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ABSTRACT

This paper presents a new approach for the vibration analysis of cylindrical
vessels containing fluid. A new formulation using artificial spring systems at
the junction of the shell and end cap was established with the inclusion of
the structure—fluid coupling. The method was shown to be well adapted to
handle combined structures with the presence of a fluid. Numerical results
showed the accuracy of the method as well as the fluid effects on the
dynamic behavior of the structure.

INTRODUCTION

Vibration analysis of structures containing fluid has been a topic of major
interest to many authors and to the industrial market. When the fluid is
light, such as air, it is generally admitted that the interaction between the
structure and the fluid is weak so that the fluid—structural coupling may be
neglected as a first approximation. However, when the structure is
surrounded by heavy fluid, such as most industrial vessels containing a
liquid, the effect of the fluid on the vibration of the structure is so impor-
tant that analysis should be made with the full coupling taken into
account. In the present paper, a new formulation using artificial spring
systems is presented to study the case of a cylindrical shell with end caps
filled with heavy fluid.

Artificial springs have been widely used in the modeling of the boundary
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conditions of structures.'™ The essence of this technique was to introduce
artificial springs at the boundary to simulate different boundary cases by
adjusting the stiffness of the springs. By doing this, all or some of the
geometrical boundary conditions are eliminated. Therefore, the choice of the
admissible functions for the structure displacements becomes much more
simple and flexible. Recently, the same idea was introduced in the study of
the free vibrations of mechanical coupled structures: structures composed of
several components. Cheng er al.’ presented a study on a circular cyiindrical
shell closed at one end by a flexible plate. In that work, artificial springs were
used at the shell-plate junction edge to simulate the mechanical coupling.
Almost at the same time, Yuan ez al.® published a paper dealing with straight
and curved beams. In these works, it has been shown that the technique was
quite convenient and efficient to handle the problem of mechanical coupling.
In fact, when using the classical Rayleigh—Ritz method for analyzing such
systems, the admissible functions should satisfy not only the geometrical
boundary conditions but also the continuity with adjoining components,
which is a quite difficult task. In the proposed approach, this continuity is
automatically assured by permitting the stiffness of the artificial springs to
become very large compared to the stiffness of the system. Moreover, a
suitable combination of the stiffness of the springs makes it possible to
simulate a very large variety of intermediate coupling cases.

This paper can be considered as a continuation of the previous ones.
With a cylindrical shell with end caps, the present paper extends the free
vibration analysis previously carried out to include the fluid loading from
the enclosed cylindrical cavity. It will be shown that the proposed techni-
que is well adapted to the analysis of fluid-loaded structures. This point is
one of the main differences from some of the commonly used methods for
joined structures such as the receptance method’ and the transfer matrix
method.® In fact, these methods are restricted to vibration analysis in
vacuo and soon become cumbersome when one wants to deal with the
coupling problems, where the structure is coupled to a fluid medium.
Hence, this paper first concentrates on the presentation of the formulation
and several numerical examples are then presented to show the utility of
the model.

DESCRIPTION OF THE STRUCTURAL MODELING

Figure la shows the basic structure that was investigated. The model
consists of a finite circular cylindrical shell closed by two end caps. The
cap at the left end (x = 0) is assumed to be a flexible plate and the one at
right end (x = L) a rigid cap. The only reason for assuming a rigid cap is
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Fig. 1. Investigated structure and spring set-up.

to simplify the presentation and the discussion of the formulation. If this
was not the case in practice, the two flexible plates would be treated in
exactly the same way presented hereafter. Both shell and plate are
assumed to be thin homogeneous structures. The whole structure is
assumed to be initially supported by shear diaphragm at each end. The
excitation is modeled as a harmonic point load at arbitrary locations
situated either on the shell or on the plate.

If the classical Rayleigh—Ritz method was used, one would be faced
with a harsh problem: choosing the trial functions satisfying not only the
boundary conditions of the plate and the shell, but also the displacement
continuity at the junction between them. In order to overcome this diffi-
culty, the whole flexible portion of the structure is considered to be a
combination of two substructures (a shell and a plate) connected by two
sets of springs as illustrated in Fig. 1b. The figure shows that translational
and rotational springs, having respectively distributed stiffness K and C,
are added between the shell and the plate along the junction edge. All
spring constants are defined in the appropriate units of stiffness per unit
length on the contour and are assumed to be constant along the edges.

The governing equations of the plate-ended shell can then be obtained
by using the variational principle via the finding of the extremum of
Hamilton’s function over a suitable subspace of displacement trial func-
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tions. A detailed treatment on the free vibration of the structure is given in
a previous article.” Due to the very lengthy expressions obtained, only an
outline is given here with special attention paid to the excitation terms
coming from the surrounding field.

