, using a panel, is just an artificial means to sim
late the continuity between adjacent subcavities. Theref
one can imagine a massless and stiffness-free membran
isting to separate the subcavities. As a special case of
~15! by neglecting the generalized mass, the equation is
duced to

E
Af

p1cm ds2E
Af

p2cmds50. ~16!

For each subsystem (subcavity1membrane), the above
equation will be used, together with the modal acoustic eq
tion ~9!, to handle a more general case composed of a n
ber of subsystems.

D. Generalization of the formulation

In order to generalize the procedure, the four subcav
system shown in Fig. 2~a! and ~b! was first investigated.
From the topological description illustrated in Fig. 2~b!, Eq.
~9! is applied to each subcavityk (k51,2,3,4) and Eq.~16!
for each membrane. This procedure results in the follow
3315J. Missaoui and L. Cheng: Integro-modal approach
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equations, expressed in matrix form, describing the coup
between the vectorsP andU comprised respectively of th
acoustic and structural modal amplitudes:

@Ak#$P
k%2@Bk,k#$U

k%50, k51,

@Ak#$P
k%1@Bk,k21#$U

k21%2@Bk,k#$U
k%50, k52,3, ~17!

@Ak#$P
k%1@Bk,k21#$U

k21%50, k54,

where the components of matrices@A# and @B# are

@Ak# i j5~v ik
2 2v2!d i j1

c2

` jV
E
s
f j
k

]f i
k

]nd
k ,

@Bk,k# i j5v2
Af
k

Vk @Lk,k# i j ,

@Bk,k21# i j5v2
Af
k21

Vk @Lk,k21# i j ,

whered i j is the Kronecker parameter and@L# is the coupling
matrix. Note that the first and the third equations hold for
two subcavities at the two ends with one separating m
brane. The second equation is for the two intermediate s
cavities which have two separating membranes at each
On the other hand, the application of the modal structu
equation Eq.~16! for each membrane leads to a set of eq
tions summarized in the following matrix form:

@Ck,k#$P
k%2@Ck11,k#$P

k11%50, k51,2,3, ~18!

where the components of the matrix@C# can be calculated
from:

FIG. 2. Comparison between discretization procedures.~a! Real cavity;~b!
discretization procedure used in the present approach; real cavity:
bounding cavity: ........; panel: ------;~c! discretization procedure used in th
acoustoelastic approach; real cavity: •-•-•-•-•; subcavities: —; panel: ---
3316 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997
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@Ck,k# i j5
1

` j
k @Lk,k# j i ,

@Ck1,1k# i j5
1

` j
k11 @Lk11,k# j i .

Equation~18! describing the pressure continuity at the inte
face between adjacent portions can also be formulated
terms of the unknown vectorsU containing the structura
modal amplitudes. In fact, substituting Eqs.~17! into Eq.
~18! gives

(
j50

1

@2Ck1 j ,kAk1 j
21 Bk1 j ,k#$U

k%1@Ck11,kAk11
21 Bk11,k11#

3$Uk11%50, k51,

@Ck,kAk
21Bk,k21#$U

k21%1(
j50

1

@2Ck1 j ,kAk1 j
21 Bk1 j ,k#

3$Uk%1@Ck11,kAk11
21 Bk11,k11#$U

k11%50, k52,

~19!

@Ck,kAk
21Bk,k21#$U

k21%1(
j50

1

@2Ck1 j ,kAk1 j
21 Bk1 j ,k#

3$Uk%50, k53.

In the more general case in whichN subcavities are in-
volved, this discretization procedure may be generalized
fact, the governing equations fork51 andk54 can be di-
rectly applied to the first and the last subcavity of an ar
trary system, while the equations fork52,3 hold for all in-
termediate subcavities. Furthermore, Eq.~18! applies to all
membranes. The complete procedure yields the follow
general equation.

@Q#$U%50; $U%5$U1,U2,...,UN21%T. ~20!

