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The optimal design of complex flexible rotor-support systems is studied in this paper.
Optimization using system strain energy is shown to be a convenient way to handle such
systems. Multiple constraints such as the damped critical speeds, limitations on transmitted
forces and the amplitudes of the deflection of shafts and disks, and stability considerations,
are used to meet the engineering requirements. The support stiffnesses and clearances of
squeeze film dampers (SFDs) are used as design variables. The transfer matrix-component
mode synthesis method (TMCMS) is employed in the system dynamic analysis. A method
of calculating damped critical speeds is also developed by using system strain energy
criterion. The optimum results can be easily applied to preliminary engineering design as
well as in modifications to existing machines.
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1. INTRODUCTION

In the design of modern rotating machinery such as aircraft engines, gas turbines and
compressors, there is an increasing requirement for high-speed, light-weight and
high-performance. These considerations usually lead to the use of more flexible and more
complex rotor systems. The rotors may be in the form of multi-level or branch structures
having several disks, bearings and slender shafts. The trend towards greater flexibility
results in critical speeds in or near the operational speed, which may cause severe vibration
problems. The increasing complexity of the system makes both the system simulation and
the design much more complicated due to the large number of parameters under
consideration. Among these quantities, critical speeds, disk unbalance, the deflection of
shafts or branches and the transmitted loads of bearings are the most important ones to
be taken into account in the design process.

Significant work on the optimal design of rotor systems has been carried out by many
researchers. Earlier work included approaches based on parameter sensitivity studies [1–3],
giving guidance to practitioners on design improvements. Numerical optimal design
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methods have also been developed by other researchers to provide designers with more
automated design tools. Generally speaking, the most commonly used objective functions
are the following: (1) minimum weight [4–6]; (2) optimal arrangement of critical speeds
[7, 8]; (3) minimum whirl amplitude of disks or deflection of shafts [9]; (4) minimum loads
transmitted by bearings to the supports [10–12]. Two kinds of optimization variables were
widely used in the previous studies. One is the geometry of the rotors, such as shaft
diameters, disk sizes and the positions of bearings and disks. The other is the system
support parameters, such as the stiffness and damping of bearings and supports and the
oil viscosity. The use of system dimensions as variables is typical in minimum weight
design. It may however prove cumbersome to use in practice, since more often than not,
the dimensions of the rotor system and the position of bearings and disks are constrained
by other considerations such as the overall engine structure and performance, and
structural strength criteria, rather than dynamic performance. In this context, optimization
of the support parameters offers an interesting alternative using the bearing and damper
dimensions as variables, following references [9, 10, 12]. This in fact has proved to be a
useful method for attaining optimal oil bearing and squeeze film damper (SFD) designs.

The previous work has contributed a lot to the understanding of the dynamic behavior
of rotor systems and provided very useful tools for engineering design practice. However,
most of the work reported in the literature has been related to relatively simple one-lever
rotor systems. The work reported by Huang et al. [8, 11] on the optimal design of
dual-spool rotor systems was one of the first attempts to address complex rotor system
optimization.

Faced with a complex rotor system, a typical problem the design engineers often
encounter is how to satisfy simultaneously quite a large number of requirements whilst
constrained to include certain parameters. The use of local parameters as optimum
objectives seems to be less realistic since it may be difficult to meet all the requirements
and the results may even be in conflict with one another. One way to tackle this problem
is the multi-objective optimization approach proposed by Shiau and Chang [13], and Miao
and Huang [11]. In this case, the difficulty revolves around how to set up the relationship
between different objectives. With increasing complexity, the task becomes even more
challenging.

In this paper, an attempt is made to find a solution to such problems. A ‘‘global’’
quantity known as the minimum system strain energy is used as the optimum objective.
The concept of minimum strain energy has already been used by Conry et al. [14] for the
optimal unbalance distribution in flexible rotors. The idea is extended in the present study
to achieve the optimal design of the whole system. It will be shown that the minimum strain
energy offers a well-balanced option for all the aforementioned design requirements.
Furthermore, it is a quadratic function leading to a unique minimum. In addition, by
searching for the strain energy maxima over a given speed range, a method of calculating
damped critical speeds is also developed. Also, multiple engineering constraints such as
damped critical speeds, stability, limits on transmitted forces, amplitudes of disks and
deflection of shafts are taken into account in the optimization process, thus meeting real
engineering needs. As design variables, both the geometrical parameters of the structure
and support parameters such as stiffness and damping coefficients may be used. The
present study concentrates on the latter. These support parameter variables are shown to
be very effective in modifying the system rotordynamic performance in terms of both
critical speeds and unbalance responses. The transfer matrix-component mode synthesis
method (TMCMS) developed by Huang [15, 16] was employed for the system dynamic
analysis. The developed program can be used both at the preliminary optimal design stage
and for modifications of the existing rotor system to improve dynamic performance.
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2. SYSTEM DYNAMIC ANALYSIS