The shell displacements u, v and w are decomposed on the basis of the
eigenfunctions of a shear diaphragm supported shell as:

3
y v = Z Z Z Z Azmj(t)Hij(aﬁ n,mij) (1)

where IT7, ; 1s the eigenvector of the shear diaphragm shell with » and m
being, respectively, the circumferential and longitudinal order, « indicates
symmetric (x = 1) or anti symmetric (¢ = 0) mode and j the type of the
modes (bending, twisting, extension—compression); the A, (1) are the
coeflicients to be determined.

The flexural displacement of the plate w;, is expended over a polynomial

basis:

=
8
3
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wo =Y > B, (A, (a,n,m) 2)
a=0 n=0 m,=0
with
Ao, (@ 1, mp) = sin (0 + am/2)(r /@)™ (2a)

where n, m,, and « are, respectively, the circumferential order, the radial
order and the symmetric index, a is the radius of the plate and the B, (1)
are the coeflicients to be determined.

The Hamilton’s function H of the whole system can be expressed as
follows:

n
H:J (T.— E.+T,— E,— E¢ + Ep)dt 3)
fo

where 1y and ¢, are arbitrary times, 7. and T, are, respectively, the kinetic
energy of the cylindrical shell and the plate, E. and E, are their potential
energies, Fy represents the potential energy stored in the springs and Ef
the work done by the driving forces, including fluid loading from the
cavity.

The governing equations of the plate-ended shell are obtained by using
the variational principle via the finding of the extremum of Hamilton’s
function over the trial functions previously chosen. This can be done by
using  the classical Lagrange equations. Assuming that
A, (1) = A, exp (jor) and Bimp(z) = Bjmp exp (jwt), in which @ is the
angular frequency, this procedure yields



Vibration analysis of cylindrical vessels 21

00 3
Ilmj(wnmj(l +]770) —w )Anm] Z Z nmjmj’Afzmj
m'=1 j'=I

oc
E : o« a
- Ynm g B nmy,

mp=0
(anj)shell + (P;ozcmj)shell (4)
D Ry (14 jmp) — @My, ) By + Z Zm B
m;,:(] m =0
=2 2 Vi Ao,
m=1 j=1
(F:mp)plale (anp)plate (5)

In the above expressions, m,,; and M,,; are, respectively, the natural
frequencies and the generalized modal masses of the shear diaphragm
supported shell. R* , and M?% , are the stiffness and mass terms of the

nmm nmm

Y? and Z? . are the coupling terms via

plate and finally, X, ¥ i —
different spring systems. Detailed expressions for the calculations of these
terms have been given in Ref. 5. Also in the above expressions, the
structural damping factors, 7, and 7,, have been introduced for the
shell and the plate, respectively. On the right-hand side of the equa-
tions, one notices the direct excitation terms (F, )gen @and (F, Doiate
and the fluid loading terms from the cavity (P, )gen and (P, e

They are expressed as:

(2 e = L. FS(M — MQ[IT, J,,dSi; M€ Sy (©)
F o ot = LZ FS(M — Mp)AL, 4S5 M€ S, )
(P2 Yo = L] T2, 1, dS, ®)
(P2 Yo = Lz PAZ, dS, )

In the above expressions, P, is the fluid pressure inside the cavity; F is the
mechanical driving force acting at the point My either on the shell surface
S) or the plate surface S,; [II),, ;w is the w component of the eigenvector
Ha

nmj*
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MODELING OF THE FLUID

Let the cylindrical cavity occupy a volume V, and if the fluid within the
cavity is assumed to be compressive, non viscous and at rest prior to
motion of the wall, the fluid pressure P, satisfies the familiar wave equa-
tion, and associated boundary condition:

2
V2P, + (%) P.=0 (10)

dP, "
= —pww, atr=a
or

(?;:: = pw’w,, atx =0 (1

oP.

ox

In these expressions p and ¢ are the equilibrium fluid density and
propagation velocity within the cavity. Note that w;, is assumed positive
along the positive x-axis.

Equation (10) has normal mode solutions with rigid wall &, with the
following properties:

0, at x =1L

2
V2P, + (%) By =0 (12)
8%y
o 0 ()
1
Myan = — J Oy By dV (14)
Vi

where @y is the Nth cavity mode and wy its related natural frequency; dyas
the Kronecker delta function, # is unit vector normal to the corresponding
surface (positive toward the outside).

