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Abstract

The existence of eccentricity of the central hole for an annular plate results in a significant change in the
natural frequencies and mode shapes of the structure. In this paper, the vibration analysis of annular-like
plates is presented based on numerical and experimental approaches. Using the finite element analysis code
Nastran, the effects of the eccentricity, hole size and boundary condition on vibration modes are investigated
systematically through both global and local analyses. The results show that analyses for perfect symmetric
conditions can still roughly predict the mode shapes of ‘‘recessive’’ modes of the plate with a slightly
eccentric hole. They will, however, lead to erroneous results for ‘‘dominant’’ modes. In addition, the residual
displacement mode shape is verified as an effective parameter for identifying damage occurring in plate-like
structures. Experimental modal analysis on a clamped–free annular-like plate is performed, and the results
obtained reveal good agreement with those obtained by numerical analysis. This study provides guidance on
modal analysis, vibration measurement and damage detection of plate-like structures.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Circular plates with cutouts are extensively used in mechanical structures. Vibration analysis of
this kind of structure is the foundation for structural parameter identification, damage detection
and vibration control. In general, most research work has focused on vibration analysis of circular
plates with a central hole, i.e., annular plates, and has led to a rapid development of analytical or
experimental methods, such as the energy approach, the mode subtraction approach, etc. [1–8].

However, for engineering applications, many machine elements or structural components can
be modelled as a circular plate with eccentric holes, i.e., the annular-like plate. Usually, due to the
influence of asymmetry, the vibration behaviour of these structures will deviate significantly from
that of the annular plate, e.g., the split of doublet frequencies and the distortion of mode shapes.
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In such cases, vibration analysis of annular-like plates has been a topic of practical interest and
attracted much attention [9–11]. For example, by using the finite element method, Khurasia and
Rawtant [10] examined the effect of variation in eccentricity on vibration behaviour for an
annular-like plate. Chen and Zhou [11] illustrated the low-frequency mode shapes of a small disc
with eccentric holes based on the boundary element approach.

As is known, the existence of eccentric holes in circular plates will lead to the splitting of
doublet frequencies obtained for annular plates, and consequently affect the vibration modes of
the structure. In such cases, the influence of eccentricity on repeated frequencies or mode shapes
should be considered carefully during modal analysis. From the analyses of Khurasia et al. [10]
and Chen et al. [11], it can be seen that the presented results are deficient because they disregard
the influence of repeated frequencies and mode shapes. Some indications in this connection can be
found from the work of Tseng and Wickert [12] using an eccentrically clamped annular plate,
which showed that each pair of repeated frequencies splits at a rate that depends on the number of
nodal diameters with increasing eccentricity.

However, as for the effects of variation of eccentricity, hole size and boundary condition on
vibration modes during modal analysis, scanty literature is available and very few results have yet
been reported on numerical or experimental analysis. In addition, from the results of Wong et al.
[8], which show that a significant change at the circumference of the hole can be perceived from
the residual displacement mode shape (DMS), defined as the difference of DMS between the
circular and annular plates, it is of interest to know whether this conclusion is still valid for
circular plates with an eccentric hole. This question is of particular relevance to the problem of
damage detection.

The aim of this paper is to investigate these problems systematically. It attempts to reveal the
relationship between parameter variations (eccentricity, hole size, boundary condition) and
vibration modes, and to discover the vibration behaviour around the eccentric hole. To our
knowledge, these results are new and give guidance for the modal analysis and damage detection
of circular plates. The paper is organized as follows. In Section 2, the theoretical foundation of
vibration analysis around the hole of an annular-like plate is introduced. In Section 3, numerical
studies on the effects of the eccentricity, the hole size and the boundary conditions on vibration
modes is discussed systematically from both global and local points of view. In order to verify the
validity of the numerical analysis, experimental modal analysis is carried out in Section 4 for a
clamped–free steel plate with eccentricity. Techniques on the construction of an ideal boundary
condition and the selection of an excitation location are described. Finally, some constructive
conclusions are drawn.