2.1.     

Rotordynamic optimal design requires a suitable simulation method to calculate
unbalance responses. In the present case, the method should be capable of handling
complex rotor systems with reasonable efficiency.

Two simulation methods that have been widely used are the transfer matrix and finite
element methods. The transfer matrix method is very effective for simple train structures.
It is however difficult to use in the present case, involving complex components as
described previously. The finite element method is more powerful, at the price of being
more demanding as regards to computational capacity. Since complex systems usually have
a large number of degrees of freedom, with iteration necessary in the optimization process,
a more efficient method is needed, which can reduce the degrees of freedom for the
calculation model. In the present paper, the so-called transfer matrix-component mode
synthesis method (TMCMS) developed by Huang [16] is used for unbalance response
calculations. This method uses the transfer matrix approach to compute the component
modes of train-like subsystem while using the component mode synthesis method to reduce
the degree of freedom of the whole system, thus retaining the advantages of both methods.
The principle is briefly illustrated below.

The equation of motion for unbalanced rotor systems can be written as

[M]2n×2n{p̈}3 iv[Cg ]2n×2n{ṗ}+[C]2n×2n{ṗ}+[K]2n×2n{p}= {Me}v2, (1)

where n is the total number of system lumped mass and inertial nodes.
TMCMS divides a complex system into several subsystems at the coupling nodes, as

illustrated in Figure 1. Each subsystem is contrained at the boundary nodes, such as
coupling nodes and nodes where bearings, elastic supports and dampers are used. System
parameters are separated into boundary parameters related to each boundary point and
inner parameters describing the inner nodes of the system. Equation (1) can then be
expressed as
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where subscripts i and b stand for the inner and boundary parameter matrix, respectively.
The motion of the whole system can be composed of a component mode shape assembly

f, consisting of a few low constrained undamped modes, the static deflection curves d,
and the system modal co-ordinates {q}. The so called static deflection curve d corresponds
to the deformation of the system when a unit displacement is imposed in turn at each
boundary node. They are

f=[f1, f2, . . . , fm ], d=[d1, d2, . . . , dk ], {q}= {q1, q2, . . . , qm+ k}t.

Here, m is the number of constrained component modes, k is the number of boundary
nodes. When they are separated into inner and boundary parameters, one has

6pi

pb7=$fi

0
di

Ib%{q}. (3)
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The equation of motion for free vibration of the constrained undamped subsystem j is

[Mj ]{p̈j}3 ivj [Cgj ]{ṗj}+[Kj ]{pj}=0. (4)

The eigensolution will take the form of

pj =fj eiVcj t. (5)

fj can be obtained through the constrained undamped subsystem eigensolution using an
improved transfer matrix method which has been well explained by Huang [15, 16].

Let yi =1, (i=1, 2, . . . , k), in turn at each time; the solution of fj under non-rotating
condition gives the static deflection curves dj .

Taking differentials of equation (3) and substituting into equation (2), using the
boundary conditions of stiffness and damping at the boundary nodes, one can obtain the
system equation of motion in terms of the modal co-ordinates:

[M� ]q̈+ i[C� g ]q̇+[K� ]q+[C� ]q̇=[F]t{Me}v2, (6)

where different terms are defined as follows (see Huang [15, 16]):

[M� ](m+ k)× (m+ k) =$ftMif

dtMif

ftMid

dtMid+Mb%,
[C� g ](m+ k)× (m+ k) =$ftvCgif
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Compared to equation (2), equation (6) has much smaller size since only a few important
lower modes of the components are used. The accuracy of the method depends naturally
on a good estimation and selection of the modes. Solutions of equation (6) give the modal

Figure 1. (a) Schematic of a typical complex rotor system, (b) substructures constrained on boundary nodes;
b, boundary nodes; k, stiffness; I, inertia; s, subsystems; and W, lumped mass nodes.
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co-ordinate {q}m+ k which allows one to use equation (3) to obtain the unbalance response
in terms of the generalized displacements {p}2n .