Submatrices constituting the above system can calculate
follows:

@Qi , j #52@Ci ,iAi
21Bi ,i #2@Ci11,iAi11

21 Bi11,i #, i5 j ,

@Qi , j #5@CjiAj
21Bj , j #, j5 i11,

~21!

@Qi , j #5@CiiAi
21Bi , j #, i5 j11,

@Qi , j #50, u i2 j u>2.

It can be seen from these equations that the global@Q# ma-
trix is a banded one. This property is very helpful for redu
ing the final size of the matrix to be treated. In fact, using
partitioning technique of linear algebra for the banded m
trix, any linear system can be reduced to a simple form
volving only one set of modal coordinates. For example
one chooses the coordinate set related to the first memb
$U1%, successive substitutions yields

$U1%5@H1#$U
1%, $U2%5@H2#$U

1%,
~22!

$Uk%5@Hk#$U
1%; 3<k<N21,

;

.

3316J. Missaoui and L. Cheng: Integro-modal approach
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where

@H1#5@ I #, @H2#52@Q1,2
21Q1,1#,

~23!
@Hk#52@Qk21,k

21 #@Qk21,k221Qk21,k21Hk21#,

3<k<N21.

This whole procedure transforms the system expressed
Eq. ~21! into a much more compact form using only th
coordinates related to the first membrane:

FCk,kAk
21Bk,k21Hk212(

j50

1

Ck1 j ,kAk1 j
21 Bk1 j ,kHkG $U1%

50, k5N21. ~24!

Equation~24! should be solved to calculate the resonant f
quencies. Note that Eq.~24! is a nonstandard eigenvalu
problem so that numerical methods such as the bisec
method should be used by making a distinction betw
poles and true solutions. The modal structural amplitude v
tor U1 can then be calculated. A back substitution into E
~22! then gives all the other vectorsUk . Modal sound-
pressure vectorsP for each subcavity can then be comput
from Eq.~17!. For each resonant acoustic frequencyva , the
modal shape of the cavity can also be evaluated using
~4!.

At this stage it is of interest to highlight the differenc
between the present formulation and the acoustoela
method~AEM! concerning the discretization procedure. O
particular aspect of the AEM, as illustrated in Fig. 2~c!, is
that the discretization introduces an approximation in the
ometry of the irregular cavity, since the cavity, in practice,
replaced by a a series of regular-shaped subcavities wh
boundaries deviate more or less from the real cavity bou
ary. In the proposed integro-modal method~IMM !, no such
geometry approximation is necessary. Although the nat
modes of the bounding cavity are used, it is the subcavi
with real boundaries that are treated as shown in Fig. 2~b!.
From this point of view, the IMM is expected to be mo
accurate than the AEM while using fewer subcavities. On
other hand, the partitioning technique on the band ma
adopted here considerably reduces the size of the final
trix. Consequently, storage requirements are less deman
permitting a substantial reduction in computation time.

II. NUMERICAL RESULTS

A. Remarks on numerical solution

The solution of Eq.~24! depends on the modal prope
ties of the uncoupled component of each subsystem and
discretization of the whole enclosure. The truncation to
finite order of the decomposition series for both acous
pressure and the membrane vibration and the number of
cavities used should be the two main factors affecting
accuracy of the method. Therefore, a convergence analys
the method concerning these parameters is required. In o
to ensure good convergence, three indices should be d
mined: the number of subcavities and the number of te
used in each of the acoustic and membrane series in Eqs~4!
and ~5!. For a given cavity, one can start with a small nu
3317 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997
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ber of subcavities to get a rough idea about the freque
range of the modes of interest. The number of decomposi
terms for each series can then be increased until no sig
cant change is observed. Another cycle follows by increas
the number of subcavities and repeating the procedure for
decomposition series. This procedure should give the ap
priate number of indices required to ensure a converg
stable solution. For a two-dimensional problem, two indic
corresponding to the two orthogonal directions are involv
for each acoustic mode. The maximum values of these in
ces are denoted bynx and ny . In all calculations reported
hereafter, these two indices are always set equal;nx5ny
5na . As far as the membrane is concerned, only one in
is necessary, withms standing for the maximum number o
terms used in the decomposition series.