2. Theoretical background

2.1. Mode shape of an annular-like plate

Consider the annular-like plate shown in Fig. 1: its ijth displacement mode shape Wijðr; aÞ in the
polor coordinate can be expressed as

Wijðr; aÞ ¼ cijðrÞYijðaÞ; ð1Þ
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where i, j are the numbers of nodal diameters and circles, and cijðrÞ and YijðaÞ are the functions
related to the polor radius r and polor angle a; respectively. For the annular case, cijðrÞ can be
expressed by the linear combination of Bessel functions. However, for the annular-like case, this
expression is no longer valid. Thus, suitable shape functions should be used to describe cijðrÞ and
YijðaÞ: In general, some admissible shape functions, such as the pb-2 function and the bi-
orthogonal basis can be utilized to form cijðrÞ and YijðaÞ [9].

2.2. Vibration behaviour at the circumference of the hole

The mode subtraction approach is manifested as an efficient tool in revealing vibration
behaviour around the hole for annular plates [8]. In this section, the analysis will be extended to
the vibration around the hole for annular-like plates.

As is known, the bending moment at the free inner edge satisfies

Mijðr; aÞ r¼rðl;c;aÞ
a1�arcsinðl=cÞpapa1þarcsinðl=cÞ
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where D; v, c and l are flexible rigidity, the Poisson ratio, radius and eccentricity of the hole,
respectively. The polor radius r is a function of the eccentricity l; the hole size c and the polor
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Fig. 1. Schematic diagram of the annular-like plate.
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angle a , and

r ¼ rðl; c; aÞ ¼ l cosðy� a1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � l2 sin2ða� a1Þ

q
: ð3Þ

In order to reveal the variation of DMSs around the hole using the mode subtraction approach,
the ijth vibration mode of circular plates is denoted by [13]

Wo;ijðr; aÞ ¼ co;ijðrÞYo;ijðaÞ ð0prpaÞ; ð4Þ

where co;ijðrÞ is given by the linear combination of Bessel functions. For this case, the bending
moment at the virtual location r ¼ rðl; c; aÞ is not equal to zero, i.e.,
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Thus, with the help of Eqs. (2), (4) and (5), the difference between the circular and annular plates
of the ijth DMS at the circumference of hole can be obtained as
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2.3. Discussion

1. Compared with the results obtained in Ref. [8] for the annular plate, the change in DMS
around the hole is more complicated for the annular-like plate because of the variation of
parameter r and the intricate expression of cijðrÞ and YijðaÞ: Consequently, only the
qualitative analysis of vibration around the hole can be described from Eq. (6).

2. When the eccentricity l/a approaches 0, i.e., the centre of hole (o) is very close to the centre of
the circular plate (o1), cijðrÞ can degenerate into the form of a Bessel function. Under these
circumstances, the results achieved for the annular case are valid for the annular-like case with
a slight eccentricity. This can be verified from Fig. 2 with the consideration of the effect of l/a
on natural frequencies and mode shapes. This is useful for practical applications; for example,
the mismachining of an annular plate with a small deviation of the hole will not affect the
vibration behaviour of the structure.
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3. Vibration analysis of an annular-like plate

As is known, vibration analysis of a symmetric structure, e.g., the circular or annular plate, results in
the two-fold repeated frequencies occurring at mode (i,j) (i ¼ 1; 2;y;m; j ¼ 0; 1;y; n), while for
asymmetric structures such as the annular-like plate (l=aa0), the doublet frequency splits into two
distinct values, which has a significant effect on mode shape. In this section, by using the numerical
approach, the effects of the eccentricity, hole size and boundary condition on vibration modes with
respect to the split and repeated frequencies are investigated in detail through global and local analyses.

Commercially available finite element code Nastran [14] was used to carry out the numerical
simulations. Standard modelling procedure was followed to define the geometry, boundary
conditions, material and element properties. For a given mesh size, quad elements and their
corresponding nodes are generated automatically. In the present analysis, an annular-like plate with
a diameter of 160 mm and a thickness of 0.7 mm was used. The eccentricity and hole size can take
different values to simulate different cases of annular-like plates. For illustration purposes, the mesh
grid of an annular-like plate (l=a ¼ 0:15; c=a ¼ 0:15) with a mesh size of 3.81 mm is shown in Fig. 2,
in which 1649 plate elements and 1722 nodes are generated. As only lower order vibration modes are
of interest in the present analysis, the mesh used is sufficiently refined to give accurate solutions.