2.2.   

Strain energy is an important quantity which reflects the system rotordynamic
performance and strength states. It is defined as

U=
1
2 gv

se dv. (7)

U can be divided into two parts: the energy of volume change Uv and energy of distortion
Ud :

U=Uv +Ud . (8)

According to the failure theories based on the energy of distortion [17], only the energy
of distortion is responsible for failure due to inelastic action. In slender flexible structures,
such as flexible rotors, the volume change Uv is small. As a result, the system strain energy
has a direct effect on the strength of such structures.

The strain energy of the rotor-support system is a quadratic function expressed in terms
of the system stiffness matrix [K] and the generalized displacements {p}:

U= 1
2{p}*[K]{p}. (9)

The total strain energy of the system is comprised of the sum of the strain energy of
the rotor and that of the supports:

U= s
n

i=1

Uri + s
k

j=1

Urj , (10)

where n is the number of component rotors and k is the number of supports. The strain
energy of the supports is defined by

Us = 1
2kee2, (11)

where ke is the support stiffness and e is the bearing eccentricity, two quantities affecting
the forces transmitted by the bearings.

The size of the stiffness matrix [K]2n×2n and vector {p}2n is usually very large.
Consequently, a direct calculation of strain energy using equation (11) is time-consuming.
Due to the fact that the system strain energy is a scalar quantity independent of the
co-ordinates, we can calculate it using modal co-ordinates:

U= 1
2{q}*[K� ]{q}. (12)

The size of [K� ]m+ k is much smaller than that of [K]2n×2n , resulting in a significant
reduction in both storage requirement and computing time.

2.3.        

 

Calculations of damped critical speeds in flexible rotor systems instead of undamped
eigenvalues is important in the design process for several reasons. First, damping can
greatly affect the dynamic behavior of the system: the real critical speeds may therefore
be noticeably different from undamped eigenvalues. Moreover, strong damping can also
make some rigid rotor modes disappear completely. Second, a knowledge of the exact
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Figure 2. System strain energy versus rotating speed.

damped critical speeds allows one to determine the exact maximum unbalance responses,
which need to be precisely predicted and controlled.

Most of the methods employed for calculating the damped critical speeds of
rotor-bearing systems use the transfer matrix method or improved methods based on it
[18–20]. For a complex system with branch structures or multi-level rotors however, the
utilization of transfer matrices can become cumbersome as we have previously pointed out.
In addition the complicated non-linear damping factor makes matters worse. To tackle
this problem, a numerical algorithm is proposed based on a search for the maximum values
of the system strain energy.

A typical energy curve comprising several critical speeds is illustrated in Figure 2. The
idea of this method is based on one-dimensional search for the extrema of the multimodal
function U(n). Two main steps are proposed: (1) deciding upon each monomodal interval
[ai , bi ] by one-dimensional searching procedure; (2) searching for the extreme in each
interval, using one-dimensional optimization techniques.

This simple method allows one to obtain the damped critical speeds and the exact
maximum values of the system strain energy. After comparing these extrema, one can
determine the value of global maximum strain energy over a certain range of speeds, which
can then be used as the optimal design objective.

2.4.    

The use of rolling element bearings mounted on squeeze film dampers (SFDs) and
centering springs like squirrel cages is the typical configuration used to attenuate unbalance
responses. Centering springs can also be used to shift the critical speeds of the system. A
typical support of this kind is illustrated schematically in Figure 3. Depending on the
general type of structure occurring in aerospace engines and other machinery, we used
short bearing theory to model the SFD, and assumed cavitation in the oil film (p film).
The oil film’s stiffness and damping can be represented by

k0 =
mRdL3V

c3 ·
2o

(1− o2)2, d0 =
mRdL3

c3 ·
p

2(1− o2)3/2, (13, 14)

where

o= e/c. (15)
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The magnitude of the transmitted load is given by

F=(F2
x +F2

y)1/2, (16)

where

Fx = kex−Vdey, Fy =Vdex+ key. (17)

Here, ke , de are the equivalent stiffness and damping of the support respectively, x, y are
the displacements in two perpendicular directions at whirling plane, and V is the oil
whirling speed. One can see from Figure 3 that ke is determined by kc , k0 and bearing
stiffness while de by dc and d0. In practical problems when bearing stiffness is relatively
large, and kc�k0, d0�dc , one can simply substitute ke with kc and de by d0.