In order to demonstrate the convergence properties
the method, a semi-circular cavity with a unit radius w
investigated. In the calculations, rectangular bounding en
sures were used for each subcavity. The fluid speed in
the cavity was taken to be 343 m/s. The calculated nat
frequencies are compared with the analytical solution giv
by:

vpsq5cAgps
2 1~qp/ l !2, ~25!

wherepsqare the modal indices of the semi-cylindrical ca
ity of length l and radiusa,gps is the value of thesth root of
the Bessel function of the first kind and orderp: Jp8(gpsa)
50. Since a two-dimensional problem is considered he
one hasq50.

The first example concerns convergence with respec
the number of subcavities, keeping the number of decom
sition terms constant at an appropriate value~i.e., na510,
meaning that 100 modes are used for each subcavity an
terms for each membrane!. The convergence curves of th
first five acoustic modes using the present method are c
pared with the exact solution in Fig. 3. It can be seen fr
Fig. 3 that the convergence rate depends on particular m
and that the computed solutions agree closely with the e
values. It is also worth noting that the solution seems to

FIG. 3. Convergence study as a function of subcavity number for a se
circular enclosure with unit radius. Exact: —; present approach: ----- w
na510; ms510.
3317J. Missaoui and L. Cheng: Integro-modal approach
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quite stable with a small number of subcavities, and re
tively insensitive to any further increase in the number
subcavities.

Using five subcavities (N55), the same investigation
was carried out varying the number of terms in the differ
series. For the sake of convenience, the same values
taken for all the indices involved (na5ms) and were in-
creased accordingly. Comparisons with the analytical so
tion are presented in Fig. 4. Again, the calculated frequen
seem to converge quickly and closely to the exact solu
with the increase in the number of decomposition terms.

A few remarks are necessary regarding the numer
technique for the calculation of the natural frequencies.
mentioned before, the bisection method is used in the pre
work by making a distinction between poles and true so
tions to find the roots of the characteristic equation of
nonstandard eigenvalue problem. This procedure is il
trated in Fig. 5 based on the cavity treated previously. In

FIG. 4. Convergence study as a function of the modal indices of e
subsystem. Exact: —; present approach: -----. The semi-circular enclosu
discretized byN55 subcavities.
3318 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997
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figure, the determinant of Eq.~24! is plotted in Fig. 5~a! and
5~b! over a frequency band ranging from 80 to 290 Hz, co
prising the five first modes. As can be seen, the presenc
poles changes locally the property of the characteristic eq

h
is

FIG. 5. Graphical representation of computed solutions of a semi-circ
enclosure withN55; na510; ms510. ~a! Frequency range 80–180 Hz
~b! frequency range 180–290 Hz.
n the
TABLE I. Resonant frequencies of a semi-circular enclosure with unit radius: A comparison betwee
present approach~N55; na5ms510!, the acoustoelastic method~N515; na5ms510! and the exact solution.

Mode order
Exact solution

f n ~Hz!

Present approach Acoustoelastic method

f n ~Hz! Error ~%! f n ~Hz! Error ~%!

1 100.4459 98.0 22.43 100.0 20.44
2 166.4999 168.0 0.90 165.0 20.90
3 209.0803 206.0 21.47 210.0 0.44
4 229.2786 229.0 20.12 229.0 20.12
5 289.8737 289.0 20.30 287.0 20.99
6 290.9655 295.0 1.38 293.0 0.70
7 349.9228 354.0 1.16 346.0 21.12
8 365.7540 369.0 0.88 367.0 0.34
9 382.6769 383.0 0.08 386.0 0.86
10 409.4261 412.0 0.63 404.0 21.32
11 437.2671 437.0 20.06 440.0 0.62
12 465.6539 463.0 20.57 457.0 21.85
13 467.8375 475.0 1.53 468.0 0.03
14 506.5966 510.0 0.67 508.0 0.27
15 526.2490 532.0 1.09 519.0 21.37
16 543.7178 544.0 0.05 546.0 0.42
17 555.1818 554.0 20.21 559.0 0.68
18 573.7424 567.0 21.17 565.0 21.52
19 584.6605 583.0 20.28 576.0 21.48
3318J. Missaoui and L. Cheng: Integro-modal approach
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tion. These poles correspond to subcavity frequencies w
make the matrix@Ak# singular so that they are not the tru
resonant frequencies of the whole cavity. In our case,
example, the first solution is a true root, while the second
is a pole. For the whole frequency range under considera
all five roots are marked by a circle in the various plots@Fig.
5~a! and ~b!#.