3.1. Global analysis

A global analysis describes the vibration behaviour of the whole structure using the parameter
of DMS. Before the analysis of the vibration mode, the effect of eccentricity l/a on frequencies is

Fig. 2. Mesh elements of an annular-like plate constructed from the finite element analysis code Nastran.
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first examined. Fig. 3(a) shows the first several natural frequencies of a clamped–free annular-like
plate (c=a ¼ 0:25) with l/a changing from 0, 0.15, 0.30, 0.45 to 0.6. A clamped condition is applied
to the outer edge of the plate. It can be found that for modes with i ¼ 0 (no nodal diameter), e.g.,
modes (0,0) and (0,1), single frequency is observed, which will be referred to as singlet frequency
hereafter. For cases where iZ1; such as modes (1,0) and (2,0), the repeated frequency occurring in
the annular plates (l=a ¼ 0) is separated into two distinct values, which are referred to as the
‘‘dominant’’ and ‘‘recessive’’ frequencies, respectively. Obviously, the difference between these
two values becomes significant with the increase of l/a.

3.1.1. Effect of the eccentricity
Fig. 3(b) shows the DMSs of a clamped circular plate (c=a ¼ 0) and a clamped–free annular-

like plate (c=a ¼ 0:25) with eccentricity l=a changing from 0, 0.15, 0.30, 0.45 to 0.6. From this
figure, some observations can be made as follows:

Symmetric cases when c=a ¼ 0 (the circular case) and l=a ¼ 0 (the annular case):

* In the case of singlet frequency (i ¼ 0), only the nodal circle will be observed and the wave
number is 2j for mode (0; j) (j ¼ 1;y; n), with the exception of mode (0,0), for which no nodal
circle is found.

* In the case of doublet frequency, the vibration mode occurs in pairs with the same shape,
and the wave number is 2(i+j) (i ¼ 1; 2;y;m; j ¼ 0; 1;y; n). In addition, the nodal
diameters retain straight even if they are broken at the hole section, and the nodal circles
are unchanged.
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Fig. 3. (a) Effect of variation in l/a on natural frequencies, and (b) effect of variation in l/a on DMSs.
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Asymmetric cases when l=aa0 (the annular-like cases):

* In the case of singlet frequency (i=0), with the increase of eccentricity l/a, the nodal circles are
flattened, then degenerated into nodal lines and recircled again (mode (0,1)). As a result, the
mode shape changes remarkably compared with that of the annular case.

* In the case of ‘‘recessive’’ frequency, one of the nodal diameters will pass through the centre of
the eccentric hole. The nodal diameters and circles remain unchanged or change slightly, and
the mode shape retains its basic characteristic shape, i.e., no obvious variation of mode shapes
is observed. For example, similar to the case of a circular or annular plate, the numbers of
peaks are two for mode (1,0) and four for mode (2,0);

* In the case of ‘‘dominant’’ frequency, with the increase of l/a, the trends of nodal diameters and
circles deviate from their origin, and their shapes are remarkably distorted, especially for high-
order modes. For instance, the nodal diameter bends gradually for mode (1,0) and tends to be
curvy for mode (2,0), while for modes (3,0) and (1,1), its shape changes completely. Obviously,
a variation of mode shapes can be found when compared with their counterparts in circular or
annular plates.

3.1.2. Effect of the hole size
The effect of hole size on mode shapes is discussed in this section. As mentioned above, for

annular-like plates, due to ‘‘frequency splitting’’, the mode shape corresponding to the ‘‘recessive’’
one, defined as the ‘‘recessive’’ mode, retains its original shape, while that corresponding to the
‘‘dominant’’ one, defined as the ‘‘dominant’’ mode, changes obviously. This observation is also
tenable for annular-like plates with a different size of hole. Therefore, only ‘‘dominant’’ modes
will be taken for a concise analysis. Fig. 4 gives the mode shapes of a clamped–free annular-like
plate (l=a ¼ 0:45) with the hole size c/a changing from 0.1, 0.15, 0.2, 0.25 to 0.3. For modes ði; 0Þ
(i=1,2,3), the diameter lines bend gradually and degenerate into nodal lines. Special attention is
paid to mode (2,0), in which two nodal lines for the case c=a ¼ 0:25 rejoin as an opened nodal
circle for the case of c=a ¼ 0:3; whereas, for mode (0,1), the nodal circle is extended into two nodal
lines. As for modes with coupled nodal diameters and circles, e.g., modes (1,1) and (2,1), this
couple situation vanishes with the increase of c/a.