3. OPTIMIZATION MODEL AND METHODS

3.1.  

Many factors need to be taken into account to achieve a successful design. Equations
(7) to (11) show that the system strain energy reflects the distortion, strength (equation
(8)) and deflection of the whole system, and the forces transmitted to the supports. It is
therefore used as the objective function. Equations (9) and (12) show that the strain energy
function is quadratic and positive definite, therefore possessing a unique minimum. This
facilitates the optimization process. The system strain energy, either at a certain speed of
operation or over a range of speeds, can be used as the objective function. Other design
requirements can be treated as optimum constraints.

3.2. 

The constraints of optimization are defubed as follows.
(1) Constraints on the critical speeds ncr : ni

cr ((nj
l , nj

u), where i is the order of critical speed;
j is the number of restricted speed ranges; l and u stand for the lower and upper limit
respectively.

(2) Constraints on the amplitudes and angular displacements of the disks: pi
d E pi

du (i,
the number of disks).

(3) Constraints on the shaft deflections: yi
s E yi

su (i, the number of shafts).
(4) Constraints on the forces transmitted to the supports: Fi EFi

u (i, the number of
supports).

Figure 3. Layout of a typical rotor system support.
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(5) The limits on support stiffnesses: ki
el E ki

e E ki
eu (i, the number of supports), where

ki
el is determined by the strength of the centering spring, and ki

eu is usually the stiffness of
the bearings.

(6) Constraints on dampers: this can be determined by the support’s structure or the
stability of the oil film. In this paper we use the constraints 0·1%E ci /Rdi E 0·5%,
oi = ei /ci E 0·4 (i, the number of dampers).

(7) Constraints on system stability: system stability is considered via the damping
coefficient of the system, di q 0 (i, the number of dampers).

This condition is, in fact, a sufficient one to ensure the stability in the optimization model
we give.

3.3. 

The equivalent stiffness ke and equivalent damping coefficients de of the supports are
used as variables. These two parameters have significant effects on the rotordynamic
performance of the system. Besides, they are easy to adjust in practice. Suitable values of
ke can be obtained by changing the stiffness of the centering spring kc , which depends on
the structure of the spring, whilst de can be adjusted via the SFD damping coefficient d0

which can be determined from the SFD’s structural dimensions. Since the relationship
between damping coefficients and unbalance responses must be correlated due to their
non-linearity, the optimum value of the damping coefficients can hardly be used directly
in actual practice. For the same reason, the limits on the coefficients are difficult to impose.
To circumvent this problem, the following direct expression is employed, based on the SFD
clearances:

c=00mRdL3p

2d0 1
2/3

+ e21
1/2

, (18)

where Rd and L are respectively the radius and length of the bearings and treated as
constants. Thus, once an optimal value d0 is obtained, the amplitude e at the bearing point
can be determined from the unbalance response calculations. Then c can be calculated
using equation (18). The final optimal design parameters are the value of the centering
spring stiffness k*c and the SFD’s oil film clearance c*.

Actually the effects of kc and c on the system dynamic performance are interactive. A
lower value of kc will make the damper more efficient. However, when c is very small and
the unbalance moment is large, a lower value of kc amplifies the transmitted forces when
the speed rises. The proposed approach allows one to obtain an optimal compromise.

3.4.     

The mathematical optimization model is as follows:

minimize f(X), f(X)=U

subject to

gi (X)E 0, i=1, . . . , l,

X$SWRn, X= {ke1, . . . , ken , de1, . . . , dem},

where l is the total number of constraints, and n, m are the number of equivalent stiffnesses
and damping coefficients at the supports to be optimized, respectively. The method used
in the optimization is the penalty function method combined with Powell’s algorithm [21].
The one-dimensional optimization is carried out using the golden section search method.
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Figure 4. Simulation model of two-spool gas generator test equipment; k, stiffness; d, damper; I, inertia; s,
subsystems; and W, E, lumped mass nodes.