B. Validation and comparison with other methods

Validation tests were also performed using the regu
cavity cited above and another geometry simulating a s
plified two-dimensional aircraft cabin, including compa
sons with other available methods. All the simulations us
na5ms510 with a variable number of subcavities.

1. Semi-circular cavity

Again, the semi-circular cavity used before was inves
gated. The computed results of cavity frequencies for a
quency range of 90–600 Hz are reported in Table I, toge
with a comparison between the present method~IMM !, the
acoustoelastic method~AEM!, and the analytical solution. I
can be observed that both methods agree well with the
lytical solutions. The mean percentage error~calculated with
absolute values! over the whole frequency range is abo
0.8% for both methods. However, only 5 subcavities w
used in the present method while 15 subcavities were use
AEM. Also, the present approach needs 30% of the discr
zation size of the AEM. From this point of view, the pro
posed approach seems to be more efficient than the AEM
achieve comparable accuracy.

2. Two-dimensional simplified aircraft cabin

Another computational example was performed on
simplified aircraft cabin with an irregular shape. This co
figuration is of great interest in recent research on airc
cabin noise.9–11 The addition of the floor to the cylindrica
model leads to a more realistic configuration compared w
the single cylindrical model reported frequently in the liter
ture, but results in a cavity cannot be treated by analyt
methods. The cavity geometry is illustrated in Fig. 6. T
proposed method is applied to this configuration which
discretized into two subcavities: an upper semi-circular c
ity coupled to a lower irregular cavity with a rectangul
envelope. It is equally possible to use a semi-circular en

FIG. 6. A two-dimensional simplified aircraft cabin: —; bounding cavit
........ .
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lope for the lower subcavity. The acoustoelastic coupl
between the semi-circular cavity and the membrane is ev
ated by a numerical integration over the vibrating surfa
The modal coupling coefficient is given by

Lpsm5
1

Af
E
0

a

Jp~gpsr !FsinSmp~r1a!

2a D
1~2 !p sinSmp~a2r !

2a D Gdr, ~26!

where (p,s) are the acoustic modal indices anda is the
radius of the semi-circle. With an angle ofu f556.6° defin-
ing the position of the floor, different results regarding t
natural frequencies are compared in Fig. 7. The results u
were calculated respectively by IMM, AEM, and also tak
from Ref. 12 based on the finite difference approach. T
IMM used two subcavities while the AEM used five. Th
agreement between the three methods is reasonably g
Once again, comparable accuracy was obtained using IM
with less subcavities than the AEM.

One of the appealing features of the IMM is its flexib
ity in choosing different strategies to handle different co
figurations. As an example, consider the cabin configura

TABLE II. Resonant frequencies of a simplified cabin with a floor locati
of u f549° and a unit radius: A comparison between the present appro
(N51; na510! and Ref. 13.

Mode order
Reference 13

f n ~Hz!

Present approach

f n ~Hz! Error ~%!