The wave equation (10) can then be transformed into a set of ordinary
differential equations by using Green’s Theorem in the form

oy 8PC> ds

J (P.V*®y — ®yVAP)AV = J (PC Py —= (15)
V N

on on
with § = S + 5,. One decomposes the fluid pressure P, on the basis of
cavity modes as

P.=pc > Py®y/My (16)

N=1
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Substituting expressions (10) to (14) and the decomposition series (16) into
equation (15) yields

(@2 — )Py = (S/V)’wy, S=8+5 (17)
in which
1
Wy = ——= J w<I>NdS1 -+ l J Wp(I)NdSQ (173)
S 5 S A

As far as cylindrical cavity is concerned, each mode is represented by
four indices: a, n, p and ¢. Consequently, the mode index N used above
will be replaced by the combination of «, #, p, ¢ modal indices. The mode
shape and the corresponding angular frequency are

Q) = sin(nd + an/2)J,(An,t) cos[(gn/L)x] (18)

npgq
Dy = c[Ar, + (g /L] (19)

where o is the symmetric index, n the circumferential order, J, the nth
order Bessel function, ¢ the longitudinal order, and 4,, the pth root of the
following equation:

T (App) = 0 (20)

Considering the displacement decomposition of the structure (expres-
sions (1) and (2)), together with expressions (17a) and (18), eqn (17)
becomes

24

2 . 2
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1)

In the above expressions, the damping of the fluid is expressed in terms of
a modal damping factor 7. L™(«,n,q,m) and Lp]a“’(oc,n,q,mp) are,
respectively, the spatial shell-fluid and plate-fluid coupling coefficients
defined as follows:

1
LShe“(a, n,q, m) = E JS [Hij]W . fI’ZPq dSl
] (22)
1

plat — * *
LY (o, n, p, my) = 3 LZ Anmp @, ds,

It can be seen from eqn (21) that the vibration of the vessel acts as an
excitation source for the surrounding field.
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STRUCTURAL EQUATIONS WITH FLUID LOADING

Using the spatial coupling coefficients defined by eqn (22) with the inclu-
sion of the fluid pressure decomposition series (16), the fluid loading terms
appearing on the right-hand side of eqns (4) and (5) can then be expressed
by the following expressions:

(P
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Equations (23) and (24) allow the elimination of the fluid-loading terms
appearing at the right-hand side of the coupling equations (4) and (5) and
obtain two sets of structural equations. This procedure yields

;1 (24)
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REMARKS AND NUMERICAL EXAMPLES

Equations (25) and (26) can be used to handle two kinds of problems.
Firstly, neglecting the right-hand side that represents exterior excitations,
a modal analysis can be performed by solving the eigenvalue equations.
The solution gives the natural frequencies of the fluid-loaded structure
together with the coefficients for constructing the corresponding mode
shapes. Secondly, with the consideration of exterior excitations, a full
coupling analysis can be done by solving the whole system. This analysis
predicts structural response to exterior loading. In both cases, a truncation
of the expansion series (1), (2) and (16) to a finite order is required prior to
the numerical procedure.

The general criterion for truncating the series is to increase the terms
used in each series until a converged solution is reached. For fluid pressure
series, a preliminary estimation of the pressure modes inside the cavity
provides a good starting point for the truncation. All modes whose
natural frequencies are included within the frequency of interest should be
considered. In addition, the inclusion of several higher-order modes is also
suggested to cover eventual coupling with the terms kept for the structure.
The same principle can be followed for the shell decomposition, in spite of
the fact that the modes of a shear diaphragm supported shell constitute
only a rough estimation of the shell motion. The polynomial series for the
plate is far less physical than the two series mentioned above. Conse-
quently, after the truncation is carried out for the shell and fluid pressure,
the number of terms used for the plate is increased until a relatively stable
solution is obtained.
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Equations (25) and (26) show an interesting feature regarding both
structural coupling and structure—fluid coupling. As a matter of fact, only
the terms with the same circumferential order » are coupled. This obser-
vation suggests that numerical calculation be performed for every given n.
In the case of responsive prediction, the solution can be obtained by
superposing the response for every n considered. This procedure consid-
erably reduces the amount of calculations and working space. It should be
noted that this selective coupling manner is directly due to the symmetry
of the structure.

For illustrative purposes, several numerical results are reported in the
following sections. Two dimensional stiffness parameters for the springs are
defined with comparison to the flexural stiffness of the cylindrical shell D,
as follows: K = Ka’/D,, C = Ca/D,. In all the calculations carried out,
both values are set to be 10® to simulate rigid joint between the shell and the
end cap. All other parameters used are tabulated in Table 1.

Example 1: Natural frequencies of a structure containing water

Calculations on the natural frequencies of the same structures in vacuo have
been reported in a previous publication.” In that paper, the accuracy and
the efficiency of the proposed formulation has been shown to exist via a
comparison with a finite element analysis. In Table 2, the same comparison
is reported between the present study and finite element analysis for several
lower-order modes of a structure containing water. The natural frequencies
of the same structure but in vacuo are also given to show the influence of the
fluid density. For the finite element model, a 20 x 20 mesh was used for the
shell and a 20 x 8 mesh for the end cap. Internal fluid loading is calculated
by collocation method.” It can be seen that the natural frequencies obtained
using the present model agree closely with those using finite element method
with a maximum difference of 4%. Moreover, the present method was
found to be less time-consuming than the finite element method. For the
present case, a time ratio of about 30 was observed.