4. NUMERICAL EXAMPLES

4.1. -    

To illustrate the proposed optimization strategy, an optimal design was performed on
the rotor system of two-spool gas generator test equipment. The system consists of an outer
gas generator rotor and a long inner shaft used as a center bolt. The outer rotor is rigidly
fixed on the bolt at four joints by lock nuts. Both outer and inner shafts have various
cross-sections and various stiffnesses. It has five disks on the generator and is supported
by two bearings. Each bearing is supported by a centering spring incorporated with a
squeeze film damper. The system has a total weight of 18·256 kg, a total length of 0·580 m
with a bearing span of 0·461 m. The system was initially designed, following regular
engineering routine, to cover two major working speed ranges: 18 0000 20 000 r.p.m.,
40 0000 50 000 r.p.m. The initial design parameters and the system unbalance responses
are tabulated in Tables 1–4. Previous tests and calculation results showed that the design
was feasible. The second critical speed, however, was very close to the second working
speed range, thus requiring further improvement.

The simplified simulation model is shown in Figure 4. The model is composed of two
subsystems having a total of 39 nodes. They are rigidly connected at four points A, B, C
and D. An unbalance of 5 gcm is assigned to disks 1, 4 and 5 with the same phase angles
to simulate the most severe situation.

To optimize the system, two forbidden critical speeds ranges are imposed:
15 0000 25 000 r.p.m. and 35 0000 55 000 r.p.m. Furthermore, the design is expected to
reduce simultaneously the vibration amplitude of the disks, the deflection of the shafts as
well as the forces transmitted by the bearings to the supports. Two cases, based on
minimum strain energy, are discussed below.

4.1.1. Case 1
Investigations were carried out to minimize the system strain energy over the whole

speed range from 0 to 50 000 r.p.m. Such a design allows the rotor system to operate more
smoothly during start-up and shut-down, and to pass safely through the critical speeds.
Optimal and initial design parameters are compared in Tables 1 and 2, and include K1,
K2, C1/R1, C2/R2 which are the stiffness and relative oil film clearances of the front and
rear support, respectively. yimax is the shaft deflection of two subsystems, Pdmax the maximum
amplitude of disks, Fimax the maximum forces transmitted by the two bearings, and a Fmax

the total sum of the maximum bearing forces. Figure 5 illustrates the variations in the
amplitudes of the two shafts along their total length.
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T 1

Comparison of support parameters and corresponding critical speeds: initial design versus
optimal design (Case 1)

K1 ×107 K2 ×107 C1/R1d C2/R2d Ncr1 Ncr2

(N/M) (N/M) % % (r.p.m.) (r.p.m.)

Initial 1·25 1·97 0·300 0·300 10 865 38 150
Optimal 1·00 1·00 0·367 0·202 11 815 –

T 2

Comparison of unbalance responses: initial design versus optimal design (Case 1)

Umax ×10−3 y1max ×10−3 y2max ×10−3 Pdmax ×10−3 F1max F2max s Fmax

(N · M) (M) (M) (M) (N) (N) (N)

Initial 17·241 0·0471 0·0460 0·0469 370·5 521·3 891·8
Optimal 6·951 0·0326 0·0315 0·0326 282·7 270·7 553·4
Reduction % 59·7 30·8 31·5 30·5 23·7 48·1 37·9

4.1.2. Case 2
The system is optimized at a working speed of 40 000 r.p.m. Such a design allows the

system to have good rotordynamic performance over a stable, long-term working time.
The comparison between the optimal results and the initial design is shown in Tables

3 and 4, with the subscript ‘‘w’’ standing for the working speed. Figure 6 shows the
corresponding variations in the whirling shaft deflections along their total length.

Figure 5. Amplitudes of the unbalance response of the initial and final optimal design in Case 1: ––w––, initial
s1; ––e––, initial s2; ——r——, optimal s1; ——q——, optimal s2.
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T 3

Comparison of support parameters and corresponding critical speeds: initial design versus
optimal design (Case 2)

K1 ×107 K2 ×107 C1/R1 C2/R2 Ncr1 Ncr2

(N/M) (N/M) % % (r.p.m.) (r.p.m.)