1 96.416 95.0 21.47
2 113.002 117.0 3.53
3 166.997 173.0 3.60
4 178.748 179.0 0.14
5 212.718 217.0 2.01
6 238.019 244.0 2.51
7 243.915 252.0 3.31
8 280.915 283.0 0.74
9 283.663 288.0 1.53
10 305.542 295.0 23.45

FIG. 7. Acoustic frequencies of a two-dimensional simplified aircraft ca
with unit radius and a floor location ofu f556.6°. Frequencies calculate
using the present approach withN52: -• - • - •; the acoustoelastic method
with N55: -----; the finite difference method in Ref. 12: —.
3319J. Missaoui and L. Cheng: Integro-modal approach



he
av
en
le

e
i
t
s
nd
til
b
si

pr
h
at
a
ov
ee
50
m

ity
h
pic

as
the
one
stic
of

by a
to
nd-
the
nant
des
s,
ared
o-
ree-
are
the
gree

tion
hod
ion
n-
u-
n
sent
t to
mits
ap-
o-
e the
ary
the
wer

the
ity

or
und

ce
’ J.

nit

on
ap-
with u f549° and unit radius, as in Fig. 8. The fact that t
floor position is lower than the previous one makes the c
ity closer to a completely circular one. In this case, the
closure can be treated as one single cavity with a comp
circular envelope. In this case, only Eq.~9! is needed with
the left hand side term equal to zero, since no membran
present in the system. A comparison with Ref. 13 is given
Table II. It can be observed that, although the agreemen
acceptable, the error is greater than that obtained previou
This can certainly be attributed to the deviation in the bou
ary shape, since even with the low floor position it is s
quite different from the envelope. Accuracy can certainly
enhanced by using more subcavities at the price of increa
the calculation effort.

III. EXPERIMENTAL VALIDATION

Experimental tests were performed to assess the
posed method on a cavity simulating an aircraft cabin. T
experimental setup and instrumentation used are illustr
in Fig. 9. The cavity was formed by a steel cylinder with
floor. The interior space of concern was the volume ab
the floor. The ends of the cavity were closed with thick st
end caps. The test cylinder had an internal diameter of 0.
m and was 1.1684 m long. The floor was made of the sa
material as the cylinder and was located at an angleu f of
49°. Two 1

2-in. microphones were placed inside the cav
supported by a thin tube along the cylinder centerline. T
tube could be rotated and moved along the centerline to

FIG. 8. Discretization of a two-dimensional simplified aircraft cabin of u
radius using one subcavity. The floor location is atu f549°.

FIG. 9. Experimental setup:~1!: cylinder; ~2!: floor; ~3!: end caps;~4!:
1
4-in.

microphones;~5!: tube; ~6!: loudspeaker;~7!: connector.
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out any desired measurement point. Acoustic excitation w
produced by a loudspeaker with a cone connector fixed to
right end cap through a hole. The characteristics of the c
connector was chosen in such a way that neither its acou
nor its structural resonances lie in the frequency range
interest. The measured sound pressure was treated
multi-channel BK 3550 FFT analyzer. Care was taken
avoid any strong coupling between the cavity and the bou
ary formed by structure. It was observed that stiffening
structure did not noticeably change the measured reso
frequencies. Although more than a dozen resonant mo
were clearly identified, only the two-dimensional mode
corresponding to modes in the cross section are comp
with our calculations in Table III. The values of these tw
dimensional modes can be used to derive the other th
dimensional modes involved, since simple formulas
available for the longitudinal direction. It can be seen that
theoretical results and the experimental measurements a
well with a maximal error of 1.3%.

IV. CONCLUSION

A new approach has been proposed for the computa
of acoustic modes of irregular-shaped cavities. The met
approximates the solution via an integro-modal formulat
using multi-connected subcavities. The formulation is ge
eral and flexible enough to handle different cavity config
rations. From this point of view, the Green’s functio
method can be considered as a special case of the pre
technique using one single bounding cavity. With respec
the acoustoelastic method, the proposed formulation per
the use of irregular-shaped subcavities, thus making the
proach more powerful. Numerical results on tw
dimensional cavities have been presented to demonstrat
efficiency and the accuracy of the approach. Prelimin
comparisons with the acoustoelastic method shows that
proposed technique gives comparable results using fe
subcavities.

Future work is required to extend this approach to
prediction of interior noise inside irregular-shaped cav
coupled with vibrating structures.
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