Obviously, with the increase of c/a, changes in the nodal diameters and circles are noticeable for
the ‘‘dominant’’ case. As a result, the mode shapes differ remarkably from those obtained for the
circular or annular plate. However, in the ‘‘recessive’’ case, global analysis reveals no obvious
change for the same order of mode shape, no matter whether the structure is with or without an
eccentric hole. In this case, the local analysis using mode subtraction approach will be performed
to explore the vibration behaviour of the structure.

3.1.3. Effect of the boundary condition
In order to illustrate the influence of different boundary conditions on the aforementioned

observations, the DMSs of a circular plate ðc=a ¼ 0Þ and an annular-like plate ðc=a ¼ 0:25; l=a ¼
0:45Þ under simply supported–free, free–free and partial clamped–free constraints are studied.
Some results are plotted in Fig. 5 for comparison. Similar results to those presented in Section
3.1.1 for the clamped–free case can also be achieved for the simply supported-free and free–free
cases. A common feature of these cases is that they are subjected to symmetric constraints.
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For the asymmetric constraint, however, things have changed. This is demonstrated by the
partial clamped–free case, in which a partial clamped–free constraint is realized by restricting the
displacement and rotation at the clamped region of the outer boundary, while keeping them free at
the inner boundary. In this example, three parts of the outer circumference at intervals [0, p/12],
[2p/3, 3p/4] and [4p/3, 7p/5], as shown in Fig. 5(a), are fixed to simulate the clamped region. The
results reveal that the repeated natural frequencies vanish regardless of whether or not the structure
has an eccentric hole, and the wave number of 2(i+j) for mode ði; jÞ of the clamped case (Fig. 3(b),
cases where c=a ¼ 0 and c=a ¼ 0:25; l=a ¼ 0:45) is no longer satisfied for the same order mode of
the partial–clamped case. Consequently, the asymmetric mode shapes are observed.

In summary, a noticeable difference in vibration modes can be found between structures with
symmetric and asymmetric boundary conditions. For this reason, care should be taken in the
configuration of an ideal boundary during the experimental analysis, so that accurate data can be
acquired for modal analysis.

3.2. Local analysis

Local analysis aims to investigate the local vibration behaviour of the structure using the
parameter of residual DMS. As presented in Ref. [8], the local technique was found to provide

Fig. 4. Effect of variation in c/a on DMSs with eccentricity l/a=0.45.
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efficient, accurate information on identifying the location of a hole (through the peak of the
residual DMS) in the structure. This result is valuable for damage detection of plate-like
structures. In this section, the local technique is extended to analyze the vibration behaviour of
annular-like plates with consideration of the effects of the eccentricity and the hole size. Firstly,
the DMSs of the circular and annular-like plates are identified and normalized by dividing the
whole set of deflections by the maximum value. The residual DMS between these two cases can
then be calculated, and the vibration behaviour at the circumference of the hole will be obtained.
Due to the use of the subtraction technique, peaks appearing at those positions where the extreme
amplitudes of modes are found inherently from global analysis will be eliminated from local
analysis.

3.2.1. Effect of the eccentricity
Fig. 6 shows the contour of the residual DMSs at the circumference of the hole ðc=a ¼ 0:25Þ

with the eccentricity l/a varying from 0, 0.15, 0.3, 0.45 to 0.6. For mode (1,0) (Fig. 5(a)), it can be

Fig. 5. Effect of different boundary conditions on DMSs.
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found that when the angular position y varies from 0 to 2p, two peaks (p1 and p2) are observed,
and with the increase of l/a, the amplitude of peaks increases first and then decreases with their
positions moving toward the nodal point at location y ¼ p (the trace is shown by the dash lines).
For mode (2,0) (Fig. 5(b)), four peaks (p12p4) are detected for the annular case (l=a ¼ 0).
However, with the increase of l/a from 0.15 to 0.6, peaks p3 and p4 disappear, and only p1 and p2

exist. The reason for this is that the effect of nodal line L1 on vibration around the hole is weak
when the eccentric hole is far away from L1:

These results show that some peaks can be detected at the circumference of the hole from local
analysis, and their number and locations depend on the eccentricity to a large extent. In addition,
although there is no regular relationship between the variation of the residual DMS at peak
locations and the increase of l/a, the changed amplitudes at peak locations are significant: at least
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a 15% change can be observed at p1 and p2 according to this figure. Moreover, for different
modes, there exists a different l/a, where the amplitude of the peak will achieve its maximum for
l/a varying from 0 to 1.