Initial 1·25 1·97 0·300 0·300 10 865 38 150
Optimal 1·00 1·00 0·255 0·218 14 820 –

T 4

Comparison of unbalance responses: initial design versus optimal design (Case 2)

Uw ×10−3 y1w ×10−3 y2w ×10−3 Pw ×10−3 F1w F2w s Fw

(N · M) (M) (M) (M) (N) (N) (N)

Initial 7·242 0·0221 0·0198 0·0108 316·1 133·9 450·0
Optimal 5·345 0·0140 0·0187 0·0113 297·1 115·1 412·2
Reduction % 26·2 36·7 5·6 −4·6 6·0 14·0 8·4

4.2. 

Case 1 shows that, using the maximum strain energy of the system over a speed range
as the objective function, the maximum deflections occurring in the two subsystems, as well
as the maximum forces transmitted by each bearing, and the total transmitted forces, are
all simultaneously reduced. Typical reductions vary from 23% up to 60% for the various
parameters. Over most sections of the rotors, the whirling amplitude is also reduced
(Figure 5). These observations seem to indicate that the system strain energy is an efficient
quantity to use as the objective function. As a global parameter, it provides a general
description of the severity of the working conditions of complex rotor-support systems.

Figure 6. Amplitudes of the unbalance response of the initial and final optimal design in Case 2: ––w––, initial
s1; ––e––, initial s2; ——r——, optimal s1; ——q——, optimal s2.
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When carrying out the system optimization at a fixed working speed, as in Case 2, one
also finds a definite improvement for most of the previous design response parameters.
However, the minimum system strain energy does not necessarily lead to a minimum
amplitude at all locations or a minimum transmitted force for both bearings. In fact, from
Table 4 and Figure 6, it can be noticed that slight increases in the amplitudes of some disks
and shaft nodes may occur in the unbalance responses of the optimal design schema. Under
some circumstances, these local parameters can be better controlled by adding appropriate
local constraints. Nevertheless, the general distortion of the whole system is shown to be
reduced in this specific application. Less distortion of the rotors ensures good stress
conditions which tend to extend the structure’s life. The advantages become apparent in
flexible rotor systems with slender shafts whose strength is critical and where distortion
is difficult to control. In this kind of situation, instead of using the strain energy of the
whole system, one might choose the strain energy of rotors or shafts as the optimum
objective to have a better control of these elements.

5. CONCLUSIONS

The optimization using system strain energy is shown to be a convenient way to handle
the optimal design of complex flexible rotor-support systems. Compared with other
objective functions, the use of the minimum system strain energy possesses the following
advantages: (1) System strain energy is a global parameter describing the severity of the
working conditions of complex rotor-support systems. (2) The distortion of the whole rotor
system is minimized via the strain energy minimization. This feature is particularly
attractive when dealing with flexible rotor systems where deflections are difficult to control
and should prove helpful in extending the overall life of the structure. (3) A unique
minimum can always be achieved because the strain energy function is both quadratic and
positive definite.

Multiple constraints such as critical speeds, whirling amplitudes, transmitted forces and
instability are necessary in order to achieve an optimal design of use in actual engineering
practice. Support parameters such as the stiffness of the centering springs and clearances
of SFDs are shown to be efficient variables to reach an optimal design in complex flexible
systems. The developed strategy is believed to be useful during both the preliminary design
and for modifications of existing machines.

REFERENCES

1. J. W. L 1980 Journal of Mechanical Design 102, 115–121. Sensitivity of the critical speeds
of a rotor to changes in design.

2. C. P. F and R. N 1982 in Rotor-Dynamic Instability Problems in
High-Performance Turbomachinery, NASA Conference Publication 2250, 284–297. Texas A&M
University, College Station. Influence of parameter changes to stability behavior of rotor.

3. M. R, H. D. N and W. J. C 1986 Journal of Vibration, Acoustics, Stress, and
Reliability in Design 108, 197–206. Parameter sensitivity in dynamics of rotor-bearing systems.

4. T. N. S and J. L. H 1988 Journal of Engineering for Gas Turbines and Power 110,
592–599. Minimum weight design of a rotor bearing system with multiple frequency constraints.