TABLE 1
Numerical Data Used in Calculations
Structure Material Fluid Damping
Length: L = 1.2m E=7x10"N/m?>  airp=12Kgm®> 75 =00l
Radius: a =0-3m p, = 2700 Kg/m® ¢ = 340m/c 7, = 0-01
Thickness: # = 3 mm v=203 water: p = 1000 Kg/m* 7, = 0-01

Excit. on shell: x;: = 0-35m ¢ = 1460m/c
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TABLE 2
Natural Frequencies of the Structure Containing Water

Structure in vacuo Structure containing water
n Present study Present study Finite element results
0 85-5 55-4 54.9
4 157-5 84-8 86-2
3 176-8 1257 121-9
5 297-5 165-4 172-6
2 2827 180-0 185-6
6 290-8 189-7 185-5
5 318-8 2154 2231

Example 2: Dynamic response due to external excitations

With a unit point driving force, Figs 2 and 3 show the effect of the fluid on
the vibration response of the structure. Numerical results are presented in
terms of quadratic velocity averaged over the shell surface or the plate
surface (presented in dB referenced to 2-5 x 10~ '°* m?/s?). Structures in air
and also structures containing water are compared.

Figures 2 and 3 show, respectively, the structural response to a harmonic
driving force applied to the shell surface when the structure contains air (light
fluid) and when the structure contains water (heavy fluid). The driving force is
applied to the shell surface with xg = 0-35 m. Since the structure is symmetric
with respect to the longitudinal axis, the circumferential location of the force
is of no importance. It is also assumed that the driving force has a unit
amplitude with the frequency going from 5 to 1000 Hz. Several interesting
points are worth mentioning; (1) Fig. 2 compares the vibration level of the
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Fig. 2. Quadratic velocity of the vessel in air and in vacuo.
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Fig. 3. Quadratic velocity of the vessel containing water.

structure containing air to the case when the fluid is absent. It shows clearly
that the presence of air, which is considered to be a light fluid, affects slightly
the dynamic behavior of the structure. However, at several resonances, the
vibration level of the structure is more or less reduced, indicating that the
presence of the air, although light, has a damping effect on the system. It can
also be seen from Fig. 2 that the vibration level of the shell is far greater than
that of the end cap. All the peaks emerging from the spectra are found to
nearly coincide with the natural frequencies of the in vacuo structure, mean-
ing that the structure—air coupling is really weak; (2) for the structure
containing water, Fig. 3 shows that all the peaks that initially appear in Fig. 2
are shifted significantly to low frequencies, which proves that the coupling
between the structure and water is important and that fluid brings non
negligible mass effects to the latter. Moreover, because of the presence of the
water, the vibration level of the end cap is brought to a comparable level with
that of the shell, which is the substructure directly excited. This observation
illustrates that mechanical energy generated by the shell is transmitted to the
end plate via the fluid. Consequently, the end cap is excited in a more signif-
icant manner; (3) by comparing Figs 2 and 3, one can see that the presence of
water in the enclosure reduces the vibration level of the shell and, doubtless,
brings down the vibration level of the whole structure.

CONCLUSIONS

A new formulation for the vibration analysis of a cylindrical vessel
containing fluid is presented in this paper. The use of artificial spring
systems between the shell and the end cap facilitates significantly the
treatment of the mechanical coupling as well as the structural-fluid
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coupling. In addition, it permits the use of more physical decomposition
series for the structure and the fluid pressure, which contributes to accel-
eration of calculation speed and guarantees a rapid convergence of the
solution. With respect to other methods, this one presents the advantage
of being more capable of handling strong coupling of the vessel with the
contained liquid.

The utility of the model has been illustrated by two groups of numerical
results. The first one shows the accuracy of the method on the prediction
of the natural frequencies of the vessel; and the second one shows the
effects of the contained liquid on the vibrational behavior of the structure.

The developed technique may be used for other kinds of fluid-containing
vessels. However, if the geometry of the structure becomes too complex, or if
several substructures should be considered simultaneously, the method may
become less appealing, since at each junction, artificial springs are needed.
This constitutes the main limitations of the method. One way of overcoming
this difficulty may lie in the development of hybrid methods based on the
present formulation. The idea is to model the main components of a structure
with the developed technique, while the effects of auxiliary components are
integrated into the model via other methods. It is expected that this new
approach will provide new tools to launch pilot studies and stimulate further
research in the field of vibrations applied to industrial vessels.
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