3.2.2. Effect of the hole size
Fig. 7 plots the contour of the residual DMS at the circumference of the hole ðl=a ¼ 0:45Þ for

mode (2,0) with different hole size c/a. When c/a varies from 0.1 to 0.3, the amplitude of peaks
first increases and then decreases, and two peaks around the hole can be found. With respect to
Fig. 6(b), it is clear that the influence of hole size is the same as the influence of eccentricity on
vibration mode around the hole. Similar results can be achieved for other modes, but they are
omitted due to the limitation of length of paper.

In Fig. 7, it can be seen that a jump phenomenon exists around the hole even for a structure
with a small hole; for the annular-like plate, a large hole may not necessarily result in a significant
change in the residual DMS, and the locations of the peaks are variable for different c/a. These
results differ from those obtained for the annular plate, for which the residual DMS is
proportional to hole size, and the locations of the peaks are fixed for different c/a (Ref. [8]).

To conclude, the unobvious change in the DMS around the hole from global analysis can be
detected clearly from local analysis. It can also give guidance on the selections of hole size and
eccentricity during experimental tests.

4. Experimental modal analysis

Experiments were performed to validate simulations using the mode (1,0) of a clamped circular
plate (c=a ¼ 0) and a clamped–free annular-like plate (c=a ¼ 0:175 and l=a ¼ 0:175). The effective
diameter of these two steel plates is 160 mm, with a thickness of 0.7 mm, and the diameter of the
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eccentric hole is 28 mm, with an eccentricity of 14 mm for annular-like cases. The material has a
Young’s modulus of E ¼ 210 GPa, a density of r ¼ 7800 kg/m3 and a Poisson ratio of n ¼ 0:3:

4.1. Experimental set-up

Fig. 8 shows the schematic diagram of the experimental set-up used for modal testing. An
excitation signal was generated by a B&K 3557 signal analyzer, then amplified by a B&K 2706
power amplifier, and exerted on the tested structure through the B&K 4810 exciter. The applied
force was measured by a B&K 8203 transducer fixed between the flexible string and the plate. The
vibration amplitude at the measuring locations was sensed by a B&K 4397 accelerometer, and
monitored by a Tektronix TDS 220 oscilloscope. During the modal test, single-point instead of
multi-point measurement was adopted to reduce the influence of the additional mass.

As mentioned above, the configuration of an ideal clamped boundary is essential to
obtain good data. To realize the ‘‘clamped boundary’’, two flanges of radius 110 mm were
aligned and located at each side of the plate (Fig. 9). Eight uniformly distributed holes of
radius 4 mm were drilled at the flanges for the bolts, and two dowel pins were fitted to
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Fig. 8. Schematic diagram of the experimental set-up c1; c2—excitation points; s1; :::; s11—measurement locations.

L. Cheng et al. / Journal of Sound and Vibration 262 (2003) 1153–1170 1165



ensure accurate positioning. In addition, the clamped edges, 2 mm thick and 2 mm wide,
were machined along the inside diameter of the flange couples to make a rigid clamping
effect.

According to the relationship between natural frequency f and eccentricity l=a; (mode (1,0)
of Fig. 2(a)), for structures with a small l=a; the doublet frequency cannot be completely
separated. Thus, when a certain frequency is used to generate an excitation signal, mode shapes
corresponding to both frequencies may be stimulated simultaneously. Hence, the position of the
excitation point during testing must be judiciously selected, with some useful methods suggested
in the literature. For example, Jeong et al. thought that a good signal would be acquired when the
excitation point was designated close to the supporting edge [15]. However, it is more efficient to
assign the excitation point at the location of the anti-node point, to ensure that enough input
energy is provided to the structure.