5. T. N. S and J. L. H 1990 Journal of Engineering for Gas Turbines and Power 112,
454–462. Optimum weight design of a rotor bearing system with dynamic behavior constraints.

6. T. Y. C and B. P. W 1993 Journal of Engineering for Gas Turbines and Power 115,
256–260. Optimum design of rotor-bearing systems with eigenvalue constraints.

7. M. R, S. D. R, H. D. N and W. J. C 1987 Journal of Vibration, Acoustics,
Stress, and Reliability in Design 109, 152–157. Optimal placement of critical speeds in
rotor-bearing systems.



-  1133

8. T. P. H and G. H. L 1994 Chinese Journal of Aerospace Power 9(2). Optimization of
rotor dynamics.

9. R. B. B, J. S. R and T. S. S 1982 Journal of Mechanical Design 104, 339–334.
Optimum journal bearing parameters for minimum rotor unbalance response in synchronous
whirl.

10. W. J. C, M. R, S. D. R and H. D. N 1988 Journal of Mechanisms,
Transmissions, and Automation in Design 110, 166–174. The optimal design of squeeze film
dampers for flexible rotor systems.

11. L. S. M and T. P. H 1990 Chinese Journal of Vibration Engineering 3(4). Optimal design
of damper of complex rotor-support systems.

12. C. N and H. A 1993 Journal of Vibration and Acoustics 115, 210–215. Optimal
design of centered squeeze film dampers.

13. T. N. S and J. R. C 1993 Journal of Engineering for Gas Turbines and Power 115,
246–255. Multi-objective optimization of rotor-bearing system with critical speed constraints.

14. T. F. C, P. R. G and C. C 1982 Journal of Mechanical Design 104, 875–880.
A minimum strain energy approach for obtaining optimal unbalance distribution in flexible
rotors.

15. T. P. H and J. W. L 1988 Journal of Nanjing Aeronautical Institute (English Edition),
5(16). The transfer matrix component mode synthesis for eigensolution of rotor system.

16. T. P. H 1996, presented at 1996 ASME International Gas Turbine and Aeroengine Congress
& Exhibition, Birmingham, UK 96-GT-79. The transfer matrix-component mode synthesis for
rotordynamic analysis.

17. B. B. M and J. W. NN 1991 Engineering Mechanics of Materials. New York:
Springer-Verlag; third edition.

18. J. W. L 1974 Journal of Engineering for Industry 96, 509–517. Stability of the critical speeds
of a flexible rotor in fluid-film bearings.

19. B. T. M and J. M. V 1983 ASME Journal of Engineering for Power 105, 591–595.
An improved method for calculating critical speeds and rotordynamic stability of
turbomachinery.

20. D. K and J. W. D 1990 Journal of Vibration and Acoustics 112, 112–118. An improved
method for stability and damped critical speeds of rotor-bearing systems.

21. D. K. Y 1989 Mechanical Optimal Design. Hydraulic Electrical Power Inc. of China (in
Chinese).

22. Y. L 1995 Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China.
Complex flexible rotor system optimal design—program development and application.

APPENDIX: NOMENCLATURE

c squeeze film damper clearance
[C] damping matrix
[C� ] damping matrix under modal co-ordinates
Cb diagonal matrix of equivalent damping coefficients at boundary nodes
[Cg ] gyroscopic moment matrix
[C� g ] gyroscopic moment matrix under modal co-ordinates
de equivalent damping of support
dc damping of centering spring
d0 equivalent damping of oil film
e bearing eccentricity
F transmitted force
I unit matrix
[K] stiffness matrix
[K� ] stiffness matrix under modal co-ordinates
k0 equivalent stiffness of oil film
Kb diagonal matrix of equivalent stiffness at boundary nodes
kc stiffness of centering spring
ke equivalent stiffness of support
Ks static stiffness matrix of constrained subsystems at boundary nodes
L damper length
[M] mass matrix
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[M� ] mass matrix under modal co-ordinates
{Me} unbalance moment
{p} generalized displacement
Rd radius of damper
U system strain energy
y lateral deflection
v rotational speed
f constrained undamped component mode shape
[F] assembly of component mode
d static deflection curve
Vc subsystem undamped eigenvalue
s stress
e strain
o eccentricity ratio
m oil viscosity
V whirling speed
* complex conjugate transpose, optimal parameters