An issue worthy of mention is that the locations of anti-nodes for the ‘‘recessive’’
and ‘‘dominant’’ modes are different. In general, for global analysis, the excitation point will
be set at a location where the ‘‘dominant’’ mode can be evoked, while for local analysis, it will be
set at the location where the ‘‘recessive’’ mode can be stimulated. It should be pointed out,
however, that for the annular-like plate with a small eccentricity, changes in mode shapes related
to low-order frequency are unobvious, no matter whether the frequency is the ‘‘recessive’’ or
‘‘dominant’’ one (Fig. 3(b)). Therefore, when the low-frequency modes of annular-like plates with
small eccentricity are utilized, the excitation point should be located at the anti-node of
‘‘recessive’’ modes, to ensure that the desired information can be obtained. In this test, the
excitation location was set at point c1 rather than c2; marked in Fig. 8 for mode (1,0) for this
purpose.

Dowel pin 

Steel plate under test

Steel flange 

2×2 mm 

Ø 160 mm

Fig. 9. Steel flange fabricated for the clamping of the steel plate under test.
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4.2. Results and discussions

Figs. 10(a) and (b) show the curves of the frequency response function at point s4 for the
circular and annular-like plates, respectively. The first several natural frequencies are measured
and listed in Table 1, and compared with those obtained from the numerical simulation. It can be
seen that the natural frequencies obtained from the experiment are in reasonably good agreement
with those obtained from the simulation, and for mode (1,0), the repeated frequency splits into
two different values, with less than 3% difference.

In order to investigate the influence of a hole on the DMS, the vibration amplitudes at locations
(s1;y; s11) were measured using the input of the sinusoidal signal with f ¼ 574 Hz for the circular
case, and with f ¼ 568 Hz for the annular-like case. In general, for mode (1,0), the amplitude
should achieve its absolute maximum at locations s11 and s8 theoretically. In fact, a small
difference exists between these two points because of measurement errors. In this test, the
maximal amplitude appeared at location s11; which was taken for normalization during data
processing.

Fig. 10. Curves of frequency response function at point s4:

Table 1

Natural frequencies of the circular and annular-like plates

Status Mode

(0,0) (1,0)

Experiment Simulation Experiment Simulation

Circular plate 269 273 574 574 567 567

Annular-like plate 267 274 552 568 555 561

L. Cheng et al. / Journal of Sound and Vibration 262 (2003) 1153–1170 1167



Taking the phase change into consideration, the normalized DMSs at the measurement points
for mode (1,0) are plotted in Fig. 11. The simulation results are also illustrated for reference. It
can be seen that

* The tendencies of the experimental data are consistent with those of numerical simulation.
When the DMS is taken for analysis (Fig. 11(a) and (b): (I), (II)), the mode shapes of the
circular and annular-like plate are similar, and two peaks are observed at s8 and s11 among all
the measured locations (s1;y; s11). It is clear that s8 and s11 are the locations where the extreme
amplitudes of mode (1,0) are found. This means that when the vibration mode corresponding
to the recessive frequency is adopted for vibration analysis, no obvious variation on the DMS
will be perceived from the global analysis, regardless of whether or not the structure has a hole.
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Fig. 11. The normalized DMS and the residual DMS of the tested plates for mode (1,0).
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* When the residual DMS is used for analysis (Fig. 11(a) and (b): (I)–(II)) the peaks at s8 and s11

vanish. However, two new peaks appear at s2 and s5: That is to say, changes can be detected at
the circumference of the hole from local analysis. Apparently, the residual DMS is a sensitive
parameter in indicating the location of hole.

5. Conclusions

Due to the asymmetric effect, the doublet frequency for circular plates splits into two distinct
values for annular-like plates, which makes a notable difference in DMSs. In this paper, the effects
of the eccentricity, hole size and boundary conditions on DMSs are investigated systematically.
From the global analysis, it can be found that with increases in eccentricity or hole size, the
‘‘dominant’’ mode experiences distortion, while the ‘‘recessive’’ one remains unchanged or
changes slightly. In addition, the asymmetric boundary condition results in a remarkable change
in DMS compared with that obtained from the symmetric boundary. This conclusion suggests
that analyses performed with perfect symmetric condition can still roughly predict the mode
shapes of the ‘‘recessive’’ modes of plates with slightly eccentric holes. They will, however, lead to
erroneous results for ‘‘dominant’’ modes. From the local analysis, a change in the DMSs at the
circumference of the hole will be observed even for a small eccentricity or hole, while it is
unobvious apart from this area. This observation indicates that the residual DMS is an effective
parameter for identifying damage occurring in plate-like structures. Experimental modal tests on
a clamped–free steel annular-like plate show reasonably good agreement of the results with
numerical predictions.
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